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Summary

Decision-making studies across different domains suggest that decisions can arise from multiple,

parallel systems in the brain: a flexible system utilizing action-outcome expectancies, and a more

rigid system based on situation-action associations. The hippocampus, ventral striatum and dorsal

striatum make unique contributions to each system, but how information processing in each of

these structures supports these systems is unknown. Recent work has shown covert representations

of future paths in hippocampus, and of future rewards in ventral striatum. We developed new

analyses in order to use a comparative methodology and apply the same analyses to all three

structures. Covert representations of future paths and reward were both absent from the dorsal

striatum. In contrast, dorsal striatum slowly developed situation representations that selectively

represented action-rich parts of the task. This triple dissociation suggests that the different roles

these structures play are due to differences in information processing mechanisms.
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Introduction

A key insight from decision-making studies across different domains is that decisions can

arise from multiple, parallel systems in the brain (O'Keefe and Nadel, 1978; Schacter and

Tulving, 1994; Poldrack and Packard, 2003; Daw et al., 2005; Redish et al., 2008). One
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system, broadly characterizable as “model-based” relies on internally generated expectations

of action outcomes, while the other, “model-free” system uses learned (cached) values of

situation-action associations. This distinction between different decision-making systems

has been demonstrated behaviorally (e.g. stimulus-response vs. response-outcome learning;

Balleine and Dickinson, 1998, as well as response learning vs. place learning; Packard and

McGaugh, 1996), has been articulated computationally (Daw et al., 2005; Niv et al., 2006),

and maps onto dissociable brain structures (Packard and McGaugh, 1996; Yin et al., 2004).

In rodent navigation studies, lesion and inactivation studies have shown that the model-

based system (as engaged by place navigation) depends on hippocampal integrity, while the

model-free system (as engaged by response navigation) depends on dorsal striatal integrity

(Packard and McGaugh, 1996); ventral striatum may play a role in both systems (Atallah et

al., 2007).

Computationally, the model-based system is thought to rely on world knowledge in order to

generate specific expectations about the outcomes of actions, which may range from

anticipating the outcome of a simple lever press to mental simulation or planning over

extended spatial maps or Tower of London puzzles (Shallice, 1982). While this process may

be computationally expensive, it allows for adaptive behavior in novel situations and under

changing goals. In contrast, a typical model-free system associates actions with values,

reflecting how well each action has turned out in the past. This system is efficient but also

inflexible because cached action values reflect past experience rather than current goals

(Daw et al., 2005; Niv et al., 2006; Redish et al., 2008). Thus, computational theories of

decision-making have suggested potential information processing differences that capture

the behavioral and anatomical distinctions between model-based and model-free decision-

making systems. However, in order to reveal the mechanisms actually used in the brain to

specifically support these different decision-making algorithms, it is necessary to compare

neural activity between structures, on a task that engages both systems.

The Multiple-T task is a spatial decision task that engages different decision-making

strategies (Schmitzer-Torbert and Redish, 2002). On this task, Johnson and Redish (2007)

found that ensembles of hippocampal neurons transiently represented locations ahead of the

animal, sweeping down one arm of the maze, then another, before the animal made its

choice. Such “lookahead” operations are a critical element of model-based decision making.

However, given that dorsal striatum can represent locations as well (Wiener, 1993;

Yeshenko et al., 2004), an important question is whether this property is in fact unique to the

hippocampus. Similarly, slow changes in dorsal striatal firing patterns (Barnes et al., 2005)

demonstrate reorganization that could support gradual model-free learning. However, slow

changes have also been observed in the hippocampus (Mehta et al., 1997; Lever et al.,

2002), so in the absence of direct comparison it is not clear if such effects are specific to

how dorsal striatum operates. Finally, van der Meer and Redish (2009) found ventral striatal

firing patterns relevant to roles in both model-free and model-based decision-making, such

as anticipatory “ramping” and covert activation of reward-responsive neurons at decision

points. However, it is not known if dorsal striatal neurons show ramping, or reward

activation at decision points.
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Thus, in order to determine which of these information processing mechanisms are unique to

these areas – a requirement if we are to understand the neural basis of their distinct

behavioral roles – we compared the firing properties of dorsal striatal, ventral striatal, and

hippocampal neurons on the Multiple-T task. Because several of these analyses require large

neural ensembles, we used three different groups of animals, one for each structure. The data

sets used here include data used in previously published work (dorsal striatum: Schmitzer-

Torbert and Redish 2004, ventral striatum: van der Meer and Redish 2009, hippocampus:

Johnson and Redish 2007). However, here we use a comparative approach applying the

same, new analyses to each structure, allowing direct comparisons and the identification of a

triple dissociation in information processing mechanisms.

Results

We recorded 1646, 2323 and 1473 spike trains from 98, 96, and 31 recording sessions from

dorsal striatum, ventral striatum, and hippocampus respectively, as rats (n = 5 each for

dorsal and ventral striatum, n = 6 for hippocampus) performed the Multiple-T task (Figure

1a). On this task, three low-cost choice points (T1-T3) with dead ends on one side were

followed by a high-cost choice (T4) between the left or right “return rail”, with only one side

rewarded during any given session. Although rats were trained on the task prior to electrode

implant surgery, both the rewarded side (left or right choice at T4) as well as the correct

sequence of preceding turns (T1-3) could be varied from day to day, such that the rats

started out uncertain about the correct choices at the beginning of each session. Rats rapidly

learned to choose the rewarded side, reaching asymptotic performance (>90%) within 10

laps (Figure 1c) with each group improving at a comparable rate (Figure S1a). Coincident

with this rapid performance increase, rats exhibited pausing behavior at the high cost choice

point (T4) during early laps, looking back and forth between left and right before making

their choice (a hippocampus-dependent behavior known as vicarious trial and error or VTE,

Tolman 1938; Hu and Amsel 1995). Pausing was absent at a control choice point (T2;

Figures 1b and S1b). Following this initial VTE phase, choice performance reached

asymptote, yet lap times continued to decrease (Figure 1c, inset), indicating a change in

behavior beyond choice performance (Schmitzer-Torbert and Redish, 2002). These

behavioral characteristics indicate the engagement of different decision-making strategies

within single recording sessions.

Differential coding of task structure in dorsal striatum, ventral striatum, and hippocampus

As both striatum and hippocampus are known to contain different cell types (Ranck, 1973;

Kawaguchi, 1993), we separated putative projection neurons and interneurons based on

firing statistics (Barnes et al., 2005; Schmitzer-Torbert and Redish, 2008). Consistent with

previous reports, putative hippocampal pyramidal neurons tended to show spatially focused

firing fields (“place fields”, O'Keefe and Dostrovsky 1971) while phasically firing neurons

(PFNs; putative medium spiny neurons) in both striatal subregions exhibited a wider range

of firing correlates, including maze-related activity and responsiveness to reward (Lavoie

and Mizumori 1994; Schmitzer-Torbert and Redish 2004; Barnes et al. 2005; Berke et al.

2009). In order to examine differences between the three structures at the population level,

we plotted the average firing rates for putative pyramidal neurons or PFNs in each of the
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three structures over the track (Figure 2a; interneurons, Figure S2b). Dorsal striatal PFNs

were most active on the sequence of turns (S-T4), especially between T3 and T4, and least

active on the bottom return rail (F2-S). Ventral striatal PFNs showed a ramping up of

activity through the turn sequence, dropping off sharply at the first reward site. Hippocampal

pyramidal neuron firing rates were relatively uniform over the track (Levene's test for

uniformity, see Table S1) although a decrease between the two reward sites was visible,

which may reflect effects of low running speed (pyramidal cells in hippocampus are

sensitive to running speed; McNaughton et al. 1983). Because increases in population firing

rate at a given location can result from (1) an increase in the number of cells that have fields

there, and (2) increased firing rates at that location, we also plotted the distribution of peak

firing locations (Figure 2b). Both striatal subregions showed a clear increase in the number

of active cells at the reward sites, reflecting a population of reward-responsive neurons

absent from hippocampus. In dorsal striatum, a decline in the number of firing fields was

visible after the navigation sequence, while hippocampal firing fields were more uniformly

distributed (Chi-square test, see Table S1). These characteristics support a distinction in

information processing in which dorsal striatum emphasizes the turn sequence (consistent

with situation-action encoding), ventral striatum shows a ramp (consistent with

representation of motivationally relevant information), and hippocampus represented the

track relatively uniformly (consistent with a spatial, map-like representation).

The above comparison suggests underlying differences in neural coding, but does not reveal

how informative these codes are. To address this, we measured the extent to which neural

ensembles in the three structures contained information about location on the track. A

Bayesian ensemble decoding algorithm was applied, which computes a probability

distribution over the track given the numbers of spikes fired by each neuron within a given

time window (Zhang et al. 1998; Figure S3). The average probability (over all time

windows) at the rat's actual location was used as a measure of decoding accuracy: it

indicates how good the ensemble is at representing the rat's actual location. Given the spatial

modulation of firing rates on the track, we asked whether at the ensemble level, certain parts

of the track could be decoded more accurately than others. To account for differences in

decoding accuracy between recording sessions and structures (explored in the next section),

we normalized the decoding accuracy distribution over the track (Figure 2c). Dorsal striatal

decoding accuracy was best on the sequence of choice points (T1-T4), as well as the reward

sites, but poor on the return segment (F2-T1). For hippocampus, the relatively uniform

decoding accuracy was in similar agreement with its spatial firing rate distribution (Levene's

test for uniformity, see Table S3). In contrast, ventral striatal decoding accuracy did not

change over the sequence of turns as the firing rate distribution did. Thus, on the ensemble

level, dorsal striatal decoding accuracy focused on the turn sequence on the track as well as

the reward sites, while hippocampal decoding accuracy was most uniform, and ventral

striatum highlighted the reward sites only.

Dorsal striatum, but not ventral striatum, shows a strong increase in coding efficiency
within sessions

The preceding analysis normalized differences in decoding accuracy between sessions and

structures. However, such differences can be informative when comparing neural coding
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properties between structures: we would like to ask “how well” each structure represents

location on the track. In distributed representations, decoding accuracy depends on ensemble

size (Zhang et al., 1998; Stanley et al., 1999; Wessberg et al., 2000). Thus, comparing

decoding accuracy between sessions or structures with different ensemble sizes centers on

the extent to which accuracy increases as a function of ensemble size (“coding efficiency”).

We therefore used a neuron dropping procedure (Wessberg et al., 2000; Narayanan et al.,

2005) to sample random subsets of ensembles (see Experimental Procedures) in order to plot

overall decoding accuracy as a function of number of cells for the three structures (Figure

2d). Between structures, spatial decoding accuracy changed differentially as a function of

the number of cells in the ensemble (2-factor ANOVA, structure × ensemble size

interaction, F(2;1)=200.05; p<10−10). Dorsal striatal ensembles were the most efficient

(steepest slope; 2-factor ANOVA for dorsal striatum and hippocampus, structure × ensemble

size interaction, F(1,1) =7.72, p =0.0058) while in ventral striatum, spatial decoding accuracy

increased the least with ensemble size, and hippocampus fell in between.

Previous studies have found slow changes (across days) in the distribution of dorsal striatal

firing rates on a different T-maze task (Barnes et al., 2005). While within single sessions, we

did not find evidence for systematic changes in dorsal striatal firing rates (Figure S2a),

spatial decoding accuracy can vary independently of firing rate (compare Figures 2a,c)

raising the possibility of reorganization with experience at the ensemble level. Thus, we

asked how spatial coding efficiency changed over laps for the three structures. Decoding

efficiency changed differentially between the three structures (Figure 2e; overall structure ×

lap interaction, F(2,1) = 11.84, p < 10−10): in ventral striatum, there was no evidence of a

change over laps, while dorsal striatum showed the strongest increase. This analysis relies

on accurate estimation of the slope of decoding accuracy as a function of the number of cells

(verified in Figure S2c). To control for the possibility that behavioral differences between

the groups of animals influenced these results, we used a multiple regression analysis to

identify behavioral variables which explained a significant amount of variance in decoding

efficiency, and subtracted the best fits based on these variables from the data (running speed,

distance from an idealized path through the maze, and proportion of correct choices; see

Figure S3b); this did not affect the pattern of results. Thus, with experience, dorsal striatum

showed the strongest increase in coding efficiency, while hippocampus showed a modest

amount, and ventral striatum showed none. These results suggest the presence of a dynamic

reorganization process in dorsal striatum which comes to reflect the structure of the task

with experience (Nakahara et al., 2002; Barnes et al., 2005; Schmitzer-Torbert and Redish,

2008; Berke et al., 2009).

Hippocampus and ventral striatum, but not dorsal striatum, show forward representations
at the choice point

Decoding provides access to representational content, allowing analysis of not just how

much information a given ensemble contains, but also of what that information actually is

(Schneidman et al., 2003). Johnson and Redish (2007) found that as rats paused at the final

choice point, hippocampal representations of space swept ahead of the animal, down one

arm of the maze and then the other, before the rat made its choice. It is presently not known

if other areas in which spatial information is present, such as dorsal striatum, exhibit a
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similar effect. To investigate this, we applied the decoding algorithm to data from all three

structures, using a 20 ms time window. Note that unlike the analysis in Johnson and Redish

(2007), this method is “memoryless”, treating each time window as independent. For all

passes through the final choice point, the proportion of the decoded probability distribution

that fell either ahead, or behind the choice point (Figure 3a) was plotted as a function of lap.

While for all three structures the decoding probability to the choice point itself increased

over the first 10 laps (data not shown) for dorsal striatum (top panel) decoding to both the

behind and ahead zones was marginally increased in this same period, indicating a

nonspecific improvement in decoding accuracy. In contrast, ventral striatum and

hippocampus showed a different pattern, where decoding ahead of, but not behind, the

animal was high during early laps (2-factor ANOVA, lap-decoding zone interaction,

smallest F(1,1) =4.69, p =0.031). This is not compatible with a nonspecific decoding

improvement: instead, it suggests that during early laps there is increased representation of

locations ahead of the animal. We did not find evidence for such events in dorsal striatum,

neither when averaged across sessions (2-factor ANOVA, lap-decoding zone interaction,

F(1,1) =1.78, p =0.18) nor upon visual inspection of decoding during individual passes

through the choice point. Thus, even though dorsal striatal position encoding is at least as

good as that in hippocampus (Figure 2d), it did not selectively represent locations ahead of

the animal at the choice point.

To assess whether lookahead in hippocampus (and ventral striatum) was specific to the final

choice point, we repeated the same analysis for passes through turn 2, a low-cost choice

point (Figure 3b). At this point, decoding ahead of the animal during early laps was much

diminished, no longer reaching significance for either hippocampus or ventral striatum (2-

factor ANOVA, lap-decoding zone interaction, largest F(1,1) = 0.25, p =0.62). Thus,

lookahead occurred specifically at the final choice point, further supporting the notion that

such processes are not permanently-on epiphenomena but can be dynamically engaged

depending on task demands.

Covert representation of reward in ventral striatum, but not dorsal striatum

van der Meer and Redish (2009) showed that ventral striatal reward-responsive neurons

tended to be active at the choice point during early laps, suggesting covert expectation-of

reward congruent with model-based decision-making. It is not known if dorsal striatal

representations of reward also show this effect. To address this, we applied the same

analysis to dorsal striatum, plotting the average (z-scored) firing rate of reward-responsive

cells and non-reward-responsive cells over the maze (Figure 4). Note that, because this

analysis is designed to address firing rates of reward and non-reward cells on the track in the

absence of reward, the normalization and analysis was restricted to firing rates on the part of

the track between the turn sequence start (S) to past the final choice point (T4). For

completeness, we have included this analysis for hippocampal regions in Figure S4b, even

though these did not show the characteristic reward response of the striatal (Figure 2b).

As reported in van der Meer and Redish (2009) for ventral striatum, a two-way ANOVA

with location on the maze (nine bins, from the start of the first T to one-third of the way

between T4 and F1) and cell type (reward or non-reward) as factors showed a significant
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interaction for early laps (1-10, F(8,1) =4.0, p < 0.001) with the reward cells having

significantly higher activity in the T4 bin (F(1,1) = 12.56, p < 0.001; see Figure S4a for full

firing rate distributions and additional statistics). During late laps (31-40) there was no such

difference (F(1,1) =0.22, p =0.64). Thus, ventral striatal reward neurons showed a relative

increase in activity specifically at the final choice point during early laps. In contrast, dorsal

striatal reward neurons showed no difference in activity at T4 during early laps (F(1,1) =2.47,

p =0.116); for late laps, there was a difference (F(1,1) =5.77, p =0.0163), but the non-reward

cells were the more active group. Thus, even though we found similarly prominent reward-

responsive activity in dorsal striatum compared to ventral striatum, only ventral striatal

reward cells showed covert representation of reward at the choice point during early laps.

Discussion

Hippocampus, dorsal striatum and ventral striatum processed information differently on this

task, consistent with their different roles in decision-making.

Hippocampus as a cognitive map with online search

Hippocampal “place cells” are classically thought of as providing a cognitive map that

supports flexible route planning (O'Keefe and Nadel, 1978). Such a map is an example of a

world model that could be used for internal generation of potential outcomes during

decision-making. In support of this idea, Johnson and Redish (2007) found that hippocampal

ensembles transiently represented possible outcomes at the final choice point of the

Multiple-T task. We extend this result in several important ways. First, we found that this

“lookahead” is not a permanently enabled property of hippocampus, as would be expected

from effects like theta phase precession (Maurer and McNaughton, 2007). Instead,

lookahead was specific to the final choice point (T4) and absent from a control choice point

(T2). This supports the idea that hippocampal lookahead can be dynamically engaged during

decision-making. Critically, using the same analysis on the same task, we found no evidence

for lookahead in dorsal striatum, even though dorsal ensembles could represent location as

well as or better than hippocampal ensembles on this task (Figure 2d). This demonstrates

that lookahead is not a general, brain-wide phenomenon shared by all task-relevant

representations but in the current dataset is restricted to brain systems known to play a role

in “model-based” decision-making.

Dorsal striatum as a situation-action associator

We found that dorsal striatal firing, field, and decoding distributions were skewed towards

the turn sequence of the task, as well as reward locations and cues predicting reward

delivery (Figure 2). The turn sequence and reward cues together determine the structure of

the task, i.e. how the actions the rat takes map onto motivationally relevant outcomes.

Models that learn what action to take in what situation in order to maximize reward (such as

temporal-difference reinforcement learning), need to represent this information (Sutton and

Barto, 1998). Thus, dorsal striatum selectively represents those task aspects which

computational accounts suggest are important for gradual, model-free learning. This is

congruent with previous suggestions about the role of dorsal striatum as indicated by

inactivation, recording, and imaging studies (Poldrack and Packard, 2003; Balleine et al.,
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2007; Redish et al., 2008). However, in our comparative approach, we can additionally show

what dorsal striatum does not represent. It does not represent locations ahead of the animal

at decision points, as hippocampus does; neither does it covertly represent rewards, as

ventral striatum does. Although a population of dorsal striatal neurons responded to reward-

predictive cues, these were not neurons that were activated by the rewards themselves

(Figure 3b), consistent with a developing representation of cue-action value associations.

Thus, dorsal striatum does not appear to employ model-based internal generation of possible

outcomes.

Dorsal striatum did not represent all locations equally, even though animals executed similar

actions at those locations, suggesting that that dorsal striatum learns to disregard task-

irrelevant aspects with experience (such as the maze segment from the reward sites to the

start of the turn sequence, which is constant and does not contain decision points). The

gradual increase in coding efficiency further supports such reorganization with experience,

consistent with reports from Graybiel and colleagues (e.g. Barnes et al., 2005), although we

show this effect within session (instead of across days) and using an ensemble measure

(which addresses spatial information content rather than firing rates alone). Taken together,

these results support the notion that dorsal striatum learns to represent situation-action

associations as proposed by computational accounts of model-free, habitual, or response-

driven decision-making. It explicitly does not share properties important for model-based

decision-making, even though the same analysis reveals such properties in other structures

on the same task.

It may be surprising that dorsal striatum appears to contain more information about location

on the track than hippocampus, whose relatively uniform distribution of place cells is well

suited to spatial representation. However, on this task, spatial location is an important

element of task structure (whether to turn left or right depends on location; reward locations

are fixed). As such, dorsal striatum would be expected to represent spatial information on

this task. Others have also observed that dorsal striatal firing patterns contain information

about spatial location (Wiener, 1993; Yeshenko et al., 2004). However, this does not mean

that dorsal striatal representations are intrinsically spatial. In fact, studies on tasks where

reward locations were explicitly dissociated from space (Schmitzer-Torbert and Redish,

2008) or where multiple locations were equivalently associated with rewards (Berke et al.,

2009) found that dorsal striatum did not represent space well. More generally, these

considerations serve as a reminder that it is important to consider both task structure and

ensemble-level properties when making inferences about representational content.

Ventral striatum as an evaluator of actual and expected situations

As shown by van der Meer and Redish (2009), ventral striatal reward neurons tended to re-

activate at the final choice point during early laps. We show here that even though dorsal

striatum has a similarly sized population of reward-responsive neurons, by the same analysis

on the same task dorsal striatal neurons do not show this effect. This serves, first, as a

particularly informative control that strengthens the original finding by illustrating that it is

not due to non-specific behavioral features such as simply pausing at the choice point. More

importantly, this difference in information processing mechanisms in dorsal and ventral
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striatum maps onto the conceptual difference between situation-action representations and

action-outcome representations: while dorsal striatal neurons learned to respond to reward-

predictive cues, these neurons did not respond to actual rewards. This suggests a potential

role for ventral striatum in model-based decision-making.

Ventral striatum is generally acknowledged as an important structure in mediating motivated

or goal-directed behaviors. A popular suggestion is that it acts as the “critic” component of a

reinforcement learning system (Atallah et al., 2007). Anticipatory ramp cells seen in primate

and rodent studies could be interpreted as an instantiation of a critic-like value signal

(Schultz et al., 1992; Lavoie and Mizumori, 1994; Miyazaki et al., 1998). The ramp nature

of this signal suggests a certain motivational relevance. On our task, it is clear that ventral

and dorsal striatum have very different information processing properties. Dorsal striatum

lacks the population firing rate ramp of ventral striatum, while ventral striatal decoding

accuracy was poor compared to dorsal striatum and hippocampus. This suggests that ventral

striatum represents global quantities related to value or motivation, which may fluctuate

throughout a session, resulting in poor decoding accuracy. Thus, our results imply that

ventral striatum may carry multiple motivationally relevant signals: a global ramp that may

serve as the value signal in model-free learning systems, but also the covert representation of

reward important for model-based systems.

Synthesis

In conclusion, we observed multiple dissociations in information processing between dorsal

striatum, ventral striatum and hippocampus: While hippocampal neural ensembles encoded

future paths during pauses at the choice point, dorsal striatal ensembles did not. While

ventral striatal reward-related cells showed activity during pauses at the choice point, dorsal

striatal reward-related cells did not. In contrast, dorsal striatal ensembles slowly developed a

more accurate spatial representation than hippocampal ensembles on the action-rich

navigation sequence of the task, and dorsal striatal non-reward-related cells slowly

developed responses to high-value cues.

These differences reveal the different computations these structures are performing to

accommodate their roles in model-based and model-free decision-making: Hippocampus

provides a cognitive map of the environment, which can dynamically represent potential

future paths. During pauses at choice points, ventral striatal reward representations are

reactivated, as an expectation of future reward outcome. Ventral striatum also develops an

activity ramp through the task, which may provide a motivationally relevant signal. Dorsal

striatum does not represent expectancies or show a firing rate ramp, but instead develops

stimulus-action representations with experience. These data bridge the behavioral and lesion

data with computational/theoretical models of decision-making, directly linking distinct

behavioral roles with unique information processing mechanisms at the neural level.

van der Meer et al. Page 9

Neuron. Author manuscript; available in PMC 2014 May 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Experimental Procedures

Subjects

16 male Brown Norway-Fisher 344 hybrid rats (Harlan, IA), aged 8–12 months, were food

deprived to no less than 85% of their free-feeding body weight during behavioral training;

water was available ad libitum in the home cage at all times. All procedures were conducted

in accordance with National Institutes of Health guidelines for animal care and approved by

the IACUC at the University of Minnesota. Care was taken to minimize the number of

animals used in these experiments and to minimize suffering.

Multiple-T task

The Multiple-T task apparatus, a carpet-lined track elevated 15 cm above the floor, consisted

of a turn sequence of 3-5 T-choices, a top and a bottom rail, and two return rails leading

back to the start of the turn sequence (Figure 1a). The specific configuration of the turn

sequence could be varied from day to day. Two feeder sites at each of the return rails could

deliver two 45 mg food pellets each (Research Diets, New Brunswick, NJ) through

computer-controlled pellet dispensers (Med-Associates, St. Albans, VT), released when a

ceiling-mounted camera and a position tracking system (Cheetah, Neuralynx, Bozeman,

MT, and custom software written in MATLAB, Natick, MA) detected the rat crossing the

active feeder trigger lines. Only one set of feeder sites (either on the left or the right return

rail) was active in any given session. For pre-surgery training, rats ran 3-T and 5-T mazes

with the turn sequence changed every day; once rats were running proficiently after surgery,

recording sessions were run on 4-T mazes in a sequence of 7 novel/7 unchanged/7 novel

configurations, for a total of 21 sessions per rat. Novel sequences consisted of session-

unique sequences (Figure 1a shows the “RRLR” sequence). 98, 96, and 31 recording

sessions from dorsal striatum, ventral striatum, and hippocampus respectively were accepted

for analysis: for the hippocampal recordings we obtained good ensemble sizes only for a few

days out of the 21-day protocol. However, the proportions of Novel/Familiar sessions were

comparable to those in the other data sets (20 novel/11 familiar, compared to 68/30 for

dorsal and 68/28 for ventral striatum). Furthermore, all analyses reported are within-session

only, so the number of sessions should not affect the results. Rats were allowed to run as

many laps as desired in each 40-minute recording session. Data collection was as described

previously (Schmitzer-Torbert and Redish, 2004; Johnson and Redish, 2007; van der Meer

and Redish, 2009).

Surgery

Following pre-training, rats were chronically implanted with an electrode array consisting of

12 tetrodes and 2 reference electrodes which could be moved in the dorsal-ventral plane

(“hyperdrive”, Kopf, Tujunga, CA). Structures were targeted by centering the hyperdrive on

stereotactic coordinates relative to bregma: AP +1.2, ML ± 2.3-2.5 mm for ventral striatum,

AP +0.5, ML ± 3.0 mm for dorsal striatum, and AP -3.8, ML ± 4.0 mm for hippocampus

(subfield CA3) as described previously (Schmitzer-Torbert and Redish, 2004; Johnson and

Redish, 2007; van der Meer and Redish, 2009).
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Spatial decoding

We used a Bayesian spatial decoding algorithm, designed to provide an estimate of the

animal's location given ensemble spiking activity at any given time in the session (Zhang et

al., 1998). For each time window, this method takes the spike counts from each cell i and

computes the posterior probability of the rat being at location x given spike counts si, p(x|s).

We used a time window of 200 ms (for the analysis in Figures 2) or 20 ms (for the analysis

in Figure 3) and a uniform spatial prior. To obtain the decoding accuracy measure, for each

time window, the probability of decoding to the animal's actual location was taken from the

decoded probability distribution for that time window; the pattern of results did not change

when slightly wider windows of 3 and 5 bins around the animal's actual location were used.

This “local probability” was then averaged for each actual location on the track; this was

done to minimize the contribution of long periods of inactivity at the reward sites when

averaging over time windows alone. (This method is identical to that used in Schmitzer-

Torbert and Redish, 2008, and in van der Meer and Redish, 2009.) Only recording sessions

with at least 20 simultaneously recorded cells were used and only cells that fired at least 25

spikes in the session were included. For the slow timescale analysis, using a time window of

50, 100 or 150 ms did not change the pattern observed (data not shown).

Further experimental procedures, including cell classification, track linearization, and spatial

distribution analyses, can be found in the Supplementary Online Material.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
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Figure 2.
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Figure 3.
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Figure 4.
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