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Abstract

Neurons communicate via the relative timing of all-or-none biophysical signals called spikes. For

statistical analysis, the time between spikes can be accumulated into inter-spike interval

histograms. Information theoretic measures have been estimated from these histograms to assess

how information varies across organisms, neural systems, and disease conditions. Because

neurons are computational units that, to the extent they process time, work not by discrete clock

ticks but by the exponential decays of numerous intrinsic variables, we propose that neuronal

information measures scale more naturally with the logarithm of time. For the types of inter-spike

interval distributions that best describe neuronal activity, the logarithm of time enables fewer bins

to capture the salient features of the distributions. Thus, discretizing the logarithm of inter-spike

intervals, as compared to the inter-spike intervals themselves, yields histograms that enable more

accurate entropy and information estimates for fewer bins and less data. Additionally, as

distribution parameters vary, the entropy and information calculated from the logarithm of the

inter-spike intervals are substantially better behaved, e.g., entropy is independent of mean rate,

and information is equally affected by rate gains and divisions. Thus, when compiling neuronal

data for subsequent information analysis, the logarithm of the inter-spike intervals is preferred,

over the untransformed inter-spike intervals, because it yields better information estimates and is

likely more similar to the construction used by nature herself.
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1. Introduction

Neurons transmit signals via high amplitude, brief duration electrical pulses called spikes.

While slow and anatomically local chemical signals play a minor role in neuronal

communication, most of the information a neuron shares with its near and distant neighbors

is conveyed by the timing of these spikes. Information theoretic analysis was first applied to

these spikes, to estimate information transmission between neurons [1], only a few years

after its formalization by Shannon [2]. Subsequent work has demonstrated the need for

information theoretic approaches within neuroscience, for example, by proving that specific

temporal patterning conveys more information than the average spike rate in motor neurons
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responsible for movement coordination [3]. However, information analysis remains a niche

field within neuroscience, used primarily to quantify neuronal behaviors in response to time

locked inputs that can be repeated hundreds of times. For example, the ability to rapidly

repeat successive trials of visual scenes has made the visual system particularly amenable to

information analyses, revealing that sensory neurons use different temporal scales to encode

different classes of information [4,5], and that natural sensory events coupled with intrinsic

dynamics enable neurons to share more information than well controlled laboratory

experiments might suggest [6,7]. A more complete utilization of information theoretic tools

would use simultaneously recorded neuronal inputs and outputs in natural conditions.

Eventually, information theory will markedly impact both basic neuroscience and

engineering neural prostheses. First however, tools and intuition must be developed to

interpret neuronal signals, understand neuronal entropy, and assess neuronal information

processing.

Unlike manufactured computational systems, neurons do not operate on a linear clock.

Synaptic inputs modify internal states of a neuron, changing the membrane potential and

voltage sensitive conductance gates. These changes do not last for long, with the internal

states rapidly returning to their rest value through first, second or higher order kinetics.

Indeed, the conductance gates recover according to a number of exponential mechanisms,

the combinations of which approximate power law behavior [8]. When the relative timing of

events obey power law relationships, a histogram of the logarithm of the time between

events provides an intuitive appreciation for the time delays between events [9,10]. In recent

work, we proposed that the logarithm of time is not only more intuitive, but is the natural

metric for neuronal operations [11]: that neurons operate on a logarithmic clock suited to

measure the scale of inter-spike intervals (ISIs, i.e., the time between two spikes) better than

their absolute durations. If true, then relative ISI changes should carry more information

than absolute changes. Indeed, the difference between 1 and 2 ms ISIs likely conveys

substantially more information than the difference between 101 and 102 ms ISIs.

Although linearly binned ISI histograms are more widespread, logarithmically binned ISI

histograms have been used to classify neuronal bursting behavior [12] and to quantify

changes in neuronal entropy between diseased and treated conditions [13]. In previous work,

we explored the formal differences between these two histograms by taking the derivative of

the cumulative distribution function with respect to either time or the logarithm of time, and

then binning the respective probability density functions (PDFs). As a function of dataset

size, entropies estimated from the logarithmic PDFs were less biased and less variable than

from the more traditionally used linear PDFs. The PDF construction aside, many others have

explored the amount of data needed to estimate entropy and information according to

different techniques [14,15]. A generic finding is that, the more bins one uses to discretize

the PDF, the more data is needed to appropriately estimate the probability associated with

each bin. Thus, when discretizing ISIs for information analysis, one should use the least

number of bins that enable correct subsequent information estimates.

In this work we will explore the bins needed to robustly estimate entropy and information

from ideal ISI distributions. Too few bins and the salient features of the distribution are

obscured; too many bins and it becomes impractical to collect enough data to fill them all

Dorval Page 2

Entropy (Basel). Author manuscript; available in PMC 2014 May 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



adequately. We show that for the types of distributions that best describe neuronal activity,

ISIs binned in logarithmic time enable fewer bins to capture the distribution salience. We

find that for information analysis, the logarithmic PDFs are preferred over the linear PDFs

because sufficiently accurate entropy and information can be found for fewer bins, and

entropy and information are better behaved as a function of distribution parameters.

2. Results and Discussion

This section begins with a review of the differences between the linear and logarithmic

probability density functions (PDFs), generated by differentiating a cumulative distribution

function with respect to either its abscissa variable (e.g., t) or the logarithm of its abscissa

variable (e.g., log t), respectively. Four distributions that model inter-spike intervals (ISIs)

are used to examine the limits of entropy and information estimation from binned PDFs of

both types. The section concludes with examinations of how bin count, distribution mean,

and distribution variability affect entropy and information. Computer analyses were

performed in the Octave numerical computing language.

2.1. Separate but Equal Probability Density Functions

When calculating entropy from data collected into K bins, estimate bias and variability are

minimized when the probability associated with each bin approximates ~1/K. Binned PDFs

with high and low probability events require more data to yield reliable entropy estimates

than relatively uniform density functions [11]. Additionally, the more uniform the

underlying PDF, the fewer the bins needed to construct a discretized version that captures

the salient features of the true density. For these two related reasons—estimation accuracy

and bin reduction—we seek relatively flat probability densities.

To begin, we assume that neuronal ISIs are independent. Although usually false, the entropy

and information estimation techniques that we will use on single ISIs work equally well for

ISI pairs, triplets, etc., with the caveat that higher order estimates require more data [16].

Others have shown how the results of a few low-order estimates (e.g., singles, pairs and

triplets) can be extrapolated to approximate the true entropy and information [14]. In this

manuscript, ISIs are strictly independent.

The time between successive spikes is drawn from a distribution function, F(t) = P(ISI ≤ t).

Introducing a variable τ ≡ log(t), for strictly positive t we can substitute t = 10τ into the

distribution function and take the derivative with respect to either t or τ to yield two

different PDFs:

(1)

(2)

The logarithmic PDF is the linear PDF scaled by t and a constant, ln(10). This temporal

scaling results in density increases for large t and decreases for small t. For distributions
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with substantial negative skewness, scaling by t would exaggerate the regions of high

probability and diminish the regions of low probability. Entropy and information

calculations would then require finer binning and more data, or include more bias and

variability. For distributions with minimal skewness, scaling by t would generate high and

low probability regions, creating those same entropy—and information-estimation

difficulties. Thus, logarithmic PDFs should be avoided when estimating information

measures from negatively or negligibly skewed distributions. However, the linear PDFs of

positively skewed distributions have high densities at low t values and low densities in the

long tail of high t values. Scaling by t a positively skewed PDF flattens it, potentially

enabling more accurate entropy and information estimates for fewer bins. Thus, when

working from data generated via a process with substantial positive skewness, the

logarithmic PDF might be preferred and should be explored.

Do ISI distributions have substantial positive skewness? The time between spikes has no

maximum but a strict minimum; it is by definition positive and by biophysics greater than

some minimum refractory period. In the majority of neuronal firing patterns examined,

longer ISIs occur rarely and shorter ISIs occur frequently, suggesting ISI distributions with

substantial positive skewness. Every ISI distribution fit and model we are aware of is

positively skewed, except for the occasional misuse of the Gaussian distribution (A

Gaussian is a poor model since it must allow for negative ISIs, particularly when the mean is

less than 3 to 5 standard deviations, which it typically is. Apparently normal ISI data are

usually better fit to gamma or log-normal distributions). Because ISI distributions happen to

possess substantial positive skewness, the logarithmically binned PDFs may provide less

biased and less varied entropy and information estimates for fewer bins and less data than

the traditionally used linearly binned PDFs.

However, just because a distribution has positive skewness, does not mean that the

logarithmic PDF is an optimal way to generate density uniformity. Indeed, it is not. Better

transformations always exist, and less elegantly, bins can be arbitrarily resized to enforce

uniformity.

However, one cannot know the precise nature of the distribution from sampled data, and one

would prefer a method generally applicable to all potentially relevant distributions. Because

we measure neuronal entropy in terms of bits per spike, i.e., normalized for rate, optimal

binning methodology would provide entropy estimates that vary as a function of ISI

distribution coefficient of variation (CV), but not as a function of rate. Thus for example, a

spike train with Poisson statistics would have the same entropy per spike, regardless of the

rate. The entropy per unit time can then be calculated as simply the entropy per spike,

multiplied by the spike rate. The logarithmic binning of time is the only methodology that

allows for this conversion without the need for ad hoc bin width modifications.

2.2. Benefits of the Logarithmic PDF for Neuronal Data

Four idealized ISI distribution functions were used to model neuronal behaviors (Table 1):

power law and exponential, long used to model ISIs; gamma, able to adequately characterize

ISIs from several distributions [17]; and periodic log-normal, used to model stochastic

responses to rhythmic inputs. The distributions were converted to PDFs (Table 2) via taking
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the derivative of each with respect to t (dF/dt) or the base 10 logarithm of t (dF/dτ).

Parameters were selected to yield ISI distributions with a mean of 25 ms (i.e., mean

frequency 40 Hz), and a CV between 0.5 and 0.9.

The PDFs were divided evenly into 100 bins from 0.1 to 1,000 ms. The linear PDFs (Figure

1, left) exhibit substantial positive skewness. Problematic for information measure estimates,

these discretized PDFs are dominated by a few (3–5) high probability bins (P > 0.1), a

handful (5–10) of moderate probabilities bins (0.1 > P > 0.001) and overwhelming many

low probability bins (P < 0.001). Also, the linear PDFs look surprisingly similar on both

linear (top) and logarithmic (bottom) ordinates because poor binning has obscured the

salient features of the distributions. For example, while the particular probabilities of the

first three bins vary some, the shape of the exponential and periodic log-normal distributions

appear unfortunately similar. The periodicity of the periodic log-normal PDF has been lost

to poor binning because the bin size happens to align perfectly with the oscillation period.

This problem could be overcome by increasing the number of bins, but at the expense of

increasing the data needed to estimate their associated probabilities. More generally, because

distribution features are rarely known a priori, appropriate bin sizes must be determined post

hoc. Expanding the linear PDF by plotting it on a logarithmic abscissa (Figure 1, middle)

does not change the discretization and thus cannot improve the numerical representation.

Worse still, it distorts the visual representation (Discretizing a distribution linearly but

presenting it on a logarithmic abscissa is misleading. In Figure 1, whether the linear (left) or

the logarithmic (right) PDFs are integrated with respect to their own abscissas, the results is

unity as the integral of any PDF must be. However, the integral of the linear PDFs with

respect to logarithmic time (middle) is not unity).

In contrast, the logarithmically discretized PDFs (Figure 1, right) are much closer to flat

with many (25–35) moderate probability bins (0.1 > P > 0.001). Indeed, only the power law

PDF has any high probability bins (P > 0.1). The logarithmic PDFs capture the salient

features of each distribution, making the four of them easily distinguishable. For example,

the periodic log-normal PDF exhibits three well defined modes, and is quite distinct from

the exponential PDF on the same axis. Because the salient features of the distribution are

likely relevant for information transmission, the logarithmic PDFs enable information

estimations that the linear distributions forbid. For example, the periodic-log normal

distribution models a neuron spiking 40 times per second, but phase locked to a 100 Hz

signal. Shown in the logarithmic PDF, ISIs are likely to be ~10 ms or ~20 ms, but hardly

ever ~15 ms. In fact, ISIs of 15 ms are so rare that they convey ~10 bits of self-information.

In contrast, from the linear PDF, ~15 ms ISIs appear extremely common and convey only

~1.5 bits of self-information!

Distributions were constructed from four parameter settings (Table 3). The first row (a) of

each reports the original parameters (Figure 1). The second row (b) reports parameters for

distributions with a longer mean ISI, but the same CV as (a). The third row (c) reports

parameters for distributions with the same mean ISI as (a), but with a reduced CV. The

fourth row (d) reports parameters for distributions with the same ISI standard deviation as

(a), but the same CV as (c). Final constraints of the power law, exponential and periodic log-
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normal distributions were that the scale parameters of (b) and (c) equaled each other. The

final constraint for the gamma distribution was matching the mean rates of (b) and (d).

As before, the linear and logarithmic PDFs were divided into 100 bins (Figure 2). Note that

the distributions with equivalent CVs [i.e., (a):(b) and (c):(d)] have logarithmic PDFs with

identical shapes shifted along the abscissa. The CV quantifies the width of the logarithmic

PDF exactly as the standard deviation quantifies the width of the linear PDF. If the

distribution variabilities were independent of their means, the linear PDFs would shift with

standard deviation as do logarithmic PDFs with CV. But, distributions with equal standard

deviations (i.e., (a):(d)) do not have identically shaped linear PDFs.

Entropies were calculated from the discretized PDFs (Table 3, right). Entropies found from

the logarithmic PDFs were equivalent for distributions with equal CVs [i.e., (a):(b) and (c):
(d)]. Thus, the entropy per spike did not depend on the spike rate, so long as the distribution

shape was constant. In contrast, entropies found from the linear PDFs were not necessarily

equivalent for distributions with equal standard deviations [i.e., (a):(d)], although they were

similar for the exponential and gamma distributions. The salient features of the exponential

distribution are maintained through parameter modifications from (a) to (d). Indeed, the

linear PDFs are nearly shifted versions of one another. However, the salient features of the

gamma distribution are not maintained through the parameter modification from (a) to (d),
and the near equivalence of their entropies is coincidental. Infinitely many different

discretized PDF pairs happen to share similar entropies, and the linear PDFs of gamma

distributions (a) and (d) represent one such pair.

Why do the standard deviations not govern the entropies of the linear PDFs as well as the

CVs govern the entropies of the logarithmic PDFs? Because for a given standard deviation,

the shape of the PDF is inherently dependent upon the distribution mean. For other

distributions with variabilities independent of their mean, e.g., Gaussian, maintaining a

constant standard deviation could be used to achieve shifts in the linear PDF mean without

changing its shape or entropy. However, that class of distributions is not appropriate for

neuronal ISI modeling because whenever standard deviations are independent of the mean,

negative ISIs must arise for short enough ISI means. Since ISIs are by definition strictly

positive, their distributions cannot have independent mean and standard deviation.

2.3. Bins Needed to Calculate Neuronal Information

Thus far we have used 100 bins for linear and logarithmic PDF discretization, without

justification. To explore the relationship between bin count and information measures, the

distributions (Table 3) were discretized over the domain t = 0.1 to 1,000 into from 10 to

10,000 bins. Entropy was calculated for each original distribution parameterization (a). Each

other parameterization (b–d) was then individually combined with the original (a) at equal

weights. Thus, we model some input to a neuron determining whether the next ISI should be

drawn from distribution (a) or from the other distribution (b–d), and that both values of that

input occur with probability 0.5. The mutual information that each ISI contains regarding its

parent distribution identity, and thus the input parameter, was calculated for both linear and

logarithmic PDFs. To maintain measure monotonicity as a function of bin number, the

starting bin positions were dithered and the information measures found from each were
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averaged together (To maintain monotonicity of all measures, entropy and information

calculations were repeated 10 times for 10 equally spaced bin shifts, and averaged together

to yield the reported values. For example, for the linear PDFs with 100 bins, all bins were

9.999 ms wide but the first bin began at ~ 0.1,−0.9, −1.9, −2.9, −3.9, −4.9, −5.9, −6.9, −7.9

and −8.9 for the respective shifts).

The entropy of a discretized PDF depends on the number of bins used in the discretization

(Figure 3a). For enough bins, the entropy is linearly related to the logarithm of the bin

number. In particular, when a doubling in the bin number generates an entropy increase of

1.0 bits, the salient features of the PDF have been captured by the discretization. A

regression line can be used to assess the sufficiency of the bin number (Figure 3a, thin

lines). The distance from a calculated entropy to the regression line can be considered an

entropy binning error, quantified in bits, and introduced by insufficient binning (Figure 3a,

right). Entropies calculated from the logarithmic PDFs (red-brown) are universally closer to

their asymptotes than those calculated from the linear PDFs (grey-black). Note that entropies

from the linear and logarithmic PDFs do not asymptote to the same lines: logarithmic PDFs

yield higher entropies.

Subsequent information calculations can only be as good as the underlying entropy

calculations. If the bins used are not enough for the entropy estimates to asymptote to their

regression line, the calculated information will be reduced relative to the true information.

This reduction is neither variability nor bias, and no amount of data sampling can correct for

it. If the salient features of the distribution cannot be captured by the binned PDF, all

information calculations will asymptote to an incorrect value. To demonstrate this

relationship, the original distributions (a) were combined with the other parameterization

with equal probability to enable information calculations. We assumed that some unknown

input drove the neuron to generate an ISI from distribution (a) or distribution (b–d) (Figure

3b–d, respectively), with equal probability. Thus, if the two distributions were identical,

mutual information would be 0 bits; if the two distributions were exclusive, information

would be 1 bit. Given that all distributions had some degree of overlap, all informations

should be between 0 and 1 bit.

Unlike the entropies, the informations asymptote to a constant value, independent of bin

number. Furthermore and thankfully, information calculated from the linear and logarithmic

PDFs approach the same value. Thus, we are assured that regardless of our binning

technique, we can measure all of the information and report the same values, so long as we

have enough bins and enough data to fill them with appropriate probabilities. However, the

logarithmic PDFs yield information values approaching the true value with far fewer bins

than the linear PDFs in every case. With only 10 bins, most of the logarithmic PDF

information values are nearing their asymptote, while the linear PDF information values are

essentially zero. Quantifying the distance of an information measure to its asymptote, we

calculate the information binning error, also quantified in bits, and introduced by insufficient

binning (Figures 3b–d, right). Note that the information binning error nears zero for the

logarithmic PDFs by 100 bins. Around ~700 bins would be needed to achieve equally

correct information from the linear PDFs.
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2.4. Information versus Inter-Spike Interval Distribution Distance

The parameters of the four distributions were modified under two different constraints, to

assess the relationship between distribution parameters and information measures from the

linear and logarithmic PDFs. Since 100 bins was sufficient for accurate information

calculations on the logarithmic PDFs in the previous section, both PDFs were discretized

into 100 bins. Differences in the information calculated from the two PDFs is the error

corrected by the move from linear to logarithmic binning.

To begin we assessed how maintaining a constant CV while spanning the ISI mean across

two orders of magnitude affected entropy and information measures. To generate

experimental parameterizations, the CVs of all four distributions were held at their original

values (a), while the means were varied from 2.5 ms to 250 ms; recall that the original

distributions had means of 25 ms. To achieve this range of means, the scale parameters

varied as such: power law t0 ranged from 1.5 to 150 ms; exponential t1 ranged from 1 to 100

ms where λ equaled 2/3t1; gamma θ ranged from 5/8 to 500/8 ms; and periodic log-normal

μ ranged from 1 to 100 ms. Entropy was calculated from both the linear and logarithmic

PDFs for all values (Figure 4, top). Sixteen circle markers identify parameterizations (a) and

(b) from Table 3 for both discretizations of all four distributions (Upon close inspection, the

markers in figure 4 match the values reported in Table 3, save for the entropies from the

linear PDFs of the power law distribution; Table 3 was constructed with bins starting at 0.1

ms, whereas Figures 3–5 were averaged from dithered bins. The alignment of t0 with the bin

edges has a profound effect on power law entropy). While entropies of the linear PDFs

increased approximately linearly with the logarithm of the ISI mean, entropies of the

logarithmic PDFs were independent of mean, suggesting time-warp invariance.

The experimental parameterizations were paired with the corresponding original

parameterization (a) with equal probability to assess the information calculable as a function

of the ratio of experimental mean to original mean (Figure 4, bottom). Eight circles identify

information provided by an input selecting from parameterizations (a) and (b), for both

discretizations of all four distributions. When the experimental parameterization had a mean

of 25 ms, it matched the original parameterization, the mean ISI ratio was one, and the

information was zero. The information from each logarithmic PDF is reassuringly

symmetric about this point. In contrast, information from each linear PDF falls off for small

ISI ratios, where the salient features of the experimental parameterizations are not captured

by the relatively large bins. Furthermore, the peaks in the information of the logarithmic

PDFs of the periodic log-normal distributions (Figure 4, bottom-right) occur when the high

probability modes of one parameterization coincide with the low probability troughs of the

other parameterization. The linear PDFs miss the fine detail required to generate these

information peaks.

Note that for ISIs larger than about 150 ms, entropy estimates from the linear PDFs exceed

those from the logarithmic PDFs (Figure 3a). This peculiarity follows from poor bin

alignment: recall that to keep comparisons as fair as possible, 100 bins were split from 0.1 to

1000 ms in all cases. Under experimental conditions, the bin range would align with the

data, and the logarithmic entropies would remain larger than the linear entropies. As a

Dorval Page 8

Entropy (Basel). Author manuscript; available in PMC 2014 May 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



concrete example, consider the power law distribution with a mean of 150 ms. The first 73

logarithmic bins have zero probability, while only the first 2 linear bins have zero

probability. This massive misalignment could be fixed by shifting to the right, either the

minimum ISI bin or the entire bin range. Shifting the minimum ISI bin two decades (i.e.,

from 0.1 to 10 ms) exactly doubles the logarithmic entropy without changing the linear

entropy. On the other hand, shifting the entire range two decades (i.e., from 0.1→1,000 ms

to 10→100,000 ms) shifts the curves in figure 3a two decades to the right. Thus, the

logarithmic entropy is unaffected, but the linear entropy is driven to nearly zero. With either

shift, the logarithmic entropy far exceeds the linear entropy. Examples aside, the

distributions yield equal information (Figure 3b). The salient features of the large mean ISI

cases can be captured by both linear and logarithmic binning, for a reasonable bin range.

Next we assessed how maintaining a constant mean while spanning the CV across two

orders of magnitude affected entropy and information measures. To generate experimental

parameterizations, the mean ISIs of all distributions were held at their original value (25

ms), while the CVs were varied. The power law distribution (PL) had CVs from 0.04√5 to

4√5 by ranging α from 2 + 3√14 to 2 + 9√5/20. The gamma distribution (GM) had CVs from

0.05 to 5 by ranging ξ from 400 to 1/25, with θ equal to 25/ξ. The Poisson nature of the

exponential and periodic log-normal distributions restricted their CVs to below 1. Thus, to

span two orders of magnitude, these distributions were set to scale their CVs from 0.01 to 1.

For the exponential distribution (EX), scaling was done by ranging λ from 4 to 1/25, with t1
set equal to 25−1/λ. The periodic log-normal distribution (PN) has a minimum CV when

there is only one mode, in which case the CV is defined as σ −1. Thus, parameterizations

with σ ≡ 1.1 cannot yield CVs less than 0.1. Therefore, two different scalings were required

to range the periodic log-normal distribution from 0.01 to 1. For CVs from 0.01 to 0.1, ρ
was set to 1 and σ ranged from 101/100 to 11/10. For CVs from 0.1 to 1, σ was set to 11/10

and ρ ranged from 1 to 1/20. Entropies were found for all experimental CV

parameterizations (Figure 5), as was done previously for the experimental means.

For each distribution, a default parameterization was identified as that with its CV at the

geometric mean of the CV range. For the power law and gamma distributions, the default

parameterizations were the original parameterizations (a). For the exponential and periodic

log-normal distributions, the default parameterizations were those yielding CVs of 0.1.

Distributions at each CV were combined with the default distribution with equal probability

to assess the information calculable as a function of the ratio of CVs (Figure 5, bottom).

Note that since all parameterizations had the same mean ISI, the ratio of CVs is equivalent

to the ratio of standard deviations. Four circle markers denote the information calculated in

Figure 3 for the power law and gamma distributions (Figure 5, bottom-left). Corresponding

markers are not shown for the exponential and periodic log-normal distributions because

their default parameterizations were not explored in Figure 3.

When the experimental parameterization had the same CV as the default parameterization,

the standard deviation ratio was one and the information was zero. However, the information

was not symmetric about this point as a function of CV ratio. While the details of each curve

depended critically upon the distribution, information calculated from the logarithmic PDFs

was substantially improved over information calculated from the linear PDFs. If the CVs
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were at all different, and thus capable of providing information, the logarithmic PDFs

yielded superior information measures.

3. Conclusions

Information theory has long been recognized for its utility to neural analysis [1], and for the

framework it provides to quantitatively address concepts of brain processing. Beyond

mammalian sensory and motor processing [3–7], it has helped answer how basic neurons

process information (e.g., via application to model systems such as fly vision [18] and the

electric sense of electric fish [19]), how large neuronal networks are connected [20], and

how brain circuits weigh the potential rewards of a behavior against the effort it requires

[21]. And yet, despite theoretical advances [14,15,22], and the recent dissemination of

practical recipes [23–25] and computational tools [26–29], information theory remains a

niche subfield within neuroscience. The future spread of information theory requires

continued development and straightforward comparisons of the benefits of different

approaches [30].

While a variety of sophisticated entropy and information estimation techniques exist, this

manuscript is relevant to so-called direct techniques, in which the spike times are discretized

and binned. Previous work has explored the benefits of logarithmically binned ISI data for

identifying neuronal bursting activity [12] and estimating entropy with minimal bias and

variability [11]. Neuronal ISI distributions are strictly positive, and include a long tail of low

probability for long ISIs. These characteristics underlie distributions with positive skewness,

compactly represented on a logarithmic abscissa. Thus, the logarithmic PDF is a more

natural representation of neuronal ISIs than the linear PDF. However, though the concept of

natural representations may appeal to our intuition, a particular representation is irrelevant

so long as we are not misled. More importantly, if the data are to be used to estimate some

underlying quantities, the preferred representation should yield the best estimates.

For a variety of distributions used to model neuronal ISIs, we contrasted entropy and

information calculations made from binning the linear and logarithmic PDFs. Entropy and

information approached their asymptotic values for fewer bins with the logarithmic PDFs.

Note that finer bin resolution could be provided to both PDFs by restricting the ISIs to a

smaller domain. However, in the experimental world, that domain is provided by the data,

and the larger the ISIs, the grosser the bin resolution. In particular, bin resolution of the

logarithmic PDF is less sensitive to anomalously long ISIs than the linear PDF. For

example, imagine thousands of ISIs collected from a neuron ranged from 0.1 to 1000 ms,

until one anomalous ISI lasted 2,000 ms, twice the previous maximum. To maintain the

same number of bins, the bin width of the logarithmic PDF would have to be increased by

just under 10%, whereas the bin width of the linear PDF would have to be doubled.

The number of bins used to discretize neuronal ISIs must be enough to capture the salient

features of the distribution that vary across conditions; if fewer bins are used, no amount of

data will be enough to yield accurate information estimates. However, more bins require

more data to accurately calculate the bin probabilities; if the bin probabilities are not

calculated sufficiently, information estimates will include positive bias. Thus, an
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experimentalist should aim to use just enough bins to capture the distribution salience, and at

least enough data to estimate sufficiently the probabilities associated with those bins. In

earlier work, we have shown that for a fixed amount of data, and a fixed number of bins, the

logarithmic ISI distributions yield entropy estimates with less bias and less variance [11].

We now add that logarithmic ISI distributions enable better discretization for fewer bins,

generating more accurate information estimates. Thus, with logarithmic ISIs: the distribution

salience is expressed in fewer bins, the bin probabilities are estimated with less data, and the

entropy estimates include less bias and variability. In combination these finding suggest that

information estimates from logarithmically binned ISIs approach their true value for far less

data than from linearly binned ISIs. Future work should explore in detail how bin size

interacts with data sampling, and the relative contributions of underbinning and

undersampling bias to the final information estimates.

Linear PDFs yield entropies that, beyond some minimum duration required to capture the

distribution salience, increase linearly as a function of mean ISI. However, logarithmic

PDFs yield entropies that are independent of mean ISI (Figure 4). In this regard, the entropy

of the logarithmic PDF is time-warp invariant. Several studies have verified time-warp

invariance in the neural processing of auditory systems, from variable speed song

identification in the grasshopper [31,32], to variable rate speech interpretation in humans

[33,34]. Linear and logarithmic PDFs yield identical information measures, so long as the

salient features of the distributions are captured by the binning. However, for a fixed bin

number, the logarithmic PDFs are more likely to capture salient distribution features, be they

short ISIs or periodicity, and thus yield higher, better information measures. Future work

will continue to explore these findings in conjunction with how the brain combines

information across neurons.
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Figure 1.
Binned PDFs for the exponential and periodic log-normal (top) and the gamma and power

law (bottom) distributions. The linear PDF on a linear abscissa (left) and the logarithmic

PDF on a logarithmic abscissa (right) are both straight-forward representations of the native

distributions. However, the linear PDF on a logarithmic abscissa (middle) presents

unintuitive weights that do not visually integrate to one.
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Figure 2.
The linear (left) and logarithmic (right) binned PDFs for four parameterizations of each

distribution, identified by distribution name and a letter (a–d) corresponding to the

identifiers provided in Table 3. Note pure shifts in the logarithmic PDFs of a:b and c:d.
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Figure 3.
Entropy (a) and information (b–d) calculations (left) and binning errors (right) as a function

of bin number for the linear (grey-black) and logarithmic (red-brown) PDFs for the four

distributions and their four parameterizations provided in Table 3. Text labels identify line

identities in panel (d). (a). Entropies approach an asymptote of 1 bit per bin doubling.

Entropy bin error is reported as the distance from the entropy to its asymptote; (b).

Information about an input selecting for distributions (a) or (b), and the binning error; (c).

Information about an input selecting for distributions (a) or (c), and the binning error; (d).

Information about an input selecting for distributions (a) or (d), and the binning error.
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Figure 4.
Entropy (top) and information (bottom) calculations as a function of ISI mean for the linear

(grey-black) and logarithmic (red-brown) PDFs discretized into 100 bins each. Circle

markers denote the parameterizations from Table 3 (a) and (b). (a). Entropies of the

logarithmic calculations are independent of mean ISI; (b). Information about an input

selecting for the 25 ms mean parameterization (a) or another distribution with 1/10th to 10

times the mean ISI. Linear PDFs yield inferior information for short ISIs.
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Figure 5.
Entropy (top) and information (bottom) calculations as a function of ISI CV for the the

linear (grey-black) and logarithmic (red-brown) PDFs discretized into 100 bins each.

Markers denote the parameterizations from Table 3 (a) and (c). (a). Entropies from the

logarithmic PDFs are always larger than from the corresponding linear PDFs; (b). More

information can be recovered from the logarithmic PDFs than from the linear PDFs for

nearly all distributions at all ratios of ISI standard deviation (a.k.a., all ratios of CV).
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Table 1

Cumulative distributions (F(t)) of the 4 examples used in this manuscript. Abbreviations: natural logarithm

ln(), base 10 logarithm log(), error function erf(), regular gamma function Γ(), and incomplete gamma function

γ().

F(t)

Power Law (t0, α)
t ≤ t0 0

t > t0 1 −(t/t0)− α+1

Exponential (t1, λ)
t ≤ t1 0

t > t1 1 − e− λ(t− t1)

Gamma (θ, ξ)

t ≤ 0 0

t > 0

Periodic Log-Normal (μ, ρ, σ)

t ≤ 0 0

t > 0
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Table 2

The example linear (dF/dt) and logarithmic (dF/dτ) PDFs.

dF/dt dF/dτ

Power Law t > t0 ln(10) (α − 1)(t/ t0)− α+1

Exponential t > t1 λe− λ(t− t1) ln(10) λte− λ(t− t1)

Gamma t > 0

Periodic Log- Normal t > 0
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