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Microbial rhodopsins function as light-driven
(retinal-based) ion pumps, cation channels,
or light sensors in various microorganisms

[see Heberle et al.’s Retinal Proteins—You
can teach an old dog new tricks (1)], are
found in all three domains of life (2–4),

and were recently reported in viruses as
well (5, 6). The first discovered microbial
rhodopsin, the light-driven proton pump
bacteriorhodopsin (BR), was identified in
halophilic (high-salt loving) archaea more
than 40 y ago (in 1971). Later on, the light-
driven chloride pump halorhodopsin (HR)
was discovered in the same archaeal micro-
organisms (for a historical perspective, see
ref. 2). Both pumps were discovered using
biophysical and physiological techniques.
The widespread bacterial light-driven pro-
ton pump proteorhodopsin (PR), however,
was discovered using metagenomics (7),
and was initially detected based on a weak
homology to BR (less than 30% identity on
the protein level). Although diverse PRs are
found in most marine microorganisms in
the photic zone (8–11), BRs and HRs are
restricted to halophilic archaea and are
found only in hypersaline environments.
The work of Yoshizawa et al. (12) in PNAS
is now reporting on a new light-driven
chloride pump, dubbed ClR (for Cl−

rhodopsin), which differs from HRs
and is found in a marine bacterium (the
flavobacterium Nonlabens marinus). In-
terestingly, this bacterium also possesses
a PR protein and a light-driven sodium
pump (NaR) [recently found in other fla-
vobacteria (13–16)], which makes it, ac-
cording to the authors, the first reported
microbe to possess three different types of
rhodopsin pumps.
The newly reported bacterial ClR has less

than 25% identity to archaeal HR or BR
proteins. In addition, none of the known
amino acids implicated in chloride transport
in HR are conserved in ClR. HR shares less
than 35% identity to BR on the protein level,
and in HR the corresponding amino acid to
aspartate at position 85 of BR (the proton
acceptor site) is threonine (yielding a protein
with the motif TSA; see Fig. 1 for details).
A single amino acid change in BR in
which aspartate 85 is replaced by threonine
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Fig. 1. Schematic representation of different microbial rhodopsin ion pumps. Amino acids shown in brackets are amino
acids found at positions 85, 89, and 96 in each of these rhodopsins (BR numbering). Colored arrows represent different
wavelengths at which each rhodopsin absorbs. In the case of PR, the arrows represent the absorption of blue and green
rhodopsins (29); XR absorbs at different wavelengths due to its additional carotenoid molecule. ESR, E. sibiricum rhodopsin.

Author contributions: O.B. and J.K.L. wrote the paper.

The authors declare no conflict of interest.

See companion article on page 6732.

1To whom correspondence should be addressed. E-mail: beja@tx.
technion.ac.il.

6538–6539 | PNAS | May 6, 2014 | vol. 111 | no. 18 www.pnas.org/cgi/doi/10.1073/pnas.1405093111

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1405093111&domain=pdf&date_stamp=2014-04-23
mailto:beja@tx.technion.ac.il
mailto:beja@tx.technion.ac.il
www.pnas.org/cgi/doi/10.1073/pnas.1405093111


(changing the DTD motif of BR to TTD),
turns BR from a proton pump into a chlo-
ride pump (17). Interestingly, in the new
ClR, position 85 is occupied by asparagine
(protein motif NTQ). Mutation of BR in
which aspartate 85 is changed to asparagine
(yielding a BR mutant protein with the mo-
tif NTD) does not turn into a chloride
pump (17, 18), and it would therefore be
extremely interesting to understand what
residues participate in chloride pumping
in the new ClR.
Cultured members of the flavobacteria

group have been instrumental in the study
of microbial rhodopsins, from the first
cultured bacteria showing PR phototrophic
activity [Dokdonia sp. strain MED134 (19)]
through the identification of an unusual
PR from nonmarine permafrost bacteria
[Exiguobacterium sibiricum (20)], to the
identification of NaR [Nonlabens dokdonensis
(basonym: Donghaeana dokdonensis) (13, 15);
Dokdonia eikasta (basonym: Krokinobacter
eikastus) (16); N. marinus (12)], and now
the new ClR [N. marinus (12)]. Perhaps the
next challenge is to find functional xantho-
rhodopsin (XR) homologs in these abundant
marine bacteria.
XR is a PR-like proton pump that uses

a light-harvesting carotenoid antenna in
addition to the retinal chromophore (21).
Since its discovery in Salinibacter ruber,
a halophilic bacterium, XR was discovered
and shown to be functional also in Gloeobacter
violaceus, a thylakoid-less cyanobacterium (22).
Genes for several XR-like proteins have been
reported in the literature lately (14, 23–27),
some even in flavobacteria; however, none

have yet been shown to behave as XR,
namely to have a light-harvesting carotenoid
molecule that can transfer energy to retinal.
Current explorations for new microbial

rhodopsin ion pumps are restricted to

homology searches to known rhodopsins
[with only three functional detections
reported to date (21, 28, 29)]. Additional cre-
ative functional screens should therefore be
developed to find novel rhodopsin features.
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