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Understanding the complexity of anisotropic turbulent processes
in engineering and environmental fluid flows is a formidable
challenge with practical significance because energy often flows
intermittently from the smaller scales to impact the largest scales
in these flows. Conceptual dynamical models for anisotropic
turbulence are introduced and developed here which, despite
their simplicity, capture key features of vastly more complicated
turbulent systems. These conceptual models involve a large-scale
mean flow and turbulent fluctuations on a variety of spatial scales
with energy-conserving wave-mean-flow interactions as well as
stochastic forcing of the fluctuations. Numerical experiments with
a six-dimensional conceptual dynamical model confirm that these
models capture key statistical features of vastly more complex
anisotropic turbulent systems in a qualitative fashion. These fea-
tures include chaotic statistical behavior of the mean flow with
a sub-Gaussian probability distribution function (pdf) for its fluc-
tuations whereas the turbulent fluctuations have decreasing en-
ergy and correlation times at smaller scales, with nearly Gaussian
pdfs for the large-scale fluctuations and fat-tailed non-Gaussian
pdfs for the smaller-scale fluctuations. This last feature is a mani-
festation of intermittency of the small-scale fluctuations where
turbulent modes with small variance have relatively frequent ex-
treme events which directly impact the mean flow. The dynamical
models introduced here potentially provide a useful test bed for
algorithms for prediction, uncertainty quantification, and data as-
similation for anisotropic turbulent systems.

wave-mean interaction | stochastic model

U nderstanding the complexity of anisotropic turbulence pro-
cesses over a wide range of spatiotemporal scales in en-
gineering shear turbulence (1-3) as well as climate atmosphere
ocean science (4-6) is a grand challenge of contemporary sci-
ence. This is especially important from a practical viewpoint
because energy often flows intermittently from the smaller
scales to affect the largest scales in such anisotropic turbulent
flows. The typical features of such anisotropic turbulent flows
are the following (2-4):

(A) The large-scale mean flow is usually chaotic but more pre-
dictable than the smaller-scale fluctuations. The overall sin-
gle point probability distribution function (pdf) of the flow
field is nearly Gaussian whereas the mean flow pdf is sub-
Gaussian, in other words, with less extreme variability than
a Gaussian random variable.

(B) There are nontrivial nonlinear interactions between the
large-scale mean flow and the smaller-scale fluctuations
which conserve energy.

(C) There is a wide range of spatial scales for the fluctuations with
features where the large-scale components of the fluctuations
contain more energy than the smaller-scale components. Fur-
thermore, these large-scale fluctuating components decorre-
late faster in time than the mean-flow fluctuations on the
largest scales, whereas the smaller-scale fluctuating compo-
nents decorrelate faster in time than the larger-scale fluctu-
ating components.

(D) The pdfs of the larger-scale fluctuating components of the
turbulent field are nearly Gaussian, whereas the smaller-
scale fluctuating components are intermittent and have fat-
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tailed pdfs, in other words, a much higher probability of
extreme events than a Gaussian distribution (see figures
8.4 and 8.5 from ref. 3 for such experimental features in
a turbulent jet).

The goal here is to develop the simplest conceptual dynamical
model for anisotropic turbulence that captures all of the features
in (A)-(D) in a transparent qualitative fashion. In contrast with
deterministic models of turbulence which are derived by Galer-
kin truncation of the Navier-Stokes equation (7) and do not
display all of the features in (A)—(D), the conceptual models
developed here are low-dimensional stochastic dynamical sys-
tems; the nonlinear interactions between the large-scale mean-
flow component and the smaller-scale fluctuating components are
completely deterministic but the potential direct nonlinear
interactions between the smaller-scale fluctuating components
are modeled stochastically by damping and stochastic forcing
(6, 8). The conceptual models developed here are not derived
quantitatively from the Navier-Stokes equations but are de-
veloped to capture the key features in anisotropic turbulent
flows listed in (A)—(D) by mimicking key physical processes.
Besides aiding the understanding of anisotropic turbulent flows,
such conceptual models are useful for designing and testing
numerical algorithms for prediction and data assimilation in
such complex turbulent systems.

Conceptual Model

The model has a mean scalar variable u representing the
largest scales and a family of small-scale variables #’'=

(Wiyuh, . . . ,ui)" €RK so that there are RX*! variables in the sys-
tem i = (i’ ) The variables u,1 <k <K represent contributions
u
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to the turbulent fluctuations from increasingly smaller scales as
k increases with

(1]

~~

K
u' = E u
k=1

the turbulent fluctuations. One can think of u as the large-scale
spatial average of the turbulent dynamics at a single grid point in
a more complex system and u’ as the turbulent fluctuations at the
grid point with

K
w(t) =)+ > up (1) 2]
k=1

the total turbulent field. To add a sense of spatial scale, one can
also regard u;, as the amplitude of the kth Fourier cosine mode
evaluated at a grid point but such an interpretation is not
necessary here. Note that the large-scale mean u can have
fluctuating, chaotic dynamics in time through interactions with
turbulence and its own intrinsic dynamics. The nonlinear inter-
actions in turbulence conserve the total energy of the mean
and fluctuations and a key feature of the conceptual model is
to use nonlinear interactions which conserve the energy E,
which we take as given by

E(a, i) =% (u2+ i (u,’()2>. [3]

k=1

A hallmark of turbulence is that the large scales can destabilize
the smaller scales in the turbulent fluctuations intermittently and
this increased small-scale energy can impact the large scales; this
key feature is captured in the conceptual models. With the above
discussion, here are the simplest models with all these features,
the conceptual dynamical models for turbulence:

i EK ()" ~aw +F

a= " yk:l e

du;{ ! 3711 1

= = —diuy, — yiuy + oWy, 1<k <K. [4]

The reader can think of u;, as the amplitude of the kth Fourier
cosine mode to aid the interpretation of the model but this is not
necessary here. The system of K 41 dimensional stochastic dif-
ferential equations in 4 is written in physicist’s notation with W
independent white noises for each k but the system in 4 is always
interpreted in the Ito sense below. The reader easily verifies that
the nonlinear interactions in 4 conserve the energy E in 3, which
can be modified by the linear terms, the external forcing F, non-
linearity of the large scales, and the random forcing of the small
scales. The turbulence dissipation coefficients dy for k=1,2,...,K
are positive, di > 0, in order for the turbulence to have a statistical
steady state but the coefficient d for the large scales can be either
positive or negative reflecting large-scale instability. When d is
negative so there is instability on the large scales we add the
stabilizing cubic term with @ > 0 whereas for positive d we assume
a=0; both cases are studied below. The external force F is a con-
stant which is varied below to mimic fully turbulent regimes with
(A)—(D). For a fixed coefficient of nonlinear interaction y >0,
there is local growth and instability in time for the kth turbulent
scale provided that

—dy

—dk —}/ﬁ>07 i.e., ﬁ<77 [5]

and chaotic fluctuations of u will create intermittency in u
through this mechanism. Thus, the overall system can have a sta-
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tistical steady state whereas there is intermittent instability on
the small scales which increases their energy and impacts the
large scales, creating non-Gaussian intermittent behavior in the
system. With & =0, the equation for the kth turbulent scale u;_ is
a simple Langevin process with Gaussian statistical steady state
with zero mean and variance a,% /2d =Ey; it is natural to pick
these energy densities to have power-law behavior for this energy
spectrum, i.e.,

G—IE_E =Eolk|™ (61

2dk_ k=1L0 )

with Eq>0 and a>0 fixed constants (8). For example, a=5/3
corresponds to the Kolmogorov spectrum (3, 8). Note that we could
allow coefficient y in 4 to vary with k for k=1,2,...,K but we
refrain from discussing this generalization here. On the other hand,
it is natural to have the damping dj, vary with & to represent various
dissipative processes such as viscosity or Ekman friction (8). This
completes the description of the conceptual models.

Mathematical Properties

Note that the equation for the large-scale mean u is deterministic
and without any direct stochastic forcing; this deterministic
structure mimics that at the large scales for realistic turbulent
flows. Nevertheless, the large-scale mean % interacts with the
fluctuations u; which are stochastically forced. We claim that
even with the above degenerate noise, the conceptual models in
4 are geometrically ergodic (9); in other words, for any value of
F, a unique smooth ergodic invariant measure exists with expo-
nential convergence of suitable statistics from time averages in
the long time limit. To prove this, we apply the main theorem in
ref. 9 with the Lyapunov function given by the total energy in 3.
Two things need to be checked; the first is the coercivity of the
generator applied to the Lyapunov function which is immediately
satisfied given our hypotheses; the second condition is the hypo-
ellipticity of the generator of 4. To check hypoellipticity we con-
sider the K-vector fields

X, =(oby), 0<i<k 1<k<K X, eRf*' 1<k<K

and
_ K 2 —
Yo —dﬁ+yzk:(u,;) -au’+F
—djuy — yuuy,

We only need to show that Xi, [Xx, Y], [Xk, [Xk, Y]] span all of
RX+! where [X,Y]=X-VY —Y - VX is the Lie bracket. Because

P, [, Y] = (77

complement, hypoellipticity is satisfied.

) and the Xj, 1<k’ <K span the orthogonal

Phase Plane Analysis

Here we develop intuition regarding the parameters of the
conceptual models which provide important guidelines to dem-
onstrate below that these models with K >2 can capture all of
the features of anisotropic turbulence listed in (A)—(D) above.
For such intuition, there is a revealing phase plane analysis of the
2D system for (@,u’) which is the special case of the model in 4
where K =1 and without noise. This system is given by

du’

U =—(d+yu)u’,

du 71
- _ /2 o J—

E:—du+y(u) —aw’ +F.
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The linear subspace (#,0) is invariant for the dynamics which
reduces on this subspace to the scalar equation

du - _ __5 —

7 du u +F, [8]
whereas the general dynamics of 7 is invariant under the flip
symmetry (#,u’)— (#, —u'). Thus, there are between one and
three critical points of 7 with the form (ticg, 0) as F varies, pro-
vided that d <0 and @> 0 and only a single critical point of the
form (ticg,0) with ticg=F/d for d>0,a=0; regardless of
these stability properties along the u axis, such critical points
are unstable to u’ perturbations if and only if d + yticg <0, i.e.,
the instability condition in 5 is satisfied. For suitable values of F,
there is another family of critical points for 7 with the form
(@, +upR) where

Uy =——
Y 91

yul=du+au’ —F.

Note that .. is exactly the critical value of neutral stability from 5
for the conceptual model. The linear stability matrix at these
critical points for 7 has the form

(—3—3& T 2a)>7 [10]

) 0

with @ = yurp so these critical points are stable (unstable) if and
only if —d —3a u2 <0 (>0).

To develop guidelines in choosing parameters for the numerical
experiments for K > 2 with the conceptual model in 4, we consider
the phase plane analysis in two scenarios with positive and nega-
tive large-scale damping. In both cases, the parameters y =1.5 and
d=d; =1 are fixed below, whereas for

d=0.01 and a=0
d=-0.1 and a=0.05.

positive large scale damping, [11]

negative large scale damping,
First consider positive large-scale damping; the two critical
points (., +ugg) occur for F<Fegp=-dd/y=-0.0067 and
are both stable by the criterion in 10, whereas the critical point
(F/d,0) along the & axis is unstable to u’ perturbation provided
F <Fcg. Because the energy is a Lyapunov function for 7, tra-
jectories off the & axis converge to either of the critical points
(@«, +ugp) with . the marginally stable value; thus we can expect
more turbulent behavior in the conceptual stochastic models with
K >2 as the forcing F increases in magnitude through negative
values, F with F <Fcgr=-0.0067. A similar scenario occurs for
the case with negative damping in 7 for F < —0.0545 with a single
critical point along the & axis which is unstable to perturbations in
u’ with two critical points (&, +ugg), Upg #0, which are also
unstable because —d — 3@ &> > 0; in this case, with all three equi-
librium points unstable, trajectories off the & axis necessarily
converge to periodic orbits encircling the critical points
(@«, xupg) and frequently visit values of @ with instability in
the u’ dynamics. We also anticipate different behavior for
F> —0.0545 because a stable critical point appears at u=
0.8329 for this and larger values of F. See the tables in
SI Appendix.

Numerical Experiments for K = 5 in the Conceptual Model

Here we use simple numerical experiments to demonstrate that
the six-dimensional conceptual model in 4 with K =5 has all of
the statistical features listed in (A)—(D) including intermittency
of the small scales. The parameters d, @, and y = 1.5 have already
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been discussed in 11. The damping coefficients dy are a mixture
of uniform and scale-selective damping with dj =1+ 0.02k> for
k=1,2,...,5 so that the smaller scales are damped more rap-
idly; the noise level set by oy for the kth mode is determined by

2

o2 0.004

o 0004 1o s [12)
de  (1+k)>3

so that a —5/3 spectrum is calibrated to occur for these modes
provided u=0 in the equations for u; (8). This specifies all
parameters in the conceptual model for turbulence used here.
For all numerical simulations below and in SI Appendix, the
Euler-Maruyama method is used with a time step Ar=5x1073
and the system is integrated for a long time 7=2x 10° with the
first =2x 103 time data ignored for postprocessing the equilib-
rium statistics. In all simulations the initial value is 7 =1.5 with
u,=0fork=1,2,...,5.

First we consider the case with large-scale instability for & with
negative damping, d=-0.1 and a=0.05 with the forcing value
F =-0.055 motivated by the phase portrait analysis above. Fig. 1
depicts the pdfs for the total turbulent field u, the large-scale
mean #, and the turbulent fluctuations u;, k=1,2,...,5 as well
as a sample of the time series of each variable in the conceptual
model; the pdfs are plotted with a logarithmic vertical coordinate
to highlight fat tails of intermittency whereas the Gaussian dis-
tribution with the same variance is the parabola in the figure.
The pdf for the overall turbulent field u in 2 is nearly Gaussian
whereas the pdfs for the mean & and the largest scale fluctuating
mode u] are both slightly sub-Gaussian. The variable u) has
a Gaussian tail whereas the variables u}, u}, u; all have significant
fat tails, which are a hallmark of intermittency. The time series
for uj, u}, us in Fig. 1 clearly display highly intermittent behavior
of extreme values, with the amplitude of u} occasionally spiking
to the typical amplitude of u} even though the statistical equi-
librium variance of u} is nearly eight times smaller than that for
uy (see SI Appendix, Table S2). The statistical equilibrium mean
value for @ is —0.6733 = () and () is very close to the marginal
stability value #. =—0.6667 =—(d/y) motivated from 7 whereas
the standard deviation of u is 0.1993, indicating that the instability
mechanism elucidated in 5 is operating on all modes and creating
intermittency. The total energy of the mean flow & exceeds that of
the fluctuations u;. The variables u;,k=1,2,...,5 have essentially
zero means with variances 0.0446, 0.0174, 0.0049, 0.0014, and
0.0005, respectively, with the correlation time for u ~34, whereas
those for uy,k=1,2,...,5 are decreasing with k and ~29, 16, 6, 4,
and 3, respectively. These are all of the features of anisotropic
turbulence required from (A)—(D) and demonstrated in the
conceptual dynamical models; furthermore, all of these con-
ditions occur in a robust fashion for F increasing in magnitude
with F < —0.055 and 0.055<|F| <0.1. All of the detailed data
discussed above can be found in SI Appendix, Tables S1-S3.
There is an evident role for the unstable damping of the large
scales d =—0.1 to increase the variance of & with its mean near
the marginally critical value #. so that the instability mechanism
from 5 operates vigorously in the model and creates more vari-
ance inuy,k=1,2,...,5. Thus, we expect the system with stable
damping and the same values of F with F=-0.055 to have
less variance. B

We consider the case with positive large-scale damping, d =
0.01, for F = —0.080; in Fig. 2 we show the pdfs of all variables as
well as a piece of the time series of the turbulent signal u,u, and
u,k=1,2,...,5. The intermittency of the small-scale modes
with less variance is evident in Fig. 2. The mean-flow variable &
has the largest total energy with equilibrium statistical mean
(u) =—0.6853, which is very close to the marginal critical values
u.=—0.6667 so the intermittent instability mechanism in 5 is
operating once again. Both the variances and correlation times
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Fig. 1. Negative large-scale damping: time series (Left) and pdfs (Right) of the turbulent signal u, G and u;, k=1,2,...,5 with F =-0.055. Note the logarithmic
scale of pdfs in the y axis. Dashed lines are Gaussian distributions with the same mean and variance.

behave in a similar fashion as for the negative large-scale damping
case discussed above and as required in (A)—(D) so the conceptual
model with positive large-scale damping also is a qualitative
dynamical model for anisotropic turbulence with all of the fea-
tures in (A)-(D). Furthermore, all of these features persist for F
with —0.055 <F < —0.1; the pdfs are all Gaussian with no fat tails
for F with sufficiently small absolute value such as F =-0.01, as
shown in SI Appendix. As expected from our discussion of the un-
stable case, for fixed forcing with F < —0.055 there is between a
factor of 2 and 3 less variance in all variables in the positive large-
scale damping case compared with the negative large-scale damping
case. Documentation for all of the above claims is found in exten-
sive tables in SI Appendix. For both cases cross-correlation among
the variables u,u;,k=1,2,...,5 is negligible in the statistical
equilibrium mean with values roughly less than the 5% level.

In the above paragraphs, we emphasized models with K =5 to
mimic the many degrees of freedom in real anisotropic turbulence
and their interaction with the mean flow. From a mathematical
viewpoint, it is interesting to address the following: what is the
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lowest dimensional conceptual model with intermittency and
satisfying all of the requirements in (A)-(D)? Versions of the
conceptual model with K =2 already exhibit intermittency in u) as
well as all of the other features required in (A)~(D) for both pos-
itive and negative damping as shown in SI Appendix. However, the
two mode models with K =1 always exhibit either sub-Gaussian or
at most Gaussian behavior in u} without intermittency as the noise
level is varied in all of our numerical experiments.

Concluding Discussion

Conceptual dynamical models for anisotropic turbulence have
been introduced here which, despite their simplicity, capture key
features of vastly more complicated systems. The conceptual
dynamical models introduced here in 4 involve a large-scale
mean flow # and turbulent fluctuations, u;, 1 <k <K, on a variety
of spatial scales and involve energy-conserving wave-mean-flow
interactions as well as suitable degenerate stochastic forcing of
the fluctuations u;. The models have a transparent mechanism
where the mean flow & can destabilize the kth mode whenever
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Fig. 2. Positive large-scale damping: time series (Left) and pdfs (Right) of the turbulent signal u, U and u;, k=1,2,...,5 with F=-0.080. Note the logarithmic
scale of pdfs in the y axis. Dashed lines are Gaussian distributions with the same mean and variance.

dr+yu <0; a phase plane analysis yields parameters and robust
regimes of sufficiently strong large-scale external forcing F, where
the models have a statistical equilibrium mean () which is nearly
neutrally stable in the sense that d; + y () 20 so that fluctuations
in the mean # often introduce intermittent instability. Numerical
experiments with a six-dimensional version of the model summa-
rized here and in S Appendix confirm that it captures key statistical
features of vastly more complex anisotropic turbulent systems.
These include chaotic statistical behavior of the mean flow & with
a sub-Gaussian pdf for its fluctuations, whereas the turbulent
fluctuations u;,1 <k <5 have decreasing energy and correlation
times as k increases with nearly Gaussian pdfs for the large-scale
fluctuations and fat-tailed non-Gaussian pdfs for the smaller-scale
fluctuations; this last feature allows for intermittency of the small-
scale fluctuations where turbulent modes with small variance can
have relatively frequent large-amplitude extreme events which di-
rectly impact the mean flow z. Remarkably, vastly more complex
realistic turbulent systems often exhibit such marginal critical be-
havior on average (4). As mentioned above (1 and 2), we can
regard u,u;, for 1 <k <K as defining turbulent fluctuations at a

6552 | www.pnas.org/cgi/doi/10.1073/pnas.1404914111

grid point in a vastly more complex spatially extended system.
There are straightforward generalizations of the conceptual model
to allow for many large-scale grid points #;,j=1,2,...,J with as-
sociated turbulent fluctuations u/,, 1 <k <K satisfying a coupled
system of equations on the large scales,

duj, o .
d—t'= —(dk + yuj7k)uj7k + O’ijyk

d

- K [13]

T N2 = 3=

—t=Lu,-+yE (uj,k) —duj—au +Fj,
k=1

di

where L can be a linear or nonlinear operator coupling the ;.
The conceptual models in 13 are nonlinear generalizations with
transparent physical mechanisms of those introduced to study
stochastic superparameterization in anisotropic turbulence (6,
10). Besides their role as qualitative analog models of vastly more
complicated anisotropic turbulence, the conceptual dynamical
models introduced here are potentially useful as a simplified
test bed for algorithms and strategies for prediction, uncertainty
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quantification (11), and data assimilation (8) in vastly more com-
plex anisotropic turbulent systems. It also would be interesting to
derive the limiting statistical behavior of the conceptual models
as the number of fluctuating components k becomes large.
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