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Abstract

While rats have been predominantly used to study operant ethanol self-administration behavior in

the context of dependence, several studies have employed operant conditioning procedures to

examine changes in ethanol self-administration behavior as a function of chronic ethanol exposure

and withdrawal experience in mice. This review highlights some of the advantages of using

operant conditioning procedures for examining the motivational effects of ethanol in animals with

a history of dependence. As reported in rats, studies using various operant conditioning procedures

in mice have demonstrated significant escalation of ethanol self-administration behavior in mice

rendered dependent via forced chronic ethanol exposure in comparison to nondependent mice.

This paper also presents a summary of these findings, as well as suggestions for future studies.
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Introduction

Ethanol self-administration using operant conditioning procedures has been firmly

established in a number of species, including monkeys, rats, and mice (Meisch & Stewart,

1994; Samson, 1986). In these studies, animals are typically trained to make a response

(e.g., press a lever) under a particular schedule of reinforcement, such that responding after

either a specified number of responses (ratio schedules) or a specified period of time has

elapsed (interval schedules) will result in delivery of ethanol as a reinforcer. In most studies

involving oral ethanol self-administration, once the specified schedule of reinforcement was

satisfied, the reinforcer (specific amount of an ethanol solution) was presented to the
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animals for consumption. In contrast to this procedure (termed the ‘dipper’ model), in other

studies, once the response requirement was met, animals were provided free access to a

bottle containing ethanol for a specified period of time (termed the ‘sipper’ model) (Samson,

2000).

It is well established that ethanol can serve as an effective positive reinforcer in these self-

administration models. More recently, studies in animals with a history of dependence

(chronic but ‘forced’ ethanol exposure and withdrawal) have demonstrated that ethanol can

serve as a potent negative reinforcer as well. For example, increased ethanol self-

administration was shown in studies where dependence was induced by chronic

administration of ethanol in a nutritionally fortified liquid diet (that served as the animals’

sole source of calories and fluid) (Brown, Jackson, & Stephens, 1998; Chu, Koob, Cole,

Zorilla, & Roberts, 2007; Gilpin et al., 2009; Schulteis, Hyytiä, Heinrichs, & Koob, 1996),

via intragastric infusions (Cunningham, Fidler, Murphy, Mulgrew, & Smitasin, 2013; Fidler

et al., 2011; Fidler et al., 2012), and via inhalation of alcohol vapors (e.g., Becker & Lopez,

2004; Rimondini, Arlinde, Sommer, & Heilig, 2002; Roberts, Heyser, Cole, Griffin, &

Koob, 2000). In such studies, the altered physiological state associated with dependence

along with the capacity for ethanol to alleviate withdrawal symptoms is posited to not only

sustain ethanol self-administration, but also promote escalation of intake (Becker, 2008;

Becker, 2013; Heilig, Egli, Crabbe, & Becker, 2010).

The use of operant conditioning procedures to study ethanol self-administration behavior has

several important advantages over free-choice drinking models. First, this approach enables

separate analysis of the appetitive (seeking) and consummatory (drinking) components of

self-administration behavior. While the amount of ethanol consumed is a dependent variable

common to all models of self-administration, studying the appetitive component provides an

opportunity to examine the motivational effects of ethanol (i.e., how hard subjects will work

to obtain access to ethanol). In addition, systematic manipulation of dose (e.g., ethanol

concentration) as well as the schedule of reinforcement (i.e., increasing the response

requirement using progressive ratio procedures) enables a more detailed analysis of the

reinforcing efficacy of ethanol. Tracking the distribution and pattern of responding also

provides a more refined analysis of factors that influence self-administration behavior.

Additionally, measuring the behavioral response when ‘expected’ ethanol delivery is

terminated (extinction responding) provides a means to operationally define ‘ethanol-

seeking’ behavior. This procedure has been extensively used in relapse models to study how

presentation of discrete conditioned cues (stimuli previously associated with ethanol

reinforcement) and discriminative cues (context stimuli previously associated with occasions

to self-administer ethanol) reinvigorate or reinstate ethanol responding that was

experimentally extinguished. While all of these operant conditioning procedures have been

predominantly used to study ethanol self-administration in rats, many of these procedures

also have been adopted in studies with mice.

Operant Ethanol Self-Administration in Mice

Standard operant conditioning procedures have been employed to study ethanol self-

administration behavior in mice under a variety of conditions. As in the case for rats, studies
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have shown mice to respond for ethanol as a positive reinforcer when it is delivered orally

(Meisch, 2001), intravenously (Grahame & Cunningham, 1997), and directly into the

stomach via intragastric infusion (Fidler et al., 2011). While early studies showed that

ethanol responding and intake is enhanced in food-deprived mice (Middaugh & Kelley,

1999), ethanol was demonstrated to be an effective positive reinforcer in non-food deprived

mice as well (Ford, Fretwell, Mark, & Finn, 2007; Middaugh, Lee, & Bandy, 2000). Studies

also have shown mice responding for ethanol when ethanol reinforcement is continuously

available (Risinger, Brown, Doan, & Oakes, 1998), when it is made available for extended

periods (~16 h) (Besheer, Lepoutre, & Hodge, 2004; Hodge et al., 2006), and when access is

limited for short periods of time (~30–60 min) (Chu et al., 2007; Lopez, Anderson, &

Becker, 2008; Lopez & Becker, 2014; Ramaker, Strong, Ford, & Finn, 2012; Sparta et al.,

2009; Tsiang & Janak, 2006). Using the ‘sipper’ model described above, mice were shown

to reliably respond to gain access to drink ethanol from a bottle made available for 30 min

once the response requirement was satisfied (Finn et al., 2008; Ford et al., 2007). In this

latter case, manipulating the reinforcement schedule to further separate the appetitive and

consummatory components of the procedure enhanced both the appetitive drive to gain

access to ethanol (as indicated by reduced latency to fulfill the response requirement) and

the consummatory component (increased amount of ethanol consumed). Finally, a valuable

feature of using mice in these studies is that it more readily facilitates examination of genetic

contributions to operant ethanol self-administration behavior. Indeed, several studies have

examined ethanol self-administration involving operant conditioning procedures in various

genetic mouse models, including different inbred strains (Fidler et al., 2011; Grahame &

Cunningham, 1997; Risinger et al., 1998), mice selectively bred for other ethanol-related

phenotypes (Ford et al., 2011), and several genetically manipulated models engineered to be

deficient in various target proteins (knockout models) (Grahame, Low, & Cunningham,

1998; Olive, Mehmert, Messing, & Hodge, 2000; Risinger, Doan, & Vickrey, 1999; Roberts

et al., 2001; Roberts, McDonald, et al., 2000). Thus, while rats have been the predominant

choice of species for operant ethanol self-administration studies, a growing body of

literature indicates that operant conditioning procedures can be effectively employed in

studying ethanol self-administration behavior in mice.

Operant Ethanol Self-Administration in Dependent Mice

As reviewed elsewhere (Becker, 2013), numerous studies utilizing operant conditioning

procedures have demonstrated increased ethanol self-administration in rats following a

history of chronic ethanol exposure and withdrawal experience (Funk & Koob, 2007; Funk,

O'Dell, Crawford, & Koob, 2006; Funk, Zorilla, Lee, Rice, & Koob, 2007; Gilpin et al.,

2009; O'Dell, Roberts, Smith, & Koob, 2004; Rimondini, Thorsell, & Heilig, 2005; Roberts,

Cole, & Koob, 1996; Roberts, Heyser, et al., 2000). In contrast, only a handful of studies

have been devoted to evaluating the effect of ethanol dependence on operant ethanol self-

administration using mice. The following is a more detailed description of results generated

from these studies.

In one study, male C57BL/6J mice were trained to respond for ethanol for several weeks

(FR4, 10% ethanol; 60-min daily sessions). Once stable responding for ethanol was attained,

half the mice received chronic intermittent exposure to ethanol vapors in inhalation
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chambers (14 h/day for 21 days) and were given the opportunity to self-administer ethanol 8

h after being removed from the inhalation chambers each day. The self-administration

sessions were extended for an additional 2 weeks after the chronic intermittent ethanol (CIE)

vapor exposure was terminated. This study design resulted in elevated responding and a

higher number of ethanol reinforcers earned for mice that experienced CIE exposure, but the

effect was observed only during the 2 weeks after CIE exposure was terminated (Chu et al.,

2007). During the 3 weeks of CIE exposure, ethanol self-administration was very similar to

baseline levels and similar to control mice that did not receive ethanol vapor exposure (Chu

et al., 2007). This profile of results differs from that reported in rats where ethanol self-

administration was shown to progressively increase when the opportunity to respond for

ethanol was provided during repeated acute withdrawal periods (Roberts et al., 1996;

Roberts, Heyser, et al., 2000). This may reflect an important species difference in that mice

may require a longer ‘recovery’ period following CIE exposure before being offered the

opportunity to consume ethanol. It has been suggested that mice may require at least 48 h

before ethanol is re-introduced to avoid potential conditioned taste aversion related to the

CIE vapor exposure (Lopez & Becker, unpublished data).

In this study, mice were given the option to respond on one lever to obtain ethanol and on

another lever to obtain water. Because of this feature, it was possible to observe that

although the number of responses for ethanol reinforcement did not increase during the 3

weeks of CIE vapor exposure, preference for responding on the ethanol-related lever

significantly increased in dependent mice during the course of CIE exposure, an effect that

persisted after the chronic ethanol vapor exposure stopped (Chu et al., 2007). Another goal

of this study was to examine whether genetic deletion of CRF1 receptors alters operant

ethanol self-administration in dependent versus nondependent mice. In this case, baseline

ethanol responding was first established and then wild-type controls (C57BL/6J X 129SvJ

background) and CRF1 receptor knockout mice were exposed to ethanol delivered in a

nutritionally fortified liquid diet for a 2-week period before operant testing resumed. Results

indicated that while ethanol responding and preference were similar for both genotypes

during the baseline phase, ethanol self-administration significantly increased in the wild-

type controls but not CRF1 receptor knockout mice following the chronic ethanol treatment

regimen (Chu et al., 2007). Thus, it was suggested that CRF1 receptors might play a

significant role in mediating dependence-related escalation of ethanol self-administration.

Overall, these results are generally congruent with findings from a series of similar

experiments conducted in our laboratory. Briefly, adult male C57BL/6J mice were trained to

self-administer ethanol (FR4; 12% ethanol + 1% sucrose) in daily 15-min sessions. Once

stable baseline ethanol responding and intake were established, one group of mice was

exposed to CIE vapor exposure in inhalation chambers (16 h/day for 4 days) while the

remaining mice were similarly handled but exposed to air in control inhalation chambers.

After a forced abstinence period of 72 h, all mice were given the opportunity to self-

administer ethanol in 5 daily operant sessions (as during baseline). This procedure was

repeated for several cycles, with weekly CIE (or air) exposure cycles followed by a 72-h

forced abstinence period and then 5-day self-administration sessions. Ethanol responding

and intake were shown to significantly increase over baseline levels in dependent (CIE-

exposed) mice as well as in comparison to nondependent controls, which remained relatively
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stable throughout the experiment (Lopez & Becker, 2014). Importantly, increased ethanol

self-administration in dependent mice (1.72 ± 0.18 g/kg) compared to nondependent mice

(1.07 ± 0.10 g/kg) during the final test cycle resulted in significantly higher blood ethanol

levels in CIE-exposed mice (128.1 ± 12.2 mg/dL) compared to controls (87.4 ± 12.2 mg/dL)

registered immediately after the final 15-min operant session. Additionally, dependent (CIE-

exposed) mice showed greater persistence in responding as the amount of work required to

attain ethanol reinforcement was systematically increased (via progressive ratio schedules),

increased resistance to extinction, and greater sensitivity to cue-induced reinstatement of

ethanol responding in comparison to nondependent control mice (Lopez & Becker, 2014).

Collectively, use of operant conditioning procedures in these studies (as opposed to free-

drinking models) has provided valuable information regarding changes in the reinforcing

efficacy of ethanol as well as relapse vulnerability as a function of a history of dependence.

Employing a different experimental strategy, Cunningham and colleagues used a model

involving self-administration of ethanol delivered directly into the stomach. This model, first

developed in rats (Deutsch & Koopmans, 1973; Fidler, Clews, & Cunningham, 2006), was

recently adopted for mice. Although requiring labor-intensive surgical procedures, this

model offers the advantage of bypassing orosensory cues associated with oral consumption

of ethanol that could influence motivation to self-administer the drug. The procedure entails

first exposing mice to a period of forced ethanol administration (3 infusions/day), followed

by a 2-day period in which mice were given continuous access to a single bottle containing

water that was artificially flavored. During this no-choice phase of the procedure, licks on

the bottle (FR-10 schedule) resulted in delivery of an intragastric infusion of ethanol (10%

concentration). This was followed by a 4-day choice phase in which mice were given a

choice to drink from the bottle with a flavor that produces ethanol infusions or a second

bottle with a different flavor that resulted in water infusions. Results indicated that forced

intragastric infusions of ethanol resulted in increased self-administration of ethanol in both

the no-choice and choice phases of the experiment (Fidler et al., 2011). Of particular

interest, the study involved using this model to examine ethanol self-administration in

mouse inbred strains that exhibit high (C57BL/6J) versus low (DBA/2J) ethanol preference,

as well as mouse lines selectively bred for high (HAP2) versus low (LAP2) ethanol

preference. Increased ethanol self-administration in the model was demonstrated in all mice,

whether they typically exhibit high (C57BL/6J, HAP2) or low (DBA/2J, LAP2) ethanol

intake under baseline conditions (Fidler et al., 2011). Thus, intragastric self-administration

of ethanol was similar for all genotypes after a period of forced ethanol infusions even

though these genotypes greatly differ in their acceptance of ethanol when it is presented for

oral consumption. These results are also consistent with a previous study that showed

similar levels of operant ethanol self-administration in C57BL/6J and DBA/2J inbred mice

when ethanol was delivered via the intravenous route (Grahame & Cunningham, 1997).

In a series of follow-up experiments, Fidler et al. (2012) demonstrated that increased ethanol

self-administration via intragastric infusions depends on the amount of ethanol infused and

the duration of the forced infusion phase. Further, the increase in ethanol self-administration

was proportional to the severity of withdrawal symptoms displayed by DBA/2J mice. This

latter finding provides endorsement of the hypothesis that dependent mice may self-

administer more ethanol to prevent and/or alleviate symptoms of withdrawal (Fidler et al.,
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2012). This was further confirmed with studies in which the delay between the forced

infusion phase and self-administration sessions was varied (Cunningham et al., 2013).

Specifically, results indicated that increased ethanol self-administration was most robust in

mice that had either no delay or a short (1-day) delay between the forced intragastric

exposure phase and no-choice self-infusion phase, or between the no-choice and choice self-

administration phases of the study. Furthermore, this effect was more pronounced in

DBA/2J mice that are more sensitive to ethanol withdrawal than C57BL/6J mice

(Cunningham et al., 2013). Taken together, results from this series of studies indicate that

increased ethanol self-administration after a period of forced exposure may be driven, at

least in part, by the negative reinforcing effects of ethanol in mice.

Conclusions and Future Directions

Although rats have been the species of choice in studies employing operant conditioning

procedures to study ethanol self-administration in the context of dependence, a few studies

have adopted similar procedures to evaluate changes in ethanol self-administration as a

consequence of chronic ethanol exposure and withdrawal experience in mice. Since rodents

(rats and mice) do not typically voluntarily consume sufficient amounts of ethanol to

achieve a state of dependence, a number of procedures have been used to experimentally

administer high doses of ethanol over a prolonged period of time to induce dependence. As

reported in rats, studies in mice described in this review have demonstrated escalation of

ethanol self-administration following chronic ethanol exposure delivered by inhalation (Chu

et al., 2007; Lopez et al., 2008; Lopez & Becker, 2014), liquid diet (Chu et al., 2007), and

intragastric infusion (Cunningham et al., 2013; Fidler et al., 2011; Fidler et al., 2012). These

studies have taken advantage of employing operant conditioning procedures to enable a

more refined analysis of ethanol consumption in dependent mice. For example, analysis of

patterns of responding to gain access to ethanol provide information about 'drive' or

'motivation' for ethanol as well as frequency and size of ethanol bouts in dependent

compared to nondependent mice (Fidler et al., 2012). In addition, ethanol-dependent mice

were shown to develop a conditioned preference for a flavor associated with ethanol self-

infusion after a chronic regimen of forced (passive intragastric) exposure, thereby enabling

evaluation of ethanol’s reinforcing effects even though the drug was not being orally

consumed (Fidler et al., 2011). Similarly, ethanol-dependent mice exhibited greater

responding for ethanol even when the amount of work required to obtain ethanol

reinforcement was progressively increased, persisted in responding even when ethanol

reinforcement was no longer made available (extinction testing), and also showed enhanced

cue-induced reinstatement of ethanol-seeking behavior while tested in the absence of ethanol

availability (Lopez & Becker, 2014).

Although few in number, the studies presented here offer important information about

factors that should be considered in evaluating operant ethanol self-administration in

dependent mice. In some of the studies, mice were trained to self-administer ethanol prior to

chronic ethanol exposure via inhalation (Chu et al., 2007; Lopez et al., 2008; Lopez &

Becker, 2014) or liquid diet (Chu et al., 2007), and then were provided an opportunity to

self-administer ethanol again (post-dependence). This experimental strategy is based on the

notion that it would be optimal to first establish the positive reinforcing effects of ethanol
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before the animals acquire the negative reinforcing effects of ethanol (Meisch, 1983).

However, in other studies involving forced intragastric ethanol infusions, mice were given

their first opportunity to self-administer ethanol under free-choice conditions after the

chronic exposure regimen (Cunningham et al., 2013; Fidler et al., 2011; Fidler et al., 2012).

This raises some questions about whether a baseline period of ethanol self-administration

that presumably establishes the positive reinforcing effects of the drug is required before the

negative reinforcing effects of ethanol can be acquired through repeated access to ethanol

during chronic ethanol exposure and withdrawal cycles. It is unclear whether the mode of

chronic ethanol treatment is a critical variable that influences this procedural difference. In

this vein, the longer post-ingestive delay in reinforcement when the drug is consumed orally

(as opposed to direct infusion into the stomach) may require a longer period of time to

establish the positive reinforcing (and negative) reinforcing effects of ethanol. Of course,

there is some model face validity in first establishing a baseline (moderate) level of ethanol

consumption prior to evaluating the ability of chronic ethanol exposure and withdrawal

experience to augment ethanol self-administration.

Another issue raised in these studies on operant ethanol self-administration behavior in

dependent mice is the temporal relationship between the time when access to self-administer

ethanol is given in relation to withdrawal from chronic ethanol treatment. In one study,

escalation of operant ethanol self-administration was not apparent when it was offered 8 h

into each withdrawal period following chronic ethanol vapor exposure (Chu et al., 2007). In

fact, increased ethanol responding was not evident until after CIE exposure was terminated.

This is similar to findings from our lab indicating that a 48–72 h delay may be optimal for

observing increased ethanol self-administration following CIE vapor exposure (Lopez &

Becker, unpublished findings). Together, these results suggest that a sufficient period of

‘recovery’ (> 8 h forced abstinence) following chronic ethanol exposure may be required to

observe augmented self-administration. However, studies involving forced intragastric

infusions indicated that increased ethanol self-administration was optimal when it coincided

during acute withdrawal periods (Cunningham et al., 2013). Thus, this issue merits further

investigation.

In summary, despite the limited number of studies conducted with mice using operant

conditioning procedures, increased ethanol self-administration has been demonstrated

following different chronic ethanol treatment regimens. Future studies using these models

should continue to explore behavioral and environmental factors that influence propensity to

self-administer ethanol in the context of dependence, as well as how a history of such

dependence may alter vulnerability to relapse, as defined by operant reinstatement models.

The use of mice in studying operant ethanol self-administration within the context of

dependence can easily be adopted to investigate genetic factors that influence this behavior

(through use of various genetic mouse models). Another area in which use of operant

conditioning procedures will be valuable is in studies assessing the extent to which elevated

ethanol self-administration behavior in dependent mice reflects a shift in bias from goal-

directed (action-outcome) to habit-like (stimulus-response) processes. Finally, use of operant

conditioning procedures can be used to examine risk factors (e.g., high impulsivity and

anxiety traits) in conferring greater vulnerability to transition to dependence-related

excessive ethanol self-administration as well as factors that contribute to compulsive-like
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behavior that may drive higher levels of ethanol seeking and consumption in dependent

mice.
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