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Abstract

The focus here is on incorporating electronic polarization into classical molecular mechanical

force fields used for macromolecular simulations. First, we briefly examine currently used

molecular mechanical force fields and the current status of intermolecular forces as viewed by

quantum mechanical approaches. Next, we demonstrate how some components of quantum

mechanical energy are effectively incorporated into classical molecular mechanical force fields.

Finally, we assess the modeling methods of one such energy component—polarization energy—

and present an overview of polarizable force fields and their current applications. Incorporating

polarization effects into current force fields paves the way to developing potentially more

accurate, though more complex, parameterizations that can be used for more realistic molecular

simulations.

1. Introduction

One grand challenge in computational chemistry, in the context of molecular modeling, is to

develop accurate force fields. The notion of the force field comprises a mathematical

formula and a set of parameters used to calculate the energy of molecular systems. Despite

more than 40 years of efforts devoted to force field development, many problems still need

to be addressed. Usually, force fields are specialized, that is they are not intended for all

types of organic, inorganic and biologically relevant molecules. Instead, they are devoted

either to proteins and nucleic acids or to other organic molecules such as sugars or lipids,

though more general force fields have been proposed, such as the universal force field (UFF)

(Rappe et al 1992) and the generalized AMBER force field (GAFF) (Wang et al 2004). The

force fields usually suffer from not being able to reproduce properties of molecules under

different temperature, pressure and environmental conditions, such as pH, ion concentration
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and type of solvent. All force fields can be improved either by reparameterizing the existing

set of parameters or extending the energy formula by adding terms and then parameterizing

the entire force field anew. Force field parameters are usually selected in such a way that,

for as large a set of test molecules as possible, they reproduce experimental or quantum

mechanically determined geometries, conformational energies, binding energies, vibrational

modes and many other properties that characterize a gas phase or condensed state.

Numerous attempts have been made to modify known force fields to more reliably model

the way a molecule responds to changing conditions, such as a dielectric environment. Most

popular modifications include incorporating more interacting points (e.g. lone pairs or other

extra points), point multipoles and polarizabilities. A major focus in research currently

underway is to reliably model molecular responses to changes in a dielectric environment by

including the effects of electronic polarization.

Polarization refers to the redistribution of a molecule’s electron density due to an electric

field exerted by other molecules (Rick and Stuart 2002). If more than two molecules are

involved, polarization leads to nonadditivity, since any two molecules will interact

differently when polarized by a third molecule than if the third molecule was not present.

For over 30 years, many attempts have been made to include the effects of polarization in

simulations of molecular systems. In 1976, Warshel and Levitt (1976) implemented one of

the first methods that included polarization effects in molecular mechanics. Yet only

recently has substantial effort been devoted to developing consistently parameterized,

polarizable force fields suitable for protein and nucleic acid simulations, as well as for

ligands and organic molecules. In addition, attempts have been made to improve force fields

by including other than nonadditive polarization energy components in intermolecular

interactions. However, this review’s central focus is the polarization energy component of

force fields. Here we evaluate work mainly published after 2000.

2. Classical molecular mechanical force fields

Molecular mechanical force fields can be divided into two core groups. The first group,

Class I or diagonal force fields, includes AMBER (Cornell et al 1995, Wang et al 2000,

Duan et al 2003), CHARMM (MacKerell et al 1998a), OPLS (Jorgensen et al 1996),

GROMOS (Schuler et al 2001), ECEPP (Zimmerman et al 1977) and several other less

popular force fields. The analytical formula used to calculate energy is defined as the sum of

bonded (e.g. short range) and nonbonded terms, which describes the interactions between

atoms separated by more than two bonds. The same nonbonded terms are used to determine

interactions between atoms belonging either to the same or different molecules. For

example, in the AMBER force field (assisted model building with energy refinement)

(Cornell et al 1995), energy is calculated as the sum of intramolecular bonded terms (bonds,

angles, torsions), intra- and intermolecular nonbonded terms (e.g. van der Waals and

electrostatic terms, as modeled by the Coulomb formula, which describes interactions

between partial charges on atoms):

(1)
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(2)

(3)

The symbols represented are as follows: req and θeq are equilibrium values for bond length

and angles between atoms; n is the dihedral multiplicity; γ is the dihedral angle phase; and

Kr, Kθ and Vn are force constants for bonds, angles and dihedral terms. The following

mixing rules for A and B van der Waals coefficients are often used when well depth (εi) and

atomic radii (Ri), which describe interactions for the same atom types, are known:

(4)

(5)

Usually, the so-called 1–4 van der Waals and electrostatic interactions (e.g. interactions

between atoms separated by three covalent bonds) are treated separately and their magnitude

is scaled down. Small variations in a number of energy terms and their functional forms are

found in Class I force fields.

The second group, Class II force fields, comprises the CFF (Niketic and Rasmussen 1977),

CVFF (Dauber-Osguthorpe et al 1988), MMFF (Halgren 1999), MM3 (Allinger et al 1989),

MM4 (Allinger et al 2003) and UFF (Rappe et al 1992). Functional forms of these force

fields are more complicated and contain higher-order terms for calculating the bond and

valence angle terms as well as nondiagonal, mixing terms in the Ebonded part of the energy.

Such terms increase force field accuracy when calculating relative energies and geometries,

as well as performing vibrational analyses.

Class I force fields have been developed mainly to reproduce condensed state properties

(e.g. molecules in a liquid or crystal environment), which can be simulated by Monte Carlo

or Molecular Dynamics methods. These force fields are ‘effective’ potentials because

intermolecular two-body interactions implicitly absorb many energy contributions in an

effective way. On the other hand, Class II force fields have been parameterized, with the

focus on more precisely reproducing molecular structures, conformational equilibria,

accurate descriptions of molecular vibrations (IR spectra) and intermolecular interactions of

dimers in a vacuum. Thus, Class II force fields typically fail when applied to condensed

state simulations (Halgren and Damm 2001).

The Coulomb formula describing interactions between point charges is typically employed

for most force fields to evaluate electrostatic interactions. Interactions between higher-order

multipoles are generally not included. In most cases, point charges are distributed at the

nuclei. However, electrostatic interactions in MM3 force fields are described in terms of

point dipoles located at chemical bonds (Allinger et al 1989). The nonbonded van der Waals
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interactions are modeled as the sum of attractive and repulsive terms that are proportional to

R−n, where R is the distance between two interacting points. Usually, interacting points

coincide with atom position but additional points, located at lone electronic pairs, have also

been employed (Dixon and Kollman 1997). Most force fields apply a standard Lennard-

Jones 12-6 (R−12 - R−6) potential (Cornell et al 1995, Jorgensen et al 1996, MacKerell et al

1998a); however, other R function potentials are also used, such as 9–6 (Dauber-Osguthorpe

et al 1988), buffered 14–7 (Halgren 1999) or Buckingham-type exp(−α R) − 6 (Stone 1996).

How well do the above potentials correctly match the description of intermolecular

interactions? To answer this question, we consider the current status of intermolecular

interaction theories as formulated by quantum mechanics.

3. Quantum mechanical theories for intermolecular interactions

In 1930, London (1937) laid the foundation for today’s theories of intermolecular

interactions. He proposed that the interaction energy between molecules is the sum of four

basic components: electrostatic, induction, dispersion and exchange (Margenau and Kestner

1971, Stone 1996). All are caused by electrostatic interactions between all particles in the

molecules (e.g. electrons and nuclei). These components can be associated with molecular

properties, such as permanent multipole moments and static and dynamic polarizabilities.

Each energy component has a specific interpretation: electrostatic energy results from

interactions between each molecule’s permanent electric multipole moments; induction

energy is defined by one molecule’s permanent multipoles interacting with multipole

moments induced in another molecule; dispersion energy originates from interactions

between mutually polarized electronic charge distributions, which are often approximated by

interactions between each molecule’s instantaneously induced multipole moments; and

exchange energy, which arises from repulsion between overlapping electron densities at

short distances.

Two general quantum mechanical approaches are used to calculate intermolecular

interactions: the supermolecular theory and the perturbation theory. An exhaustive

introduction to these modern theories is found in reviews published by Chalasinski and

Szczesniak (1994) and Jeziorski et al (1994), as well as in books published by Stone (1996)

and Margenau and Kestner (1971).

According to the supermolecular approach, the interaction energy is defined as the

difference between the energy of the dimer (EAB) and the energies of the two monomers (EA

and EB):

(6)

Intermolecular interaction between two molecules measures about several kcal mol−1 and is

five to six orders of magnitude less than the quantum mechanical energies of the dimer AB;

therefore, the quality of the basis set and level of applied theory affects the calculation

results. Chalasinski and Szczesniak (1994) and others have proposed an approach to

decompose supermolecular energies into well-defined contributions. One problem with the
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supermolecular approach is the presence of basis set superposition error (BSSE) (Boys and

Bernardi 1970). It is caused by a nonphysical lowering of the monomer’s energy in a

dimer’s calculations, since each monomer uses a partner’s basis set to lower its own energy.

For perturbation theory, the simplest approach is based on applying standard Rayleigh–

Schrödinger perturbation theory (RSPT), which is also called the ‘polarization

approximation’. Here, the intermolecular interaction potential operator V is treated as a

perturbation operator to the unperturbed Hamiltonian H0 = HA + HB for the dimer AB. In

the polarization approximation, the total dimer wavefunction is a product of monomer

wavefunctions: ΦAB = ΦAΦB. The Schrödinger equation for a dimer is as follows:

(7)

The formal parameter ξ is introduced to define orders of the perturbation expansion. The

total dimer’s energy and wavefunction depend implicitly on ξ. When the value of the formal

parameter ξ is equal to 1, the complete intermolecular interactions in equation (7) are

recovered. As a result of the perturbation expansion, with respect to the parameter ξ, the

total intermolecular interaction energy is defined as an infinite series (in ξ) of energy

corrections called polarization energies:

(8)

The first order of polarization energy is the electrostatic interaction energy. In deriving

, multipole expansion of the V operator can be applied, which leads to energy

components depending on the powers of intermolecular separation, R.  can be

interpreted as an interaction between permanent multipole moments of monomers A and B.

At the short intermolecular distance, an additional term, , becomes important. This

term originates from mutual penetration of monomer electron clouds. Thus, the first-order

interaction energy is expressed as follows:

(9)

In practical applications, electrostatic energy is often calculated as the interaction between

point multipoles distributed over monomers at a set of points, which usually coincides with

atom positions. Two formulations have been proposed: Stone’s distributed point multipole

analysis (DMA) (Stone 1981) and Sokalski’s cumulative atomic multipole moments

(CAMM) (Sokalski and Poirier 1983).

Polarization energies of the second and third order are sums of induction and dispersion

energies (see the first paragraph of this section for interpretation of these components):

(10)
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(11)

Induction and dispersion energy components can be expanded in terms of the power of

intermolecular distance R, which yield well-interpreted terms that describe interactions

between permanent and induced multipole moments and between mutually induced

multipole moments, respectively.

One problem with polarization perturbation theory is that total dimer wavefunction is not

antisymmetric with respect to electron exchange between monomers. To alleviate the

problem, Jeziorski et al (1994) developed the symmetry-adapted perturbation theory

(SAPT), in which the antisymmetrized product of monomer wavefunctions AΦAB = AΦAΦB

is used for the zeroth-order approximation to the dimer wavefunction, instead of applying

ΦAB, which is used in the polarization approximation. The A represents the intermolecular

antisymmetrization operator. By applying this type of wavefunction, additional energy

terms, such as Eexch, can be defined at each order of energy correction. The Eexch

components make the perturbation energy expansion a rapidly converged series with correct

asymptotic behavior, as compared to the polarization approximation. The perturbation

expansion is defined as follows:

(12)

(13)

The most important exchange term contribution belongs to  because it accounts for

about 90% of the total exchange energy (Jeziorski et al 1994).

To obtain correct interaction energies for many-electron systems, intra-monomer electron-

correlation effects need be taken into account (Jeziorski et al 1994). This problem can be

solved by applying double-perturbation theory to each term of the polarization energy

expansion (Jeziorski et al 1994). With this approach, each component of the nth-order

interaction energy is expanded into a series with respect to the ith and jth orders of the intra-

monomer correlation operator of molecules A and B, respectively:

(14)

As a result of this expansion, we can derive additional energy corrections to each , such

as Eelst-corr, Eind-corr and Eexch-corr. The symmetry-adapted perturbation theory program

(SAPT) (Jeziorski et al 1994) can be used here to conduct numerical calculations for the

most important components of the interaction energy. Calculations can be practically

performed for molecular systems containing 20–30 atoms. This is sufficient for accurately
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determining intermolecular potentials for molecular systems containing representative

chemical groups important in biomolecular modeling. As an example, Bukowski et al

developed the ‘first-principles’ accurate potential for water (Bukowski et al 2007).

Besides the above classification, intermolecular interaction energy for many-body systems

may be expressed as a series of two-, three-, … n-body terms, which depend on the presence

of two molecules, three molecules or more:

(15)

Three- and higher-body terms contain nonadditive contributions to the interaction energy. In

table 1, we summarize the properties of key contributions to the total interaction energy and

the presence of nonadditivity effects.

Though popular among chemists, the charge-transfer term (van der Vaart and Merz 1999) is

not included in table 1. Commonly accepted in the field of experimental spectroscopy and

for partitioning interaction energies in the supermolecular approach, it is not easily defined

within the scope of perturbation theory. More rigorously, charge-transfer energy is

considered to be a part of the Einduction energy component. It is usually heavily contaminated

by a basis set superposition error but is, apparently, less dependent on a basis set (see Stone

(1996), pp 102–104). When the charge-transfer term is extracted from Einduction, it turns out

to be relatively small, often negligible, and exponentially dependent on molecular

separation. Stone and Misquitta (2009) demonstrated that the charge-transfer term is small,

if proper handling of exchange repulsion is taken into account. The charge-transfer term is

also attractive and nonadditive, as is the rest of Einduction.

All empirical force fields employ simplified formulae for calculating intermolecular

interactions that are intended to reproduce complicated energy hypersurfaces; in this sense,

they are effective potentials with various approximation levels and error compensations. But

the question is, what is missing, and what can be improved on in those molecular

mechanical force fields, given the present knowledge of rigorous theories? Most force fields

utilize intermolecular potentials consisting of electrostatic, repulsion and attraction terms.

Electrostatic interaction is modeled using simple Coulomb terms involving interactions

between distributed partial atomic charges on atoms or on other points (~R−1, where R is the

distance between interacting centers). Less often, electrostatic energy is calculated as the

interactions between point dipoles on chemical bonds (~R−3) (Allinger et al 1989, 2003) or

between higher-order multipoles, usually coinciding with the positions of nuclei (Ren and

Ponder 2003). Repulsion between atoms is modeled by a single term that is proportional to

either the power of R(~R−9, ~R−12, ~ R−14) or less often, but more accurate, by the term that

is proportional to ~ exp(α R). The latter expression is more accurate because the magnitude

of quantum mechanical exchange-repulsion energy depends on the overlapping of molecular

electronic densities and, so, exhibits an exponential dependence on R. In the majority of

cases, the attractive component of intermolecular interaction is represented by a dispersion

term that is proportional to ~R−6, which neglects the higher-order powers of R.
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Other ways used to improve the accuracy of each energy component include higher-order

permanent multipoles (terms ~R−n, n > 1), multipole polarizabilities, higher-order dispersion

terms and nonadditive terms, as well as an increasing number of interacting points in

molecules, but these methods are much less often used (Rick and Stuart 2002). The

attractive terms, which are proportional to greater than the (−6) power of R, are also rarely

used. Such terms originate from the multipole expansion of Eind and Edisp energy

components (see table 1). Thus, while the basic, most popular terms to describe

intermolecular interactions, such as R−1, R−6 and R−12 (equation (2)), have been adopted by

those working in classical force fields, they actually absorb many of the energy components

in an effective, yet not always correct, way.

The charge-transfer term is explicitly treated in the SIBFA (sum of interactions between

fragments ab initio computed) polarizable molecular mechanics force field (Gresh et al

2007) and in the CTPOL force field (Sakharov and Lim 2009). Merz et al (Ababou et al

2007) have also demonstrated the charge-transfer term’s importance in quantum mechanical

simulations using semiempirical approaches, though its contribution is small and depends on

energy-decomposition schemes.

Current force fields rarely include other than polarization energy terms that explicitly

describe nonadditive interactions, but such terms could be important in various applications.

For example, it was shown that an explicit triple exponential term employed to describe the

repulsion between two water molecules and an ion improved the agreement between

calculated and experimental enthalpies of formation for the ion–(H2O)n cluster as a function

of n (Clementi et al 1980, Cieplak et al 1987). This term describes three-body nonadditive

repulsion, which could be associated with some components that comprise the  term.

Several force fields have been developed which incorporate the effects of electronic

polarization in intra- and intermolecular interaction models. This is a step in the right

direction, because Einduction, which is partially modeled by a polarization term used in the

classical force fields, is an important component, contributing 10%–20% of the total

interaction energy. Using a polarization term to some extent introduces a nonadditive, n-

body effect. It is suggested that, by including polarization energy and other nonadditive

terms in classical molecular mechanics, only a single set of parameters may be required to

correctly describe both gas and condensed-phase environments (Ponder and Case 2003). In a

number of applications it has already been demonstrated that polarization energy improves

the agreement of molecular mechanics with experimental or high-level ab initio

calculations. One classic example where polarization plays an important role is in

potassium–benzene (π-cation) interactions. The highly polarizable benzene molecule

strongly interacts with the ion and such interactions cannot be reproduced without including

polarization effects (Caldwell and Kollman 1995, Ponder and Case 2003). In another

example, we showed that including polarization energies and additional interacting points

(mimicking lone pairs) substantially improved the interaction energy order and hydrogen

bond distances for N-methyl-acetamide–water dimers (Cieplak et al 2001), compared to

standard AMBER force fields (Cornell et al 1995).
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In the following sections, we describe how polarization effects are modeled and applied in

molecular simulations.

4. Polarizable force fields

The development of polarizable force fields is a vivid area of current research. The large

number of papers published annually and a full issue dedicated to the subject in the Journal

of Chemical Theory and Computation (Jorgensen et al 2007) validates its importance.

Almost all key Class I force fields have a polarizable companion. Some, such as AMBER

ff02, ff02EP (extra points) (Cieplak et al 2001, Wang et al 2006), CHARMM (Lamoureux et

al 2003, Patel and Brooks 2004, Patel et al 2004), PIPF-CHARMM (Xie et al 2007),

OPLS/PFF (Friesner 2005, Kaminski et al 2004, 2002, Maple et al 2005), OPLS-AAP/

OPLS-CM1AP (Jorgensen et al 2007) and GROMOS (Geerke and van Gunsteren 2007a)

have been developed as extensions of existing parameterizations. Other force fields, for

example, AMOEBA (Ren and Ponder 2003, 2004), SIBFA (Gresh et al 2007), SDFF (Palmo

et al 2003) and NEMO (Hermida-Ramon et al 2003), have incorporated a polarization term

since their inception. Large portions of polarizable force fields are devoted to a water model

for liquid-phase simulations. Reviews of these efforts can be found in articles by Halgren

and Damm (2001), Rick and Stuart (2002), Ponder and Case (2003), Mackerell (2004) and

Friesner (2005).

The value of developing polarizable force fields includes being able to model a molecular

response to varying dielectrics of the environment. This effect is crucial for, say, modeling

protein folding events where part of the amino acids form a hydrophobic core and so must

be transferred from its water environment to the interior of a protein (Dill et al 1995) that is

characterized by an entirely different dielectric environment (Fitch et al 2002, Garcia-

Moreno et al 1997). Other examples include RNA folding in an environment full of divalent

ions or the folding of membrane proteins in a lipid environment. In all cases, the energy

surface needs to be represented as accurately as possible. Unfortunately, we have no

unconditional proof that polarizable force fields are important and useful because all are still

under development and their parameterization requires much more computing time than

additive versions. Expanding force fields for additional polarization terms increases the

computation time from 3 to 10 times, depending on implementation. This challenge is

partially alleviated by current developments in programming. These include implementation

of the particle-mesh Ewald (PME) method (Darden et al 1993) for fast and accurate

treatment of electrostatic energy and other progress made in computer technologies.

At present, five groups of methods include polarization effects in force fields: fluctuating

charge, Drude oscillator, induced point dipole, electronic polarization via quantum

mechanical treatment (QM) (Dehez et al 2007) or mixed QM/MM (Murphy et al 2000, Senn

and Thiel 2009), and polarization treatment using continuum solvent (and solute) (Gilson

and Honig 1988, Honig and Nicholls 1995, Tan and Luo 2007). Hybrid methods, such as

combining fluctuating charge and induced point dipole, have also been developed and tested

(Stern et al 1999) but have not been pursued to date.
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4.1. Fluctuating charge model

The fluctuating charge (FQ) model is based on the principle of electronegativity equalization

(EE): a charge flows between atoms until electronegativities of the atoms become equalized.

By adding this effect, a molecule’s charge-state distribution can be coupled to its

environment, providing a way to incorporate the effects of polarization. Note that, with this

approach, fluctuating charge and electronegativity equalization are used interchangeably.

This method has been used in the universal force field (Rappe et al 1992), in a force field

developed by Friesner’s group (Banks et al 1999) and in the CHARMM force field (Patel

and Brooks 2004, Patel et al 2004).

Rick and Stuart (Xu et al 2002) designed a special polarizable water model, the TIP4P/FQ,

which employs fluctuating charge methodology. Exhaustive reviews on this subject, up to

2002, can be found in the paper by Rick and Stuart (2002). Here we provide basic

information about the fluctuating charge method. The formulae derived begin by expressing

the energy required to create a charge, Q, on an atom as a Taylor expansion, which has been

truncated after second-order terms:

(16)

Assuming a neutral atomic state as reference point, the energies required to create +1 and −1

charges on an atom, E(+1) and E(−1), can be calculated from equation (16). Combining

those results leads to the following:

(17)

and

(18)

where IP and EA are the ionization potential and electron affinity, and χ0 is

electronegativity, as defined by Mulliken (Mulliken 1934). The second-order coefficient

(equation (18)) is the Coulomb repulsion between two electrons in the valence orbital (the

self-Coulomb integral). It is used as 1/2J 0 to define the atomic ‘hardness’, xmlpi η (Parr

and Pearson 1983), which represents the resistance to electron flow to or from an atom.

Thus, equation (16) is rewritten:

(19)

Equation (19) can be generalized for a set of molecules (M) each containing Ni atoms. The

total energy for such a system is taken as
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(20)

The last term in equation (20), V(riα jβ), represents the system’s nonelectrostatic

interactions, including bond stretching, angle bending, dihedral terms and other terms

specific for given force fields as well as intra- and intermolecular van der Waals

interactions. Optimum charge distribution is achieved by minimizing energy with respect to

the charges on each atom:

(21)

Since derivatives are equal to electronegativities (equation (17)), such energy minimization

is equivalent to equalizing electronegativities. Equation (21) adds to the conditions

necessary for maintaining a molecule’s total charge and leads to a set of simultaneous

equations that yield a set of self-consistent charges for the given configuration of atoms.

Since charges depend on interactions with other charges located on the same molecule or

other molecules, their values change with every time step or sampled configuration during a

simulation. Consequently, the process has been aptly called the fluctuating charge method

(Rick et al 1994). During the charge equalization process, charges may be constrained to

movement within a molecule or movement between any atom pairs. Application of the latter

option leads to charge-transfer effects. Unfortunately, the model can predict nonphysical,

large charge transfers at great distances and generally overestimates the effect (Rick and

Stuart 2002). For this same reason, the method may predict too large dipole moments of

single molecules, especially in extended systems like polymers. To alleviate the problem,

modifications of the fluctuating charge approach were proposed. These include bond charge

increment (BCI) (Banks et al 1999), atom–atom charge transfer (AACT) (Chelli et al 1999)

and atom-bond electronegativity equalization ABEEM/MM/(Yang and Zhang 2006)

methods.

The electronegativities and hardnesses used in the fluctuating charge method are

experimental, are parameters derived using quantum mechanics (Rappe et al 1992) or are

adjustable parameters, as implemented by Friesner et al (Banks et al 1999, Stern et al 1999)

and Patel et al (Patel and Brooks 2004, Patel et al 2004). According to equation (20), the

hardnesses are used as atomic and interatomic parameters. The heterogeneous parameters

can be derived from atom-type values, as proposed by Patel et al (2004), by employing the

combining rule introduced by Nalewajski et al (1988):

(22)

where Rαβ is the distance between atoms α and β. This formula is effectively applied to

calculate 1–2, 1–3 and 1–4 interaction types. At sufficiently large atom separation (greater

than 2.5 Å), the locally screened Coulomb term reverses to proper 1/Rαβ limiting behavior.
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It has been shown (Patel and Brooks 2004) that the dipole polarizability tensor is related to

hardness matrix elements by

(23)

where Δr̄ represents atomic coordinates relative to the center of geometry. This relation can

be used either to determine a set of hardness parameters, by fitting them to quantum

mechanically derived or experimental polarizabilities, or to determine the quality of

assumed hardnesses in reproducing molecular polarizability.

Solving the coupled set of equations (21) for the charges can be performed by matrix

inversion, iteration or extended Lagrangian methods. The iteration method, the most

efficient, is usually used for propagating the charges during molecular dynamics simulations

(Patel and Brooks 2004, Rick et al 1994, 1995). In the extended Lagrangian method, the

equation of motion for calculating electronic degrees of freedom is given by

(24)

where fluctuating charges are assigned fictitious masses mQ,iα and λi is the Lagrange

multiplier for molecule i containing atom α, which is related to the total molecular charge

neutrality constraint:

(25)

The chosen magnitude of the fictitious mass in equation (24) should be small enough to

achieve a prompt response to changes in electronic potential but large enough to be able to

use reasonable time steps in molecular dynamics simulations.

The fluctuating charge method has already been applied in several cases, such as simple

amino acids, dipeptides, tetrapeptides, gas-phase minimization and isolated protein

dynamics (Banks et al 1999, Patel et al 2004), as well as in simulations of methanol,

ethanol, other organic liquids (Patel et al 2004, 2005a, 2005b), bulk and liquid–vapor

interfaces, and a hexane–water interface (Patel and Brooks 2006). This method predicts

liquid vaporization enthalpy within 2% and bulk density within 1%, compared to

experimental values, while the additive CHARMM C27r force field underestimates

vaporization enthalpy by roughly 20%. The fluctuating charge hexane model realistically

captures bulk dielectric properties. This model predicts a value 1.94 for the bulk dielectric

constant for liquid hexane. This is in good agreement with experimental values, which range

from 1.9 to 2.02. Patel and Brooks also proposed a parameterization to model proteins in

solvents (Patel et al 2004). Most recently, Patel et al (Davis et al 2009) reoptimized this

method together with some of the CHARMM force field parameters and applied it to
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simulate a DMPC lipid bilayer and to predict dielectric permittivity inside and outside such

a bilayer.

One problem with the fluctuating charge method is that it does not reproduce out-of-plane

polarization for planar or linear chemical moieties. This is understandable because

electronegativity equalization proceeds along the bonds between atoms. This effect could be

fixed by using additional out-of-plane sites. Stern et al (1999) demonstrated that fluctuating

charges alone are not always sufficient, for example, to reproduce the energy order of

alanine tetrapeptide conformers. In this situation, inducible point dipoles perform better

(Friesner 2005, Kaminski et al 2002, Stern et al 1999). Thus, the authors initially introduced

a hybrid model involving fluctuating charge and inducible dipoles (Stern et al 1999) but

later focused on only pure inducible dipole models (Friesner 2005, Kaminski et al 2004,

2002).

Stenhammar et al (2009) generalized the fluctuating charge method by providing a general

expression for the distribution of the fluctuating 2l-pole moment Ml that interacts with a

continuum dielectric medium. They demonstrated that the solvation free energy of

fluctuating electric moments diverges with increasing order of the moment l, but did not

suggest a way to correct this problem. Note that the fluctuating charge method has not been

reported for nucleic acid applications.

4.2. Drude oscillator model

Drude oscillator methods are also known as shell models. These models incorporate

electronic polarizability by representing an atom or ion as a two-particle system: a charged

core with charge qi,0 and a charged shell with charge qi,D. The core and shell, also called a

Drude particle (Drude 1902), are linked by a harmonic spring. The magnitude of both

charges is fixed. Thus electronic polarization is mimicked by relative displacement of both

charges due to an external electrostatic field. Atomic polarizability, αi, is related to force

constant k of the harmonic spring connecting the core and shell and is determined by

 (Rick and Stuart 2002). By fitting molecular polarizability data and experimental

intermolecular interaction energies and other properties, charge magnitudes and harmonic

force constants may be obtained.

The electrostatic energy between atoms is calculated as the sum of all charge–charge

Coulombic interactions, the number of interactions needed to compute quadruples.

However, there is no necessity to calculate more expensive dipole field tensors as is so for

explicitly induced dipole interactions. Since nonelectrostatic interactions, such as short-

range repulsion and van der Waals interactions, are purely electronic in nature, they are

considered to act only between shells rather than cores (Rick and Stuart 2002). Since

repulsion in molecular mechanical force fields is usually modeled as a fairly steep function

(e.g. exp(−α R) or R−12) and is associated with shell interaction, then in a natural way, the

shell model avoids a polarization catastrophe observed in inducible dipole polarization

approaches (Lindan 1995).

As with other approaches polarizable degrees of freedom may be solved iteratively,

analytically or by propagating them in molecular dynamics simulations via extended
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Lagrangian methods (Rick et al 1995), as initially proposed by Mitchell and Fincham

(1993). Jacucci et al (1974) report one of the first implementations and applications of this

method in their molecular dynamics simulations of optical phonons in solid sodium chloride.

Here, the Drude particles were massless. This initial work was later extended by Mitchell

and Fincham (1993) who assigned small masses to the shells and determined their motion in

the same way as heavy cores by numerically integrating the classical equations of motion.

The work was also directed at simulating ions in molten salt states.

Rick and Stuart (2002) reviewed pre-2002 developments and applications of the Drude

oscillator method. Recent vigorous implementation and parameterization by van Gunsteren,

MacKerell and Roux have generated greater momentum for this method. The Drude particle

approach has been incorporated in a general way into CHARMM (Lamoureux et al 2003,

2006) and GROMOS (Geerke and van Gunsteren 2007a) molecular modeling packages,

followed by developing force fields for specific groups of molecules. This progress has

allowed molecular dynamics simulations to be conducted for biomolecular systems in vacuo

and in condensed phases.

Recently, new polarizable water models become available for the CHARMM force field. In

the original model, called SWM4-DP (simple water model with four sites and Drude

polarizability), the Drude particle, which was attached to an oxygen atom, was assigned a

positive charge (Lamoureux et al 2003). It was not intuitive, since the particle was meant to

represent the system’s electronic degrees of freedom. Subsequently, this model evolved into

the SWM4-NDP (negative Drude particle), with reversed charges on the oxygen atoms and

Drude particle (Lamoureux et al 2006). Unlike the standard shell approach, the Lennard-

Jones parameters have been associated with the oxygen atom instead of the Drude particle.

The SWM4-NDP model does a good job of reproducing bulk water properties at room

temperature and pressure, including vaporization enthalpy, the static dielectric constant (79

± 3 versus 78.4 exp.) and the self-diffusion constant (2.33±0.02×10−5 cm2 s−1 versus

2.3×10−5 cm2 s−1 exp.). However, the first minimum and second maximum of the gO O

radial distribution function is flatter (e.g. has less structure compared to experimental

curves) and the molecular polarizability is smaller (0.978 Å3) compared with experimental

values (1.44 Å3).

The next step in developing polarizable CHARMM force fields was devoted to alkanes, the

main goal being to devise a set of transferable electrostatic parameters for CH3, CH2 and CH

groups that could be used for lipids or other biomolecules. This force field is quite good at

reproducing quantum mechanical molecular polarizabilities and experimental dielectric

constants, including their relative ordering among alkenes. Yet, the self-diffusion constants

are 5%–11% less than experimental values. Later on, Drude particle parameterization was

extended to other types of molecules, such as ethanol (Noskov et al 2005) and other alcohols

(including lone pairs on oxygen atoms) (Anisimov et al 2007), aromatic (Lopes et al 2007)

and heteroaromatic compounds (Lopes et al 2009), and liquid amides (Harder et al 2008).

That parameterization has now been applied to calculate the membrane dipole potential

(Harder et al 2009).
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In all the above parameterizations for CHARMM force fields, Drude particles are attached

to nonhydrogen atoms, and Lennard-Jones parameters are associated with real atoms instead

of Drude particles. The 1–2 and 1–3 electrostatic interactions between atoms separated by

one and two bonds, respectively, are included, which can cause a polarization catastrophe.

To avoid this outcome, screened dipole–dipole interactions have been incorporated for

short-range distances, as suggested by Thole (1981) Screening has been implemented by

smearing the charge on Drude particles and real atoms. Screened dipole–dipole interactions

were then calculated as interactions between a smeared charge represented by the Slater

function and a point charge (Noskov et al 2005). In polarizable molecular dynamics

simulations, the extended Lagrangian double-thermostat formalism (Lamoureux and Roux

2003) has been used.

In another development, van Gunsteren et al demonstrated a charge-on-spring method to

explicitly treat electronic polarization in the GROMOS force field (Yu and van Gunsteren

2005). Also a Drude particle method, it was initially parameterized to reproduce the

properties of liquid, gas and crystal phases of water (Geerke and van Gunsteren 2007a, Yu et

al 2003, Yu and van Gunsteren 2004, 2005), ethylene glycol (Geerke and van Gunsteren

2007c) and dimethyl ether (Geerke and van Gunsteren 2007b), and ions in aqueous solution

(Geerke and van Gunsteren 2007a). In the latter work, however, it is not clear why the

authors chose to use such large negative values for the charges-on-spring (−8e). Geerke and

van Gunsteren (2007b) carried out the first work that employed a thermodynamics

integration method in Drude oscillator polarizable force fields as a way to calculate ΔGpola,

which corresponds to the free-energy difference between identical systems described by the

polarizable and nonpolarizable models. The authors performed calculations for dimethyl

ether as a pure liquid, as a solute in cyclohexane and in aqueous solution, and as a solvent

for a chloride ion. It was found that, for the cyclohexane solution and the pure dimethyl

ether liquid, ΔGpola is relatively small. The free energy of hydration, ΔGhyd, for the

nonpolarizable model of dimethyl ether solute in water was found to be significantly too

positive compared to experiment. ΔGpola for the dimethyl ether solute in water was found to

be of the same order as this discrepancy, leading to a ΔGhydr value for the polarizable model

of dimethyl ether close to experiment. Both those results, from nonpolar and polar solvent

simulations, demonstrate that including polarization effects significantly improves

transferability of the dimethyl ether parameters. A single set of parameters can be used for a

proper description of the dimethyl ether solvation in nonpolar and aqueous environments, in

contrast to the nonpolarizable model.

Worth noting is the recent application of the Drude model in modeling thermal conductivity

and other transport coefficients for ionic materials (e.g. melted LiCl, NaCl and KCl) (Ohtori

et al 2009). The authors demonstrated that agreement with experimental values is almost

quantitative. Here again, this confirms that polarization effects are crucial to correctly model

thermal conductivity.

So far, there is no consistent and complete Drude model parameterization available for

proteins and nucleic acids.
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4.3. Induced point dipoles

The induced point dipole model is the most studied approach for molecular polarization. It is

incorporated into several current force fields, such as OPLS/PFF (Kaminski et al 2002,

Friesner 2005), AMOEBA (Ponder and Case 2003, Ren and Ponder 2003, 2002) and

AMBER ff02, ff02EP (extra points) (Cieplak et al 2001) and ff02r1 (Wang et al 2006).

In the classical point dipole approach, polarization energy is described as the interaction

between static point charges and the dipole moments they induce. Ponder et al (Ren and

Ponder 2003, 2002) expanded on this model by including the interaction between induced

dipoles and higher permanent electric moments, up to quadrupoles, that were derived from a

distributed multipole analysis (DMA) (Stone 1981). Only the NEMO force field (Holt and

Karlstrom 2008) explores the possibility of including interactions between permanent

multipoles and higher-order induced multipoles involving higher-order hyperpolarizabilities.

Other force fields do not include such contributions, mainly due to computation cost,

convergence issues and difficulties in parameterizing such interactions.

Most polarizable water models developed now employ the point dipole approach (Caldwell

and Kollman 1995, Cieplak et al 1990, Dang 1998, Ponder and Case 2003, Ren and Ponder

2003, Walsh and Liang 2009).

In a polarizable AMBER version (Cieplak et al 2001, Wang et al 2006), and in other force

fields that employ the point dipole model, an additional energy term, Epol, is added to the

total energy:

(26)

The Epol describes explicit polarization arising from dipolar interaction between permanent

partial charges and induced dipoles. It is calculated from the following formula:

(27)

Summation runs over all interacting sites i, αi denotes isotropic point polarizability of atom

i,  is the electrostatic field on atom i due to partial charges (or higher-order multipoles)

and Ei is the electrostatic field on atom i due to charges (or higher-order multipoles) and

induced dipoles.

(28)

is an induced dipole moment at the ith site. Ti j is the dipole–dipole interaction tensor:
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(29)

where I is the identity matrix and x, y and z are Cartesian components along the vector

between atoms i and j at distance ri j.

Most point dipole force field implementations, including AMBER force fields (Case et al

2005, Cieplak et al 2001), use interactions between static charges and induced dipoles to

model polarization effects. The AMOEBA (Ren and Ponder 2003) force field, which is

incorporated into TINKER (Ren and Ponder 2003) and AMBER (Case et al 2005, 2008)

programs, uses interactions between charges, higher-order static atomic multipoles and

induced point dipoles. Therefore,  in equation (27) represents the electrostatic field on

atom i from partial charges and higher permanent moments. Ei represents the sum of  and

the electrostatic field on atom i due to other induced dipoles. According to this formalism,

multipoles at each ith site are represented as a vector: Mi = [qi, μi,x, μi,y, μi,z, Qi,xx, Qi,xy,

Qi,xz, …, Qi,zz, …]T, where q, μ and Q are the monopole, dipole and quadrupole moments,

respectively. The multipole expansion is limited to quadrupoles and multipole moments are

defined in local frames with atomic sites as origins. A molecule’s static multipole moments

are determined by Stone’s distributed multipole analysis (Stone 1981). Using the above

definition of Mi, equations (28) and (29) can be generalized. In this formalism, the atomic

multipole moments are now composed of both permanent and induced contributions

(Rasmussen et al 2007, Ren and Ponder 2003, 2004, 2002):

(30)

To determine induced multipole moments, equation (28) becomes

(31)

where induced multipoles are truncated at dipoles and αi is atomic polarizability.

 is the interaction tensor between sites i and j.

The matrix elements of the multipole interaction T matrix are derived by differentiating

inverse distances between sites:

(32)

The interaction energy between sites in this generalized approach is
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(33)

Equations (28) and (31) can be solved for induced dipole moments either iteratively or by

matrix inversion. For molecular dynamics simulations, induced dipoles are treated by

extended Lagrangian formalism, similarly to that used for fluctuating charge or Drude

oscillator polarization models. To date, no higher-order induced multipoles have been used

in molecular dynamics.

Computational results critically depend on the quality of molecular polarizability. In most

approaches, total molecular polarizability is derived from a distribution of point

polarizabilities usually associated with atoms. In nonadditive, also called interactive,

polarization models (Applequist et al 1972, Birge 1980, Thole 1981, van Duijnen and Swart

1998), each of a molecule’s polarizable sites is allowed to respond to an external electric

field not only from other molecules but from other sites within the same molecule.

Consequently, all interacting sites polarize themselves. Under certain conditions, two

inducible dipoles at short distances can cause a polarization catastrophe. One reason might

be the current method of using point polarizabilities instead of more accurate approaches

whereby interactions between atoms are modeled by diffuse charge distribution. To avoid

this problem, the 1–2 and 1–3 bonded polarization interactions can be turned off, as is done

in AMBER ff02/ff02EP (Cieplak et al 2001) or PFF (Kaminski et al 2004, 2002) force

fields. Alternatively, one can apply distance-dependent damping for interactions on short

distances or use both procedures. In the AMOEBA force field, a mixed approach is

proposed, where both the distance-dependent damping function and exclusion of some of the

1–2 interactions (Ren and Ponder 2002) are applied. In PIPF-CHARMM (Xie et al 2007),

both the damping function and exclusion of 1–2, 1–3 and 1–4 interactions are applied. As

shown below, Thole’s damping procedure has practically no effect on intramolecular

induced dipole charge interactions at distances longer than 1–2 and 1–3 bonds. Thus, it is

neither necessary nor consistent to exclude 1–4 interactions and to apply Thole’s damping

together.

In 1981, Thole (1981) proposed several schemes for damping interactions between inducible

dipoles at short distances. He demonstrated, after Silberstein (1917), that for a diatomic

molecule with bond length r, the values of the polarizabilities parallel and perpendicular to

the bond axis are as follows:

(34)

(35)

When r approaches (4αAαB)1/6, α|| goes to infinity, which is a source of polarization

catastrophe. Thole proposed methods to avoid it by using the interaction between smeared

charge distributions instead of point charges at short distances. This led to changing the

interaction tensor T in such a way that it does not behave as r−3 for small interatomic

distances. To represent smeared dipole moments, several types of charge densities have been
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tested (Thole 1981, van Duijnen and Swart 1998). Among them, linear and exponential

schemes have garnered the most interest (van Duijnen and Swart 1998):

(36)

and

(37)

where u = rij/(αiαj)1/6 is the effective distance as a function of atomic polarizabilities α, rij

is the distance between atoms i and j, and a is the screening length that controls the width of

the smeared charge distribution. Ren and Ponder (2003) employed another Thole’s charge

density in the AMOEBA force field, which has been implemented in Tinker and AMBER

programs. It has the following form:

(38)

Several other force fields adopted this charge density form (Masella et al 2008, Xie et al

2007). However, Thole (1981) demonstrated that the r.m.s. value of relative errors from

optimizing atomic polarizabilities for a set of test molecules was the lowest for linear

density (equation (41)). Recently, Masia et al (2005) suggested another charge density form,

a normalized three-dimensional Gaussian function, which can be used to damp polarization

at short range:

(39)

Applying the above densities leads to the following compact form of a damped dipole–

dipole interaction tensor (Masia et al 2005, Thole 1981, van Duijnen and Swart 1998):

(40)

where fe and ft are distance-dependent screening functions. In the linear Thole model (van

Duijnen and Swart 1998) fe and ft are defined:

(41)

In the exponential Thole model, fe and ft are defined:
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(42)

For density, as defined by equation (38) (Tinker-exponential model), fe and ft are defined:

(43)

For Gaussian density (equation (39)) screening coefficients (Masia et al 2005) are given:

(44)

(45)

For completeness in the Applequist et al (1972) polarization model, where screening is not

present, fe and ft are constant:

(46)

Higher-order modified interaction tensors are presented in original papers by Ponder et al

(Ponder and Case 2003, Ren and Ponder 2003, 2002). Theory and implementation of

Thole’s polarization scheme into molecular dynamics has also been presented by Burnham

et al (1999) in a study of an all-atom polarizable water model derived from first principles.

Masia et al (2005) provide an interesting discussion of damping functions and a more

detailed derivation of screening functions. They explore the applicability of various

screening functions and introduce an additional screening form in which charge distribution

is described by a Gaussian function (equation (39)). However, when applying screened point

dipole models to ion–CCl4 and ion–H2O systems (ion: Li+, Na+, Mg2+, Ca2+), the linear

screening function (equation (36)) yields the best results, followed closely by the

exponential function (Tinker-exp, equation (38)), with the Gaussian function taking last

place. This agrees with the results of Thole (1981) and with the behavior of density

distributions and screening coefficients as a function of distance (see figure 1). The plots

presented in figure 1 are computed for a hydrogen atom interacting with a tetrahedral carbon

atom using the recently determined set of polarizabilities developed by Wang et al (2009)

(see table 2(a)). The method’s parameters specific for C and H were used. The plots show

that both Thole-linear and Thole-exp-Tinker behave similarly at short distances, and they

screen induced dipoles more effectively, compared to the Thole-exponential model. It is

worth noting that damping functions are effective within a 0 to 2 Å range (e.g. distances

involving 1–2 and 1–3 interactions).
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Masia et al (2005) questioned the validity of extending the same intramolecular screening

approach into intermolecular interactions.

In the AMBER ff02 force field, induced dipoles are calculated using the Applequist model

(e.g. no damping) with atomic polarizabilities, as determined in Applequist’s original paper

(Applequist et al 1972). In ff02 and ff02EP (Cieplak et al 2001), as well as ff02r1 (Wang et

al 2006) force fields all short-range 1–2 and 1–3 interactions (e.g. between atoms separated

by one or two chemical bonds) were excluded. Once those interactions are removed, overall

polarizability of the molecule is smaller than that determined experimentally, so this

approach leads to a slight underestimation of the polarization effects in those

parameterizations.

AMBER polarizable force fields provided the first complete set of parameters for all amino

acids and nucleic acids. The AMOEBA force field, as incorporated in Tinker and AMBER

programs, also facilitates protein simulations. The AMBER polarizable force field ff02

employs Applequist’s interactive polarization model and almost unchanged van der Waals

and internal parameters from an additive version of the AMBER ff99 force field (Cheatham

et al 1999, Wang et al 2000). In this force field, a special procedure (described below) has

been applied to derive atomic charges consistent with the polarization model. At present,

only a limited number of test simulations for proteins have been conducted with AMBER or

AMOEBA polarizable force fields (Cieplak et al 2001, Jiao et al 2008, Ponder and Case

2003). Recently, ff02 and ff02EP were used by Sagui et al (Babin et al 2006, Baucom et al

2004) to perform extensive simulations for short DNA oligomers and to compare results

with the force field’s additive version. Also, Vladimirov et al (2009) conducted simulations

for A-DNA and B-DNA and for the rhodamine 6G-DNA complex using polarizable ff02 and

additive ff99 AMBER force fields. Polarization plays an essential role in nucleic acids,

which are highly charged polymers. Indeed, in multiple nanosecond-long crystal and liquid

DNA simulations, Segui et al demonstrated that a polarizable ff02 force field represents

better the crystal structure and sequence-dependent effects observed in an experiment, as

measured by helical parameters than the additive ff99 and polarizable ff02EP containing

extra interacting points.

Simulations have also been performed using the particle-mesh Ewald method (Toukmaji et

al 2000) to calculate interactions between atomic charges and induced dipolar interactions.

Polarizable ff02 force field simulations were stable on a nanosecond timescale, and the

structures were close to the experimental ones. Helical parameters were reproduced well.

For example, the positive opening for A–T base pairs and the negative opening for C–G

base pairs were observed; the roll and helical twist reproduced sequence-dependent

experimental behaviors. On average, the minor groove width in those simulations

reproduced the experimental groove fairly well. On the other hand, the ff02EP, which

attempts to better represent interactions, did not behave better or more stably in simulations,

possibly because of a lack of van der Waals parameters on extra points carrying charges.

Results obtained with ff02EP are slightly inferior to those from ff02, but they are still an

improvement over those with a nonpolarizable ff99 force field. In an interesting study,

Vladimirov et al (2008, 2009) applied additive ff99 and nonadditive ff02 force fields to study

solvent reorganization energies in DNA electron transfers. It has been demonstrated that
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solvent reorganization energies associated with electron transfer are about 30% lower than

those corresponding to an additive force field. However, the effective optical dielectric

constant was equal to , which agrees satisfactorily with experimental data and the

Marcus theory (Marcus 1993).

The AMOEBA force field has been successfully applied to various molecular systems,

including liquid water (Ren and Ponder 2003, 2004), simple ion solvation (Grossfield et al

2003), divalent cation solvation (Piquemal et al 2006b), N-methyl-acetamide dimers, alanine

dipeptide conformational study (Ren and Ponder 2002) and several types of organic

molecules containing biologically important functional groups (Rasmussen et al 2007). The

AMOEBA force field has recently been applied to trypsin with benzamidine and

diazamidine complexes (Jiao et al 2008), though extensive testing of this force field for

proteins has yet to be done.

Other force fields that employ the inducible point dipole model are PIPF-CHARMM (Xie et

al 2007); OPLS-AAP and OPLS-CM1AP, as reported by Jorgensen et al (2007); NEMO

(Hermida-Ramon et al 2003, Holt and Karlstrom 2009) and SIBFA (Gresh et al 2007). All

have been applied to several cases involving organic molecules, ions, water, dipeptides and

others.

PIPF-CHARMM (Xie et al 2007) marks the first attempt to combine the standard

CHARMM22 (MacKerell et al 1998b) force field with polarizable point dipoles from one of

the Thole (1981) screening functions, the same as that used in the AMOEBA (Ren and

Ponder 2002) force field (equation (38)). To reiterate, the screening acts between atoms

located at short-range distances but the authors applied a procedure to automatically exclude

1–2, 1–3 and 1–4 interactions within the same molecule. For this approach, parameters from

Lennard-Jones nonbonding interactions were maintained as was for the original additive

force field. Further, atomic charges were scaled down to compensate for a self-polarization

effect as a way to correct dipole moments in the gas phase. As of now, the PIPF has been

applied first to simulate liquid amides and alkanes before attempts are made to construct a

complete force field for proteins. Results show that PIPF works reasonably well at

reproducing experimental heats of vaporization and liquid densities, as well as enhancing

dipole moments in liquids compared to the gas phase.

Jorgensen et al (2007) introduced the OPLS-AAP/CM1AP force field. It is used in Monte

Carlo simulations, with Epol (equation (27)) computations simplified by neglecting the

contribution made by induced dipoles to the electric field. Because the converged iterative

solution for induced dipoles is not obtained, the polarization effect is less accurate.

Necessary atomic polarizabilities required for this force field have been derived from

quantum mechanical calculations on interactions between cation-π aromatic molecules. This

force field’s main application focuses on interactions between chloride ions and phenols.

Adding inducible dipoles or point polarizabilities on nonhydrogen atoms as a way to include

explicit polarization effects has been shown to improve the magnitudes and interaction

trends associated with substituent effects in phenol–chloride ion complexes.
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Madurga and Vilaseca (2004) published a paper that applies double free-energy perturbation

and polarizable force fields to Monte Carlo simulations. They studied how solute

polarization influences the conformational equilibrium of 1,2-dichloroethane in aqueous

solution. Applequist’s atomic polarizabilities were used together with an iterative procedure

to solve for inducible dipoles. Reaction field correction has also been used for both

electrostatic interactions and polarization energy. The population of gauche conformations

was shown to be greater with polarizable force fields compared to experimental values. The

accuracy of this force field still needs to be determined.

The NEMO force field (Hermida-Ramon et al 2003) is based on partitioning the quantum

mechanical interaction energy at the Hartree–Fock level into first- and second-order

perturbation theory terms. The system’s total energy is the sum of electrostatic, induction,

exchange and dispersion energy components. Each is calculated from properties obtained

from self-consistent field (SCF) wavefunctions of interacting monomers. Thus, each energy

component could be improved separately. Dispersion is represented by the London formula.

Electrostatic energy in the NEMO model is calculated between molecular charge

distributions represented by a multicenter multipole expansion truncated at the quadrupole

moment (Stone 1981). Polarization energy is calculated as the interaction between the same

permanent multipoles, up to quadrupoles, and induced atomic dipole moments obtained via

isotropic atomic polarizabilities. Thole’s damping procedure (Thole 1981), as defined by

equation (38) (Tinker-exponential), is used to screen short-distance interactions. The NEMO

method has limited applications today but its usefulness and improvement over empirical

force fields has already been demonstrated in calculated glycine dipeptide conformation

profiles compared to other empirical force fields (Hermida-Ramon et al 2003), in

interactions of ion–water droplets in Monte Carlo simulations (Hagberg et al 2005) and in

urea transition from nonplanar to planar conformation in the 99 water droplet complex

(Hermida-Ramon et al 2007). Published papers tout new developments in the NEMO model.

These include higher-order multipole moments that improved the response of a molecule to

an external electrostatic field, which may lead to a more accurate description of

intermolecular interactions (Holt and Karlstrom 2009, 2008). However, deriving the general

force field for proteins and nucleic acids is difficult and has not yet been attempted.

SIBFA (Gresh et al 2007) is another force field derived from quantum mechanical

intermolecular interaction theories. Its history dates back to the 1960s’ pioneering work of

Claverie, Rein and Pullman (Claverie and Rein 1969, Pullman et al 1967). They describe

polarization energy as the interaction between permanent multipoles, up to quadrupoles,

distributed on atoms and bond barycenters and anisotropic point dipole polarizabilities,

which are distributed on bond barycenters and heteroatom lone pairs. Both distributed

multipoles and polarizabilities are obtained from molecular orbital calculations performed

for an entire molecule or molecular fragment. One difficulty with this force field is in

determining parameters for a new molecule, and this force field cannot be used for

minimization or molecular dynamics simulations because it does not derive analytic

gradients from energy terms. Geometry optimization is performed by changing dihedral

angles without relaxing valence angles and bond lengths. Piquemal et al (2006a) introduced

a promising extension of this force field called GEM-0 (Gaussian Electrostatic Model). This
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force field uses s-type Gaussian functions to fit atomic charge densities. Total interaction

energy is computed in the spirit of SIBFA as the sum of interactions between fragments

described on the ab initio level. These include electrostatic, exchange repulsion, polarization

and charge-transfer intermolecular interaction energies. In this implementation the

polarization energy is calculated between permanent electric fields generated by the density

fitting procedure and distributed dipolar polarizabilities, which are computed ab initio with

the Garmer and Stevens (1989) approach using B3LYP/aug-cc-pVTZ theory level. The

polarization equation is solved iteratively. This force field has been tested on water dimers

and larger clusters.

Masella et al offers promise for simulating large protein systems in solvents with the newly

developed TCPEp force field (Masella et al 2008), which combines a polarizable solute with

a coarse-grained polarizable solvent, where the solvent is treated by polarizable

pseudoparticles. This method has been applied to BPTI protein simulations for nanosecond-

range molecular dynamics. Results showed that the protein structure along the trajectories

was well conserved and solvation thermodynamics was about as accurate as the standard

Poisson–Boltzmann continuum method.

The CTPOL (Sakharov and Lim 2009) force field was especially developed to model

polarized heavy metal ions from group IIB found in metal binding proteins. It is worth

noting here because results showed that, if an ion’s polarizability is not included, ion

binding sites in proteins are not correctly represented. Polarizability parameters have been

optimized for the CHARMM protein force field.

4.4. Other methods: continuum dielectric and QM/MM

Additional methods that include electronic polarization effects in molecular mechanics are

those implicitly treating part of or the entire molecular system as a polarizable continuum

dielectric and those explicitly treating electrons.

The continuum dielectric approach includes methods that either explicitly treat a molecule at

the atomic level, and the solvent or environment as a continuum medium, or those that treat

both solute and solvent as continuum media characterized by different dielectric constants.

For both situations, a molecule and continuum medium interact electrostatically by

polarizing each other. The (free) energy effect of this interaction can be quantified by

numerically solving the Poisson–Boltzmann equation (Gilson and Honig 1988, Honig and

Nicholls 1995) or by applying analytical methods based on the generalized Born formalism

(Onufriev et al 2002, Still et al 1990). Currently, several ongoing efforts are underway to

incorporate explicit terms responsible for polarization effects in continuum dielectric

approaches. For example, Maple et al (2005) added explicit induced dipole terms to their

PFF polarizable version of the force field by applying self-consistent reaction field

methodology. In another development, Schnieders et al (2007) combined previously used

explicit solvent and polarizable atomic multipoles of an AMOEBA force field and the

Poisson–Boltzmann continuum electrostatic model. Simultaneously, Schnieders and Ponder

(2007) incorporated their polarizable force field into the generalized Kirkwood formalism,

which is a multipole moment extension of the continuum solvent generalized Born method.
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Recently, Tan and Luo (2007), Tan et al (2008) extended the Poisson–Boltzmann-based

solvent continuum approach by including solute, which is also treated as a continuum

medium. They argue that it is reasonable to treat the electronic polarization of solute and

solvent in the same way because the only difference between them is a dielectric constant

value. If so, the electrostatic field E can be calculated for the solute by first solving the

Poisson–Boltzmann equation and then deriving the polarization P, which is treated as a

density of induced dipole moments:

(47)

Polarization energy, Vpol, can then be derived as an interaction between induced charge

distribution from polarization and the potential due to solute point charges. The method

depends on properly deriving atomic charges suitable for this application and accurately

determining atomic cavity radii, which have been optimized to reproduce experimental

solvation free energies. The authors intend to develop a consistent set of force field

parameters for proteins and nucleic acids within the framework of continuum polarization.

One parameter of this method includes a solute’s dielectric constant. Tan et al assumed that

a universal dielectric constant of 4 is optimal for all molecules tested; however, Truchon et

al (2008) found that this value may depend on the class of molecules.

Truchon et al (2008) employed the continuum dielectric to develop a new approach for

computing gas-phase molecular polarizabilities based on a finite-difference solution to the

Poisson equation. A molecule is treated as an entity with a high dielectric, which produces

electronic polarization. A molecule is surrounded by a vacuum dielectric and is immersed in

a uniform electric field. By solving the Poisson equation on the grid, the induced dipole and

then molecular polarizability can be determined. The method of electronic polarization from

internal continuum (EPIC) produces polarizabilities consistent with the quantum mechanical

B3LYP/aug-cc-pVTZ approach and experimental values. Calculations require small

numbers of parameters, such as those for atomic radii and the inner dielectric. However,

their optimum values seem to depend on the class of molecules. In addition, the method is

not suitable for determining atomic polarizabilities. The advantages of this approach are its

relative simplicity and computational speed. Furthermore, the method avoids polarization

catastrophe.

Another methodology combines quantum mechanics with molecular mechanics (QM/MM)

simulations. It is typically applied to model large molecular systems in which most of the

atoms or degrees of freedom are treated classically with molecular mechanics, while the

system’s small fragments are treated quantum mechanically. In the quantum mechanical

region, electrons are explicitly treated and, so, polarization effects are included in a natural

way. This approach is usually applied to model enzymatic reactions inside the binding site

of proteins. More rarely, it is used to model other phenomena, such as protein–ligand

docking as described by Friesner et al (Cho et al 2005, Friesner 2005). They developed an

algorithm in which fixed charges of ligands obtained from molecular mechanical

parameterization are replaced by QM/MM calculations in the protein environment, treating

only the ligands as the quantum region. The algorithm was tested on a set of 40
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cocrystallized structures taken from the Protein Data Bank. The algorithm does not assume

any prior knowledge of native structures of the complexes. It was demonstrated that this

algorithm is able in many cases to converge to a native-like structure, which is not possible

when performing docking using a fixed charge model. Computational efforts are

significantly increased for QM/MM approaches, compared to those for standard molecular

mechanics.

Recently, Murphy et al (2000), Friesner and Guallar (2005) and Senn and Thiel (2009)

published reviews about implementation and applications of QM/MM methods. Case et al

(Seabra et al 2007, Walker et al 2008) detailed quantum mechanical methods in the

AMBER molecular mechanics simulation package. The AMBER program supports

semiempirical Hamiltonians: PM3, PDDG/PM3, PM3CARB1, AM1, MNDO and PDDG/

MNDO, as well as the self-consistent charge density functional tight binding (SCC-DFTB)

method.

A new application includes analyzing point-polarizable water models using mixed density

functional approaches with molecular mechanics (DFT/MM) (Schropp and Tavan 2008).

The authors argue that, to properly calculate induced dipoles on a water molecule, the

average electric field 〈E〉 within the volume occupied by the given molecule need to be used

together with reduced molecular polarizability: αeff = 0.68αexp. Biswas and Gogonea (2008)

demonstrated that polarizable classical atoms can be represented by expansion of point

charges into orbitals, then combined with QM/MM calculations. Jensen et al (2005) used

QM/MM to identify the difference between the macroscopic electric field and the actual

electric field felt by the solute molecule in the solvent. Using only quantum mechanical

methods for polarization, Masia (2008) published the Car–Parrinello-type simulation of an

ion–water cluster that employs an ab initio polarizable force field.

5. Derivation of polarizability and charge models

The quality of a polarizable force field that employs a point dipole model crucially depends

on the polarizability model. Experimental molecular polarizabilities are derived from the

Lorentz–Lorenz equation (Born and Wolf 1999):

(48)

The equation relates the refractive index n, usually measured at a 5893 Å sodium D-line

wavelength, with mean molecular polarizability ᾱ. R is the molar refraction, N0 is

Avogadro’s number, and M and d are molecular weight and density, respectively.

Information about mean molecular polarizabilities and their anisotropy can also be obtained

from the Kerr effect and light scattering depolarization data. Another source of molecular

polarizabilities is quantum mechanics. Here, molecular polarizabilities can be determined

from a molecule’s response to an applied electric field. The coupled perturbative Hartree–

Fock (CPHF) method (Ahlberg and Goscinski 1973) is most popularly used to calculate

molecular polarizabilities.
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Polarizable force fields most often use distributed atomic polarizabilities. Several methods

have been proposed to derive these polarizabilities. All methods are based on fitting atomic

polarizabilities to reproduce either experimental or quantum mechanical molecular

polarizabilities or quantum mechanical electrostatic potentials. The methods can also be

divided into two groups: additive and interactive models, depending on the level of

interactions permitted between induced dipoles. In the additive approach (Miller 1990a,

1990b, Stout and Dykstra 1998), polarizable sites are allowed to respond to an external

electric field but not to permanent and induced multipoles on other sites within a molecule.

In Miller’s approach, atomic polarizabilities depend only on hybridization states and the

number of electrons on atoms. With this model, experimental polarizabilities can be

reproduced to an average error of 2.2%–2.8% (Miller 1990a) (depending on the formulation)

for 400 organic compounds having small molecular weights. However, this approach is not

suitable for large molecules like peptides, proteins and nucleic acids.

Interactive models (Applequist et al 1972, Birge 1980, Thole 1981, van Duijnen and Swart

1998) allow polarizable sites in the molecule to interact via either equation (28) or (31),

depending on the multipolar expansion level (Ren and Ponder 2003). Applequist derived 16

types of atomic polarizabilities after optimizing them to reproduce molecular polarizabilities

for 41 different molecules. Atomic polarizabilities were derived by minimizing the deviation

between calculated and experimental molecular polarizabilities. The atomic polarizabilities

in this model were much smaller than the values from additive models but, due to

intramolecular mutual polarization, they reproduce experimental molecular polarizabilities

usually within 1%–5%, depending on the molecule type. Applequist’s model was used in

deriving AMBER ff02, ff02EP and ff02r1 force fields (Cieplak et al 2001, Wang et al 2006).

As mentioned, for larger molecular systems or condensed-phase simulation, the Applequist

model can lead to polarization catastrophe from a failure of converging atomic-induced

dipoles located at close range. Thole (1981) in 1981 and later van Duijnen and Swart (1998)

used damping functions for the dipole–dipole interaction tensor to derive their own set of

atomic polarizabilities. Only nine types of effective isotropic atomic polarizabilities were

sufficient to reproduce experimental values for 52 molecules with an overall error of 3.7%.

The largest error was observed for a group of substituted aromatic compounds (9.9%). Birge

(1980) expanded on Applequist’s work by including electronic repulsion integrals to

improve anisotropy when calculating molecular polarizabilities.

Another way to determine atomic polarizabilities for molecular mechanics is using quantum

mechanical calculations. Soteras et al (2007) and Dehez et al (2007) applied two distinct

procedures. The first approach is based on the second-order perturbation theory. As such,

they applied a special distance-dependent scaling factor to reproduce exact molecular

polarizabilities in a single Hartree–Fock calculation. The second method requires mapping

grids of induction energies using a single high-level quantum mechanical calculation,

followed by topological partitioning of the electron density (TPED) response into atomic

regions. Induction energies obtained from perturbation theory and TPED approaches have

been reported to closely agree. Atomic polarizabilities were obtained by fit-ting them to

reproduce QM-PT induction energies via equation (27). This approach led to a model of

explicitly interacting distributed (atomic) polarizabilities. Since responses between different
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molecular subunits (atomic regions) are omitted in the fitting procedure, only a set of

effective atomic polarizabilities could be derived.

Ponder et al (Grossfield et al 2003, Jiao et al 2006, Ren and Ponder 2003, 2002) employed

quantum mechanical calculations to determine distributed multipole moments (Stone 1981)

used in an AMOEBA force field. The multipole moments were subsequently corrected to

generate a permanent electrostatic model consistent with the assumed polarization scheme

(described in section 4). To calculate the polarization energy, modified Thole’s atomic

polarizabilities were used in an AMOEBA force field.

Kaminski et al have adopted a different approach to derive the PFF-OPLS force field

(Friesner 2005, Kaminski et al 2004, 2002). To determine atomic polarizabilities, they

calculated the molecule’s response to the dipolar probe located in a number of positions

around the molecule. Perturbation of the electrostatic potential, defined at a set of grid points

outside a molecule’s van der Waals surfaces due to the probe, was then used to fit isotropic

atomic polarizabilities. Quantum mechanical calculations of electrostatic potentials were

conducted using density functional theory combined with the B3LYP (Becke 1993) method

and cc-pVTZ(-f) basis set (Dunning 1989).

Elking et al (2007) have proposed an attractive way to handle induced dipoles and

potentially higher multipoles and to derive atom-type polarizabilities. The model is based on

interacting Gaussian charge densities. Charge distributions described by Gaussian functions

can interact at short distances, thus avoiding polarization catastrophe. Atomic

polarizabilities are generated by probing a molecule with point charges or external fields and

calculating the response electrostatic potential. The response potential is the difference

between quantum mechanical potentials in the presence and absence (vacuum) of the

charged probe defined on a grid surrounding the molecule. The model’s parameters (e.g.

atomic polarizabilities αi and Gaussian exponents) were fitted to the response of the

electrostatic potential. During computations, the Gaussian inducible dipoles are allowed to

interact with one another and the probe charge but only the contribution arising from the

response potential was used in the fitting procedure, assuming that intramolecular

polarization is constant. In this way, computed polarizabilities do not depend on the choice

of the permanent multipole model or on intramolecular polarization. Unlike many other

approaches, a permanent electrostatic model can be selected after deriving polarizabilities.

Actual computations were performed for a number of small molecules and dipeptides,

allowing for deriving the set of ‘probed’ (e.g. using a charged probe to define a molecule’s

polarization) atomic polarizabilities. The Gaussian polarization model performed slightly

better than the Thole-exponential (Tinker-exponential, equation (38)) model for reproducing

molecular polarizability tensors and has therefore been incorporated into the AMBER (Case

et al 2008) molecular dynamics simulation package and parameterized for AMBER (Wang

et al 2000) and GLYCAM (Woods et al 1995) force fields.

Induced dipoles, permanent charges and higher multipole moments determine a molecule’s

total electrostatic properties. For these reasons, permanent and distributed atomic multipole

moments need to be derived based on fitting to an electrostatic potential and the need to be

consistently parameterized depending on the assumed polarization model. In AMBER ff02,
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ff02EP (Cieplak et al 2001) and ff02r1 (Wang et al 2006) force fields, Applequist’s atomic

isotropic polarizabilities are assumed. Cieplak et al (2001) describe a method to determine

partial atomic charges for standard residues, such as amino acids and nucleotides. According

to their method, atomic charges are iteratively fitted to the differences between the quantum

mechanical electrostatic potential and the potential generated by induced dipoles. Iterations

stop when an induced molecular dipole moment does not change within some accuracy level

(10−3 D). Electrostatic potentials are calculated at a number of points (of the order of 103–

104) defined in several shells, beyond the van der Waals envelope, around the molecule. For

polarizable AMBER force fields, quantum mechanical ESPQM potentials have been

determined at the B3LYP (Becke 1993)-type exchange and correlation functional and the

cc-PVTZ (Dunning 1989) basis set.

For the purpose of developing a new AMBER polarizable force field Wang et al (Case et al

2008) derived several sets of atomic polarizabilities for four nonadditive (e.g. dipole

interactive models) polarizability models using Applequist, Thole-linear, Thole-exponential

and Thole–Tinker-exponential damping approaches (equations (36)–(38) and (46)). The

genetic algorithm method (GA) (Wang and Kollman 2001) has been used to determine

atomic polarizabilities that reproduce high-quality experimental static molecular

polarizabilities. Wang et al performed calculations for a set of 420 molecules previously

studied by Bosque and Sales (2002) who performed measurements of their molecular

refraction. Results are presented in table 2.

Among the four models, Thole’s exponential scheme comprising 15 atomic polarizability

parameters performed best at reproducing experimental data and boasted the lowest average

unsigned, root mean square and average per cent errors (table 2(a)). In AMBER polarizable

force fields (Cieplak et al 2001, Wang et al 2006) atomic charges are iteratively fitted to the

difference (ΔESP) between the quantum mechanically derived electrostatic potential

(ESPQM) and the potential generated by induced dipoles (ESPind). Since this procedure quite

often became unstable, another set of atomic polarizabilities was derived in which 1–2 and

1–3 dipole interactions were turned off, and 1–4 interactions were scaled down by 1.2,

which is consistent with a treatment of the electrostatic interactions between permanent

charges. Derived polarizabilities are presented in table 2(b). When atomic polarizabilities are

similar to each other in a damping model, with slightly larger errors in an exponential model

(equation (37)) as seen here, it confirms that most of the differences between the various

polarizability models are related to 1–2 and 1–3 interactions (see figure 1). Removing 1–2

and 1–3 interactions similarly aligns all the models. The polarizabilities that are damped, or

are 1–2 and 1–3 excluded, are larger because they need to compensate for lost short–range,

dipole–dipole interactions to reproduce total molecular polarizability. The four types of

models are now being tested using solvation free-energy calculations and a thermodynamic

integration method on a set of small molecules that include amino-acid side-chain analogs.

These polarizabilities will be used to construct a newer version of the polarizable AMBER

force field for amino acids, nucleic acids and other important biomolecules. The i_RESP

(Cieplak 2009), a stand-alone computer program, has been developed to facilitate iterative

charge fittings to an effective electrostatic potential, ΔESP, using atomic polarizabilities as

an input parameter. The program performs charge fittings in several stages: in the first stage,
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ESP charges are iteratively fitted to ΔESP (ΔESP = ESPQM − ESPind) and separately fitted

for each input molecule. For each individual, iterative step over ΔESP, induced dipoles are

determined from the iterative solution of equations (28) and (40). Once each ΔESP

converges for each molecule, the standard two-stage RESP-type charge fit is performed

using the final values of the iterated ΔESP electrostatic potential. The program is capable of

performing a multimolecular, multiconformational restrained fit, as is its predecessor, the

RESP program (Bayly et al 1993).

A stand-alone R.E.D. (RESP ESP charge derive) program has been developed to further

facilitate charge derivations. Written in the Perl language, it is available online at http://

q4md-forcefieldtools.org/RED/ (Dupradeau et al 2008, Pigache et al 2004). The program

interfaces quantum mechanical programs with the RESP program and, in the near future,

will interface with the i_RESP program to be able to derive atomic charges for polarizable

force fields. The R.E.D. program automatically performs all necessary calculations involved

in RESP charge fitting without the user needing to handle intermediate files or data. PDB or

mol2 files are required for input. Currently, the R.E.D. program can be used together with

Gamess (Gordon and Schmidt 2005) and Gaussian03 (Frisch et al 2003) quantum

mechanical programs, which perform geometry optimization and generate electrostatic

potentials around a molecule. The website also has an online server, ‘R.E.D.Server’, which

is available for automatically deriving partial charges. It provides convenient access to the

R.E.D and quantum mechanical programs through a web interface.

6. Conclusion

Modeling the effects of polarization in chemical computations is a rapidly growing and

exciting area of research. Significant developments published after 2000 have been reviewed

here. Incorporating the effects of polarization into classical force fields is a positive step

towards improving the accuracy of simulations; however, many other terms and including

nonadditive effects still need to be addressed. Most developments in the polarizable force

fields for biomolecules relate to explicitly induced dipoles and somewhat less to fluctuating

charge and Drude oscillator methods. New methods have begun to emerge, such as those

that go beyond point charge models and describe charge densities via spatial functions.

Advances have also been made by combining classical mechanics with methods that

explicitly treat electrons. Yet most polarizable force fields are currently in the

developmental stage. Their parameterization, which usually requires iterative simulations, is

a much slower process compared with additive counterparts. This is due to a higher

computational burden. However, as we show here, several key comparisons between

nonadditive and additive molecular simulations have already been reported, and these

support a better agreement of the former compared with experimental data (Babin et al

2006, Baucom et al 2004, Harder et al 2009, Jiao et al 2008). Applying polarizable force

fields to large biomolecular simulations is still far from routine and is computationally

expensive. We hope that this situation will change given encouraging data and dedicated

efforts by those in the field. Overall, the force fields are overdue for much-needed advances.
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Figure 1.
(a) Charge densities as a function of distance R (equations (36)–(38)). (b) Screening

functions fe and ft (equations (41)–(43)) as a function of distance R between C-sp3 and H

atoms (equations (36)–(38)). In each case specific for a given method, atomic

polarizabilities were used (see table 2(a)) to calculate effective distance u.

(This figure is in colour only in the electronic version)
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Table 1

Intermolecular distance dependence, sign of energy, additivity characteristics and per cent contribution at R

corresponding to the van der Waals (vdW) minimum and for larger distances, for the most important

components of the intermolecular interaction energy for polar systems (Jeziorski et al 1994, Chalasinski and

Szczesniak 1994).

R dependence Sign Additive? % Contribution in vdW minimum (%)

R−1, R−2, R−3, … +/− Yes 50–70

exp(−a R) + Yes 1–5

exp(−a R) + No 5–10

R−4, R−6, … − No (nonadditivity could be +/−) 10–20

R−6, R−8, R−10, … − Yes 15–30

R−9, … +/− No (nonadditivity: could be: +/−) 1–2

Various Ecorrel contributions <5
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