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Abstract

Genetic modification of plants may result in unintended effects causing poten-

tially adverse effects on the environment. A comparative safety assessment is

therefore required by authorities, such as the European Food Safety Authority,

in which the genetically modified plant is compared with its conventional coun-

terpart. Part of the environmental risk assessment is a comparative field experi-

ment in which the effect on non-target organisms is compared. Statistical

analysis of such trials come in two flavors: difference testing and equivalence

testing. It is important to know the statistical properties of these, for example,

the power to detect environmental change of a given magnitude, before the

start of an experiment. Such prospective power analysis can best be studied by

means of a statistical simulation model. This paper describes a general frame-

work for simulating data typically encountered in environmental risk assess-

ment of genetically modified plants. The simulation model, available as

Supplementary Material, can be used to generate count data having different

statistical distributions possibly with excess-zeros. In addition the model

employs completely randomized or randomized block experiments, can be used

to simulate single or multiple trials across environments, enables genotype by

environment interaction by adding random variety effects, and finally includes

repeated measures in time following a constant, linear or quadratic pattern in

time possibly with some form of autocorrelation. The model also allows to add

a set of reference varieties to the GM plants and its comparator to assess the

natural variation which can then be used to set limits of concern for equiva-

lence testing. The different count distributions are described in some detail and

some examples of how to use the simulation model to study various aspects,

including a prospective power analysis, are provided.

Introduction

An essential element in the environmental risk assessment

(ERA) of genetically modified (GM) plants is a compara-

tive field trial in which the effect on non–target organisms

(NTO), such as aphids, beetles and bumble bees is com-

pared. Such an experiment ensures that the GM plant

and its comparator(s) are grown under the same manage-

ment and environmental conditions, thus enabling a fair

and objective comparison. A basic statistical approach for

designing and analyzing such field experiments has been

outlined in an EFSA guidance document (EFSA, 2010), in

Perry et al. (2009) and Semenov et al. (2013). However,

in practice the power of these experiments to detect envi-

ronmental changes of a given magnitude is often

unknown, partly because insufficient prior thought is

given to what exact endpoints the experiments are sup-

posed to test, and partly because the complex nature of

ecological data complicates the power calculations. One

of the aims in the EU-funded project “Assessing and

Monitoring the Impacts of Genetically modified plants

on Agro-ecosystems” (AMIGA) is to devise statistically
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well-based protocols for the design and analysis of field

trials. To prepare this action an inventory was made of

existing field studies in the literature, and a statistical

simulation model was developed to mimic ecological data

such as found in practice. The aim of the current paper is

to describe this statistical simulation model and to show

how this can be used in the design of field experiments.

Data collection in experimental fields with genetically

modified crops has been conducted for many years and a

large variability of experimental designs, sampling tech-

niques, guilds of non-target arthropods and statistical

methods have been used (e.g., Marvier et al., 2007). To

summarize the different approaches presented in the sci-

entific literature, a non-exhaustive inventory of 33 field

studies with insect resistance transgenic plants was com-

piled among those firstly published, where the detection

of possible effects of GM plants on natural enemies was

the primary goal of the study (Table 1). The papers were

published from 1992 until 2005. This time-span was cho-

sen to include the very first published experiments of this

kind, and also to incorporate the first available data from

surveys in GM commercial fields. Different crops were

included in the selection. The table presents some of the

indicators relevant to the experimental design, collection

methods and statistical analyses performed on the data.

None of the papers provided a prospective power analysis

for the experiments described.

Field trials are thus diverse, but an example shows

some typical elements. Al–Deeb and Wilde (2003)

describe experiments to test the effects of the Cry3Bb1

toxin in Bt corn on aboveground non–target arthropods.
The experiments were performed on eight locations in

one year and three locations in a second year, and they

involved three GM varieties and two isolines in combina-

tion with up to nine different seed and spraying treat-

ments. Randomized complete block designs were used

with 2–4 blocks and 8–40 plots. Visual inspection pro-

vided count data on 15–20 plants per plot. Average

counts per plant for five NTOs varied between 0 and 70.

Pitfall trap count data observed at 3–7 time points were

reported as average numbers per pitfall trap between 0

and 616 for eight NTOs. Based on a statistical analysis

using analysis of variance the authors concluded that no

significant differences in numbers were detected between

Bt corn and its non–Bt isoline. However, there is no

mention of the effect sizes that these experiments would

have been able to detect with a reasonable statistical

power. In fact, the data provided are insufficient to draw

any conclusion on the statistical power of the performed

experiments, and this is also the case for many other

reported studies. Indeed, in a few cases the importance of

such an analysis had been singled out (Andow, 2003) and

attempts to design field experiments on such bases were

done in rare cases (e.g., Squire et al., 2003; Duan et al.,

2006). To improve this situation the EFSA guidance asks

for prospective power analyses to be performed. This

issue is further developed in the present paper.

Typical data in environmental risk assessment of GM

plants are counts or presence/absence data of NTOs. The

basic distribution for counts is the Poisson distribution,

while presence/absence data can usually be modeled by a

binomial distribution. Clumping of individuals might give

rise to an overdispersed distribution such as the negative

binomial for counts and the beta-binomial distribution

for presence/absence data. Also the number of zero obser-

vations can be larger than predicted by the distribution

and this gives rise to so-called excess-zero distributions.

In many experiments, NTOs are sampled at different

points in time, for example weekly, for all experimental

units. The data are thus repeated measurements probably

with some form of autocorrelation across time within

experimental units. Depending on the species various pat-

terns across time are possible. Moreover experiments are

frequently repeated on different locations and in different

years.

The statistical analysis of ERA field trials comes in two

flavors: difference testing and equivalence testing (van der

Voet et al., 2011). The aim of the difference test is to

reject the null hypothesis of no difference between the

GM plant and its comparator. A significant difference test

is then a “proof of difference”, but this does not state that

the difference is biologically relevant and constitutes a

true hazard to the environment. Poorly designed experi-

ments with low levels of replication may have low statisti-

cal power of finding a true difference. So the absence of a

significant difference is not a proof that there is no differ-

ence, or “absence of evidence is not evidence of absence”

(Altman and Bland, 1995). An equivalence test on the

other hand employs a null hypothesis of non-equivalence,

that is, that the difference between the GM plant and its

comparator is larger than some pre-described equivalence

limit, also called limit of concern (LOC). Rejection of the

non-equivalence hypothesis implies that the difference is

smaller than the LOC and this can be regarded as a

“proof of safety”. The advantage of equivalence testing is

therefore that the onus is placed back on to those who

wish to demonstrate the safety of GMOs to do high qual-

ity, well-replicated experiments with sufficient statistical

power (Perry et al., 2009). Note that both the difference

and equivalence test can be implemented by constructing

a single confidence interval for the difference between the

GM plant and its comparator. This employs the two one-

sided tests (TOST) approach of Schuirmann (1987) for

equivalence testing.

It is important to know the statistical properties of dif-

ference and equivalence tests, for example the power and
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robustness of a test and whether the test has the assumed

significance level. Such properties are well-known for sin-

gle experiments using tests based on the normal distribu-

tion, such as t-tests. For non-normal distributions, small

sample properties of difference and equivalence tests are

not straightforward. A simulation approach for sample

size calculations for a difference test is employed by many

authors, for example, Shieh (2001) and Hrdli�ckov�a (2006)

for the Poisson distribution, Shieh (2001) and Demidenko

(2008) for the binomial distribution, Aban et al. (2009)

and Friede and Schmidli (2010) for the negative binomial

distribution. A general practical approach to computing

power for non-normal distributions is given by Lyles

et al. (2007). However field testing of environmental

effects of GM plants on NTOs is much more complicated

as it may not only involve non-normal distributions,

potentially with excess-zeros, but also a set of reference

varieties in addition to the GM plant and its comparator,

randomized blocks within an experiment, multiple experi-

ments across different sites and/or years with possibly

genotype by environment interaction, and finally repeated

measures in time exhibiting some pattern in time possibly

with autocorrelation. The object of this paper is to for-

malize all these elements in a single statistical simulation

model which provides a framework for studying various

statistical approaches for data analysis of such experi-

ments. The simulation model was implemented in a user-

friendly C# program, using the R package (R Core Team,

2012) for simulating from various distributions. The soft-

ware is available as Supplementary Material to this paper.

This paper first summarizes potentially useful statistical

distributions for ecological data. Then the other elements

of the statistical simulation model are described, namely

block effects, additional varieties, repeated measurements

and multiple trials. Some applications of the simulation

model for power analysis are described, and possibilities

for use and future research needs are discussed.

Statistical Distributions for Counts

The basic distribution for counts is the Poisson distribu-

tion. The Poisson distribution arises when events occur

independently of each other but at a fixed rate in time or

space. The number of events in a fixed time- or space-

interval then follows a Poisson distribution. The theoreti-

cal variance of the Poisson distribution equals the mean

l. Examples of three Poisson distributions are given in

Figure 1. The Poisson distribution assumes a fixed rate of

events in time or space. However frequently this rate

might vary in different time- or space-intervals. A com-

mon way to model this is to assume inter-subject vari-

ability, also called mixing. It is then assumed that a count

X follows a Poisson distribution with mean Z, where Z

itself is a random variable with mean l and variance say

s2. The marginal mean of the distribution of X is then

given by l and the variance equals l + s2. Consequently
the resulting distribution has a variance which is larger

than the mean and this is termed over-dispersion. Three

common ways to specify the mixing distribution of Z

result in the overdispersed Poisson distribution, the nega-

tive binomial distribution and the Poisson-Lognormal

distribution. These are described below.

The overdispersed Poisson distribution arises when Z

follows a gamma distribution with variance s2 = (/�1) l
which is proportional to the mean l. The resulting distri-

bution is a special form of the negative binomial distribu-

tion, see McCullagh and Nelder (1989), with variance /l
which is also proportional to the mean. Figure 1 shows

some examples of the overdispersed Poisson distribution.

The so-called quasi likelihood approach is commonly

used to fit this distribution. This employs the Poisson

likelihood, estimates the dispersion parameter / by means

of Pearson Chi–squared statistic and adjusts standard

errors of estimates accordingly (McCullagh and Nelder,

1989).

The negative binomial distribution arises when the

mixing distribution Z follows a gamma distribution with

mean l and variance xl2. The marginal mean of X is

then again l and the variance equals l + xl2. Some

examples of the negative binomial distribution are given

in Figure 1. This shows that the negative binomial distri-

bution, with a large dispersion parameter x, has a large

zero probability and a rather flat tail.

Specification of a lognormal distribution for Z, with

say mean k and variance r2, results in the so-called Pois-

son-Lognormal distribution. This is equivalent to the

introduction of a normally distributed random effect on

the scale of the linear predictor in Poisson regression, see

Breslow (1984). The mean of the marginal distribution is

given by l ¼ expðkþ 1
2 r

2Þ and the variance by l + [exp

(r2)�1)]l2. This is thus the same variance function as

the negative binomial distribution with x = [exp(r2)�1].

Despite this the distributions can be quite different for

large l and x as is shown in Figure 1.

A different approach was introduced by Taylor (1961)

who proposed the power relationship V = alb between

the variance V and the mean l for field population

counts. This pioneering paper was followed by a series of

papers, notably Taylor et al. (1978, 1980), in which it was

shown that this relationship fitted well for many species,

with varying values of a and b depending on the species

at hand. The relationship was subsequently termed

Taylor’s power law by some authors. Perry et al. (2003)

and Clark et al. (2006) advocate the use of the power law

for analyses of count data obtained in farm scale evalua-

tions of GM herbicide-tolerant crops. They found that
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median values of the power b, when considering groups

of indicator species, all fall between 1.5 and 2.0, averaging

1.7 overall. There is no statistical distribution associated

with Taylor’s power law, as it only specifies a relationship

between the variance and the mean. Perry et al. (2003)

used the negative binomial distribution to simulate

according to Taylor’s power law by solving x from

l + xl2 = alb for given values of l, a and b. Using the

negative binomial is however arbitrary, as, for example,

the Poisson-Lognormal has the same variance to mean

relationship, but has a different distribution.

Statistical Distributions for Presence/
Absence Data

In field experiments the presence or absence of an organ-

ism might be recorded rather than counting the organism.

The response X might then be the number of plants on

which a specific organism is present for each experimental

unit. Assuming independence between the n plants and a

fixed presence probability p the response follows a bino-

mial distribution. The mean of the binomial distribution is

given by np and the variance equals np(1 � p). Examples

of the binomial distribution are given in Figure 2.

Overdispersion arises by assuming that the presence

probability itself, now called Z, follows some statistical

distribution with mean p and some variance s2. It follows
that the marginal mean of X itself equals np and the vari-

ance equals np(1 � p) + n(n � 1)s2 which is larger than

the variance of the binomial distribution. A popular

choice for Z is the beta distribution which results in the

so-called beta-binomial distribution. An alternative is to

assume that the logit transform of Z follows a normal dis-

tribution. Details of both distributions are given below.

The beta-binomial distribution arises when Z follows a

Beta distribution which is defined on the interval (0,1). A

convenient re-parameterization results in a mean np and

variance np(1 � p)[1 + (n � 1)u]. When the number of

binomial trials is equal across experimental units, the term

between squared brackets is constant and the variance of

the beta-binomial distribution is then proportional to the

binomial variance. In this case data can be easily analyzed

by the quasi likelihood approach, similar to the analyses

for the overdispersed Poisson distribution. Some examples

of the beta-binomial distribution are given in Figure 2.

This shows that the range of possible outcomes is

extended as compared to the binomial distribution. How-

ever for very large values of x the distribution becomes

Figure 1. Examples of probabilities of

statistical distributions for counts for means

l = 1, 4, and 10. The variance of the

overdispersed Poisson distribution equals /l.

The variance of the negative binomial and

Poisson-lognormal equals l + xl2.

1272 ª 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Statistical Simulation Model for ERA P. W. Goedhart et al.



bath-tub like with large probabilities for outcomes 0 and n

and small probabilities for intermediate values.

An alternative is to assume that Z follows a logit-nor-

mal distribution. This is equivalent to the introduction of

a normally distributed random effect on the scale of the

linear predictor in logistic regression. For obvious reasons

this distribution can be termed binomial-logitnormal.

Unfortunately the mean and variance of the logit-normal

distribution cannot be written in analytical form, and this

is thus also the case for the binomial-logitnormal distri-

bution itself. Probabilities can be obtained by integrating

out the random effect by Gauss–Hermite quadrature.

Some examples of this distribution are given in Figure 2;

the parameters which are used in this figure are such that

the mean and variance of the distribution are given by np
and xnp(1 � p). This shows that for p = 0.5 there is

hardly a difference with the beta-binomial distribution,

while for smaller values of p the binomial-logitnormal

distribution has somewhat smaller zero probabilities.

Excess-Zeros Distributions

Although the overdispersed count distributions have a

larger zero probability than the corresponding Poisson or

binomial distribution, in practice the number of zero

observations can still be larger than predicted by the

count distribution. This is termed excess-zeros or zero-

inflation. Examples of situations with excess-zeros are

given by Cunningham and Lindenmayer (2005), Sileshi

(2008) and Lewin et al. (2010). Failure to account for

zero-inflation in a statistical analysis may results in biased

estimation of environmental effects of GM plants. A com-

mon model for zero-inflation assumes that a proportion

d of the experimental units have a structural zero and the

remaining proportion (1 � d) of units follows one of the

count distributions given above. The zero-inflated distri-

bution for the resulting count Y is then given by

PðY ¼ yÞ ¼ dþ ð1� dÞPcðX ¼ 0Þ y = 0
ð1� dÞPcðX ¼ yÞ y[ 0

�

in which Pc(X = x) is the distribution of the counts. Note

that the probability of observing a zero is given by the

probability d of obtaining a structural zero plus the prob-

ability of obtaining a zero by chance. Having a lot of

zeros in itself does not necessarily mean that a zero-

inflated model is needed. An examples of this is given by

the negative binomial distribution in Figure 1.

The mean of a zero-inflated Poisson distribution equals

l(1 � d) and its variance equals l(1 � d)(1 + dl).
Regression models based on the zero-inflated Poisson dis-

tributions were introduced by Lambert (1992) who con-

sidered simultaneous modeling of l and d which are

related to possibly different sets of covariates. Greene

(1994) brought regression modeling to the zero-inflated

negative binomial distribution. Hall (2000) and Vieira

et al. (2000) seem to be the first papers which employ a

zero-inflated binomial model. Finally, Cheung (2006) uses

a zero-inflated beta-binomial model to analyze cognitive

function test scores of Indonesian children.

Statistical Simulation Model

Having defined possible probability distributions for

counts and presence/absence data, the other elements of

Figure 2. Examples of probabilities of

statistical distributions for presence/absence

data for n = 16 with mean np and variance

xnp (1 � p). For the binomial distribution,

x = 1.
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field testing of environmental effects of GM plants on

NTOs can be introduced. These elements are summarized

in Table 2.

Block effects and the transformed scale

An experiment will minimally consist of a GM plant and

its comparator. When these are compared in a single

trial without blocking, with only a single measurement

per experimental unit and no excess-zeros, simulation of

such an experiment only requires specification of the

mean l of the count distribution for both the GM plant

and the comparator. In addition, when overdispersion is

required, a common dispersion parameter must be speci-

fied. Adding blocking to this experiment requires a ran-

dom blocking effect. It is natural and common to

introduce blocking effects for counts on the log scale,

that is,

logðlÞ ¼ ðfixed variety effectÞ þ ðrandom blocking effectÞ

as this ensures that the mean l of the count is always posi-

tive. Note that this also requires that the variety effect of the

GM plant and the comparator is specified on the log scale.

Likewise, the logit transformation can be used to specify the

probability of success p for the presence/absence data and/or

the excess-zeros probability d, for example,

logitðpÞ ¼ log
p

1� p

� �

¼ ðfixed variety effectÞ
þ ðrandom blocking effectÞ

This ensures that probabilities are always in the interval

(0,1). So in the simulation model, all effects are intro-

duced on the natural log scale for counts and on the logit

scale for probabilities.

When an experiment with blocking is required, it is

assumed that block effects follow a normal distribution

with some variance. For each new block, a block effect is

simulated according to this distribution and added to

the variety effect on the transformed scale. Note that

when an excess-zero distribution is used, a block

variance must be specified for both the count or pres-

ence/absence distribution as well as for the excess-zero

probability.

Additional varieties and reference varieties

In addition to the GM plant and the comparator, other

varieties can be introduced in the experiment. These

might be other comparators or other GM plants, or alter-

natively, the GM plant and/or comparator itself which

receive different agronomical treatments with for instance

herbicides. Although the latter are not varieties but rather

treatments, for simplicity, these are also termed additional

varieties in the simulation model. For each of the addi-

tional varieties, a variety effect on the transformed scale

must be specified.

A special case is an experiment in which the GM plant

and its comparator are to be compared with a group of

reference varieties which are assumed to have a history of

safe use (Van der Voet et al., 2011). In this case, the indi-

vidual reference varieties themselves are not of interest,

but they are rather used to derive baselines or equivalence

limits. The reference varieties in the experiment might

thus be considered as representing a population of refer-

ence varieties. It is then natural to assume that the variety

effect of each reference variety is drawn from a statistical

distribution. For convenience, a normal distribution is

used for this. The difference between additional and refer-

ence varieties is that for each additional variety, a fixed

variety effect must be specified, whereas for reference

varieties, only a common variety effect and an associated

variance must be specified.

At this stage, it is instructive to go through the differ-

ent steps in the statistical simulation model for a hypo-

thetical small experiment. Suppose a GM plant, its

comparator and three reference varieties are to be com-

pared in a randomized block experiment with 2 blocks. A

zero-inflation Poisson distribution is used with the fol-

lowing parameters for the varieties:

Table 2. Elements of the statistical simulation model.

Element Possible choices

Distribution of counts Poisson, overdispersed Poisson, negative binomial, Poisson-lognormal, binomial, betabinomial, binomial-logitnormal

Excess-zero counts No/yes

Design Completely randomized, randomized blocks, number of replications

Additional varieties Number of additional varieties or treatments in addition to the GM plant and its comparator

Reference varieties Number of reference varieties which represent a population

Trial Single trial, multiple trials, site 9 year trials

Measurement Single time point, repeated measures (constant, linear or quadratic in time, autocorrelation)

Parameters Parameter values for all the count distributions, for example, a mean and an excess-zero probability for each variety

1274 ª 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Statistical Simulation Model for ERA P. W. Goedhart et al.



Variety

Effect

count

Variance

count

Effect

zero

Variance

zero

GM plant 0.4 – �0.3 –

Comparator 0.5 – �0.2 –

Reference

varieties

1 1 �0.8 0.5

First the count effect on the log scale of the three refer-

ence varieties is drawn from a normal (1,1) distribution;

suppose that this results in random draws 0.8, 0.9 and

1.2. Secondly, the excess-zero probability effect on the

logit scale for the reference varieties is drawn from a

normal (–0.8, 0.5) distribution; suppose that this results

in –1.2, –0.9 and –0.6. Furthermore, assume that the

between block variance for the counts equals 0.1 with

random draws �0.4 and 0.1 for the two blocks and that

the between block variance for the excess-zero probabili-

ties equals 0.01 with random draws �0.1 and 0.2. The

mean count l and excess-zero probability d for every plot

in the experiment are then given by

Variety l Block 1 l Block 2 d Block 1 d Block 2

GM plant exp

(0.4–0.4)

exp

(0.4 + 0.1)

logit�1

(�0.3–0.1)

logit�1

(�0.3 + 0.2)

Comparator exp

(0.5–0.4)

exp

(0.5 + 0.1)

logit�1

(�0.2–0.1)

logit�1

(�0.2 + 0.2)

Reference 1 exp

(0.8–0.4)

exp

(0.8 + 0.1)

logit�1

(�1.2–0.1)

logit�1

(�1.2 + 0.2)

Reference 2 exp

(0.9–0.4)

exp

(0.9 + 0.1)

logit�1

(�0.9–0.1)

logit�1

(�0.9 + 0.2)

Reference 3 exp

(1.2–0.4)

exp

(1.2 + 0.1)

logit�1

(�0.6–0.1)

logit�1

(�0.6 + 0.2)

These values are then used to generate a count for each

plot. In a simulation study, typically many datasets are

simulated with the same settings. For each dataset, new

reference variety effects and new blocking effects are sim-

ulated, so only the bold values remain the same for each

simulated dataset.

Repeated measurements

Non-target organisms at the same experimental unit are

frequently sampled at different points in time, see for

example Head et al. (2005). The simulation model

assumes that time points are equidistant, that is, 1, 2, . . .,

T. There are many possible patterns in time. The simula-

tion model accommodates constant, linear or quadratic

time patterns, all on the transformed scale, and this can

be set separately for the mean of the counts and for the

excess-zero probability. Moreover, the repeated observa-

tions on the same experimental unit can be independent

or can be correlated. The mean lt of each variety at time

point t, assuming no block effects, is given by log

(lt) = fp(t) + vt, where fp(t) is a polynomial up to order

p = 2. The extra random effect vt specifies the correlation

between repeated measures. Absence of a time effect is

simply given by f0(t) = b0, a linear time effect by

f1(t) = b0 + b1t and a quadratic time effect by

f2(t) = b0+b1t+b2t
2. An alternative parameterization for

the second-order polynomial with more meaningful

parameters is given by f2(t) = bmax � (t �bopt)
2/(2btol),

where the minimum or maximum bmax is attained for the

optimal time point bopt and the parameter btol represents
the width of the quadratic curve, also called the tolerance.

This latter parameterization is used in the simulation tool.

For a positive tolerance, the parabola has a maximum,

while for a negative tolerance, it has a minimum. The

vector of random effects v = (v1, . . ., vT) is assumed to

follow a multivariate normal distribution, that is,

v�MNð0; r2vVÞ where V is a T x T symmetric correlation

matrix. The simulation tool implements three options for

the random effects:

1 No extra variability as given by r2v ¼ 0.

2 Equal correlation across time by setting Vkk = 1 and

Vkl = q for k 6¼ l

3 Autoregressive correlation across time by setting

Vkl = q|k�l|

Note that the second and third option involves an

overdispersion mechanism. Consequently, an equal corre-

lation across time with q = 0 combined with the Poisson

distribution is equivalent with the Poisson-lognormal dis-

tribution with no extra variability across time. A combi-

nation with, for example, the negative binomial

distribution however involves two levels of overdisper-

sion. The simulation tool requires specification of the b
parameters for the GM plant and its comparator and also

for the additional varieties. When excess-zeros are desired,

a different set of b parameters must be specified for the

excess-zero probability model. For the reference varieties,

each b parameter is drawn from a normal distribution

with specified mean and variance.

Multiple trials

Multiple field trials across environments fall into two

main classes. One in which there is no further structure

across trials, for example, when trials are conducted at

different sites, and secondly, when the trials follow a

site 9 year structure. In the first case, there might be ran-

dom trial effects such that trials will vary in their level of

response without affecting differences between varieties.

This is in addition to random block effects within trials.

In the second case, experiments, carried out at different

sites, are replicated for a limited number of years. Then,
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random site and random year effects are conceivable as

well as a random site by year interaction effect. Note that

these random effects are added to the other effects on the

transformed (log or logit) scale.

In addition to additive multiple trial effects on the

transformed scale, variety effects might be different from

trial to trial, from site by site or from year to year. This

can be termed genotype by environment interaction. This

interaction can be accommodated by additional random

effects which operate on variety effects. Instead of a fixed

variety effect, for e.g. the GM plant, in each separate trial,

the variety effect is drawn from a normal distribution

with some mean and variance. For the reference varieties,

there are two stages of simulation. In the first stage, a ref-

erence mean, say M, for the trial is drawn from a normal

distribution with specified mean and variance. In the sec-

ond stage, the effects of the reference varieties in that spe-

cific trial are simulated from a normal distribution with

mean M and some other specified variance. Similarly for

site 9 year trials, three variance components can be dis-

tinguished for every variety effect. In case of repeated

measurements with say a quadratic time effect, all the

time effect b parameters have their associated variance

components and many parameters need to be specified.

Moreover, the same statistical model can be specified for

the excess-zero probability.

Examples of Simple Simulations

The simulation model was implemented in a software

tool, available as Supplementary Material, and was used to

perform a series of simulations to demonstrate various

aspects which can be studied by means of the tool. To this

end, single, completely randomized trials were simulated

to assess properties of statistical difference and equivalence

testing. In addition to the GM plant and its comparator,

one additional variety was included in every simulation

and the simulated response was a count. The mean of the

comparator and the additional variety was assumed to be

equal to say l, and the mean of the GMO is denoted by

hl such that h is the multiplicative difference between the

GM plant and the comparator. The following levels of

replication N were employed: N = 4, 6, 8, 10, 15, 20, 30

and 40. A two-sided test with a significance level of

a = 0.05 was used throughout. In each example, 1000

datasets were simulated for every parameter combination.

Power of difference test for the negative
binomial distribution

The power of a likelihood ratio test for the difference

between a GM plant and its comparator was studied.

Data were simulated according to the negative binomial

distribution. All combinations of the following values

were used:

l 1, 2, 5, 10, 20, 40

h 1, 1.2, 1.4, 1.6, 1.8, 2.0

x 0.25, 0.5, 1

The negative binomial distribution was fitted to each

dataset, first under the restriction that the mean of the

GMO equals the mean of the comparator and secondly,

without this restriction. A likelihood ratio test statistic is

then given by twice the difference between the log likeli-

hoods of the two models. The large sample distribution

of this test statistic is v21, and this distribution was used

to calculate P values. The (simulated) power of the differ-

ence test is then given by the fraction of the 1000 simu-

lated datasets for which the null hypothesis of no

difference is rejected. Examples of resulting power curves

are given in Figure 3. The number of replications

required to detect a multiplicative difference h = 2

between the mean of the GM plant and the comparator

with probability 0.80 is given in Table 3 for the various

values of l and x. These values were interpolated from

the values of N which are used in the simulation. As

expected, the power is larger when there is less overdis-

persion (smaller values of x) and when the mean of the

distribution is large.

Sensitivity analysis for the negative
binomial distribution

The true underlying distribution of field count data is

generally not known. Furthermore, especially for small

samples, it is difficult to discriminate between the various

statistical distributions. To assess the sensitivity to the

Figure 3. Power of a likelihood ratio difference test with a = 0.05

for the negative binomial distribution with dispersion parameter x, a

mean l for the comparator and a mean hl for the GM plant for

replication levels N = 6 (black), 10 (red), 20 (green), and 40 (blue).
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assumed distributional form, each simulated negative

binomial dataset was also analyzed by two alternative

models. The first alternative employs the quasi-Poisson

approach in which the likelihood ratio test was scaled by

the mean deviance under the full model, whenever this

mean deviance is larger than 1. The second alternative

first log transforms the count data, after the addition of

0.5, whenever there is at least one zero in the data, fol-

lowed by an analysis of variance. Examples of power

curves for replication N = 40 for the three models are

given in Figure 4. This seems to suggest that the power of

the negative binomial and the quasi-Poisson analysis are

very similar and that the power of the log-transform

approach is somewhat smaller especially for the combina-

tion of a large mean l and a large dispersion parameter x.

Properties of equivalence test for the
Poisson distribution

Properties of the TOST approach to equivalence testing

were assessed for count data which were simulated

according to the Poisson distribution. The null hypothesis

of non-equivalence is rejected in favor of equivalence

when the confidence interval completely lies in the inter-

val determined by fixed lower and upper equivalence lim-

its. The same simulation setting as in the first simulation

was used However, as the Poisson distribution was

employed to simulate data there is no over dispersion.

Hypothetical equivalence limits of ½ and 2 were

employed to perform equivalence testing. A 95% likeli-

hood ratio confidence interval for the ratio of the GMO

mean and the comparator mean was calculated for each

simulated dataset. The number of times this interval lies

within the equivalence interval (½, 2) can then be

counted. As an example, the confidence interval for 40

simulated datasets is given in Figure 5 with l = 5 for

both the GMO and the comparator, so h = 1, and for

various values of the number of replications N. In this

case, the GMO and comparator have equal means and are

thus theoretically equivalent. However, for small numbers

of replications, the confidence intervals frequently cross

the equivalence limits implying that the null hypothesis of

non-equivalence is not always rejected.

The number of replications required to detects a quo-

tient of d between the GM plant and its comparator, as

well as the number of replications required to reject the

null hypothesis of non-equivalence with equivalence limits

of ½ and 2 is given in Table 4. This clearly shows the

asymmetry in the requirements for a difference test and

an equivalence test. As the multiplicative difference h
increases, the number of replicates for a difference test

decreases, while those for an equivalence test increases.

The effect of excess-zeros

To evaluate the effect of excess-zeros on the power of the

ordinary likelihood ratio test, a separate simulation with

the excess-zero negative binomial distribution was exe-

cuted. Again, a single trial without blocking with a single

measurement was assumed. Furthermore, a multiplicative

difference of h = 2 was used between the GM plant and

the comparator. The excess-zero probability was set to

d = 0, 0.1, 0.2 and 0.5. The mean (1�d)l of the excess-

zero distribution was set to 1, 5 and 40 ensuring that the

means of the distributions are identical for different val-

ues of d. The data were analyzed with the negative bino-

mial distribution as if there were no excess-zeros. The

power for different levels of replication is given in

Figure 6. This indicates that for small means and small

excess-zero probabilities, the power is not much affected.

However, for larger means, there can be a considerable

decline of the power. For an excess probability of d = 0.5

and larger means, the resulting distribution has a spike at

zero in combination with larger values with not very

Figure 4. Power of a likelihood ratio difference test with a = 0.05

for negative binomial data with dispersion parameter x, a mean l for

the comparator, and a mean hl for the GM plant for replication level

N = 40 when analyzed employing a negative binomial model (black),

a quasi-Poisson model (red), and a log transformation (green).

Table 3. Number of replications needed to obtain a significant differ-

ence test with probability 80% when the quotient of the mean of the

GMO and the comparator equals Θ = 2 for data which have a nega-

tive binomial distribution with mean l for the comparator, mean Θl

for the GM plant, and dispersion parameter x.

x l = 1 l = 2 l = 5 l = 10 l = 20 l = 40

0.25 29 21 13 10 9 9

0.50 ≥40 27 21 19 17 16

1.00 ≥40 ≥40 37 35 33 32
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much in between. In such a situation, the estimate of the

dispersion parameter becomes very large so as to “catch”

both the zeros and the larger observations. Consequently,

the distinction between the means of the comparator and

the GMO disappears resulting in very low power values.

In such a case, the data should be analyzed by means of

an excess-zero distribution.

Repeated measurements

In field studies, observations on the same experimental

units are frequently carried out on different points in

time. The question then arises whether it is more fruitful

to increase the number of observations in time or to

increase the number of experimental units to achieve a

certain power. Consider the situation where the mean

count of a species follows a second-order polynomial on

the log scale with a maximum l at t = 0 and a value of

0.6l at t = � 7 days. This defines a second-order polyno-

mial on the log scale with parameters bopt = 0,

btol = 47.96 and bmax = log(l). According to the polyno-

mial, the mean count at t = � 14 days equals 0.13l. Data
were simulated with the Poisson-lognormal model with a

dispersion parameter x = 0.25. This was carried out for

the situation in which the comparator has a maximum

mean count of l and the GM plant a maximum of 2l, so
h = 2. Three situations are simulated: a) a single observa-

tion for each experimental unit at t = 0, b) repeated

observations at t = �14, �7, 0, 7 and 14 assuming that

these observations are independent and c) repeated obser-

vations at the same five points in time but now assuming

an autoregressive correlation across time for the five ran-

dom effects on the log scale with correlation q = 0.8.

Independent observations in time are included as a limit-

ing case because in practice, it is unlikely that repeated

observations on the same experimental unit are indepen-

dent. In cases b) and c), observations on the five time

points are summed for every experimental unit, and in all

cases, the negative binomial distribution, which has the

same variance function as the Poisson-lognormal, was

used for analyzing the data. The power curve of the

difference test for various replication levels is given in

Figure 7. For l = 1, there is a large benefit of repeated

measurements for both the independent and the corre-

lated counts in time. This benefit becomes smaller for lar-

ger l for the correlated counts, possibly to a point that it

is more efficient to increase the replication level rather

than sampling at different points in time. This will how-

ever also depend on the size of the correlation. Only a

minority of the papers listed in Table 1 explicitly consid-

ered this issue in analyzing data from field experiments.

Figure 5. 95% likelihood ratio confidence

intervals for the ratio of the Poisson means of

the GM plant and the comparator when the

underlying mean of both is l = 5 and various

numbers of replication N. The red vertical lines

denote the artificial equivalence limits set at

1/2 and 2.

Table 4. Number of replications needed to obtain a significant differ-

ence test or to reject the hypothesis of non-equivalence with limits ½

and 2, with probability 80% when the quotient of the mean of the

GMO and the comparator equals Θ for data which have a Poisson

distribution with mean l for the comparator and mean Θl for the

GM plant.

Θ l = 1 l = 2 l = 5 l = 10 l = 20 l = 40

Replications for Difference test, Θ

1.0 – – – – – –

1.2 ≥40 ≥40 ≥40 ≥40 22 12

1.4 ≥40 ≥40 24 13 6 ≤4
1.6 ≥40 28 12 6 ≤4 ≤4
1.8 36 18 7 ≤4 ≤4 ≤4
2.0 24 12 5 ≤4 ≤4 ≤4

Replications for Equivalence test, Θ

1.0 ≥40 20 8 5 ≤4 ≤4
1.2 ≥40 26 11 6 ≤4 ≤4
1.4 ≥40 ≥40 20 10 5 ≤4
1.6 ≥40 ≥40 ≥40 23 12 6

1.8 ≥40 ≥40 ≥40 ≥40 ≥40 23

2.0 – – – – – –
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The confidence interval for the difference parameter on

the log scale was used to perform equivalence testing. The

number of replications required to reject the null hypoth-

esis of non-equivalence with equivalence limits of 1/3 and

3 is given in Table 5. This also shows that, for the corre-

lation case, the advantage of multiple sampling times

becomes smaller as the mean increases.

Discussion

This paper describes a general framework for simulating

data typically encountered in environmental risk assess-

ment of genetically modified plants. It focuses on field

testing of GM plants to assess and compare their poten-

tial adverse effects on non-target organisms. Based on

such field trials, the assessment includes the use of statis-

tical difference and equivalence testing. It is important to

know the statistical properties of such tests, for example,

the power and robustness of a test and whether the test

has the correct significance level. The EFSA guideline

(EFSA, 2010) for environmental risk assessment of GM

plants for instance requires that each field trial should

have sufficient replication to be able to yield a stand-

alone analysis if required. Such and other statistical issues

related to the assessment can best be researched by means

of a statistical simulation model.

Limits of concern are required for equivalence testing,

but these may be difficult to specify for NTO experi-

ments. They can of course be set to a fixed value by

authorities, such as a 20% increase or decrease (Hothorn

and Oberdoerfer, 2006), but this remains largely arbitrary.

Alternatively, a set of reference varieties can be included

in the same comparative experiment to allow comparison

with the GM plant grown under the same conditions

(van der Voet et al., 2011). The natural variation, in, for

example, counts of NTOs, between the reference varieties

can then be used to set limits of concern.

The simulation model described in this paper can be

used to generate data for various endpoints having

Figure 6. Power of a likelihood ratio difference test with a = 0.05 for negative binomial data with overdispersion parameter x = 0.25 and

additional excess-zeros with probability d = 0 (black), 0.1 (red), 0.2 (blue), and 0.5 (green). The comparator has mean l(1 � d), and the GM plant

has a mean of 2l(1 � d).

Figure 7. Power of a likelihood ratio difference test for Poisson-lognormal data with overdispersion parameter x = 0.25 and a single observation

(black), the sum of 5 independent observations (red), and the sum of 5 dependent observations (blue). The mean of both the comparator and the

GM plant follows a quadratic polynomial on the log scale with a maximum mean count of l for the comparator and 2l for the GM plant (see

text).

Table 5. Number of replications needed to reject the hypothesis of

non-equivalence with limits 1/3 and 3, with probability 80% using a

two-sided test for the repeated measurements simulation, see text.

Maximum mean l

Single

observations

Multiple

dependent

Multiple

independent

1 ≥40 ≥40 39

2 ≥40 33 23

5 39 25 14

10 30 20 10

20 26 20 9

40 24 19 8
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different statistical distributions. Typical environmental

data of non-target organisms are counts or presence/

absence data. The basic distribution for counts is the

Poisson distribution, while presence/absence data are

commonly modeled by the binomial distribution. Taylor’s

power law (Taylor, 1961) suggests that overdispersion,

relative to the Poisson distribution, is likely to be normal

in environmental studies. Statistical distributions for this

phenomena are the overdispersed Poisson, negative bino-

mial and Poisson-lognormal distribution for counts; these

have much wider tails and also a larger zero probability.

Likewise, overdispersed distributions for binomial data

are the beta-binomial and the binomial-logitnormal dis-

tribution, which seem to be quite similar for a wide range

of parameter values. In addition to overdispersion,

excess-zeros might frequently be encountered especially

for rather rare species (Cunningham & Lindenmayer,

2005). Failure to account for this in the analysis may

result in biased estimation of ecological effects (Sileshi,

2008). The simulation model therefore also addresses

zero-inflation for every distribution just described.

Field trials for environmental risk assessment may be

too small to discriminate between the various statistical

distributions. For example, a large number of zeros can

be due to structural zeros and thus zero-inflation or can

be due to heavy clumping of individuals which gives rise

to a negative binomial distribution with a large dispersion

parameter. The simulation model can be used to assess

the robustness of statistical models to digressions from

the model. For instance, an analysis according to Taylor’s

power law, or possible an analysis of log counts using the

normal distribution, might be a good comprise for the

various overdispersed count distributions. This can also

be researched by means of the simulation model.

In many experiments, non-target organisms are sam-

pled at different points in time. The simulation model

accommodates this by the option to specify a constant,

linear or quadratic pattern in time on the log- or logit-

transformed scale. Moreover, repeated measures at the

same plot might exhibit autocorrelation which can be

modeled by a random effect with equal correlation across

time or by an autoregressive process. This gives the

opportunity to study various endpoints such as the

summed counts over a specified period of time, the time

of first occurrence of a species, the time at which maxi-

mal abundance of a species occurs, or even the repeated

measures themselves.

Genotype by environment interaction is an important

issue in the admission of GM plants. In the European

context, the EFSA guideline (EFSA, 2010) also focuses on

the receiving environment of the GM plant, assuming

that different bio-geographical zones, in terms of meteo-

rological, ecological and agricultural conditions, may

comprise different risks of growing GM plants. To

develop appropriate statistical methods to handle geno-

type by environment interaction in studies over multiple

bio-geographic regions and under varying agronomical

conditions, a simulation tool is indispensable. The inter-

action is accommodated by the simulation model by

additional random effects which operate on variety

effects. Instead of a fixed variety effect, for e.g. the GM

plant, in each separate trial (or environment), the variety

effect, on the transformed scale, is drawn from a normal

distribution with some mean and variance. This ensures

that the difference between the GM plant and its compar-

ator does have a common basis across trials, but might be

varying from trial to trial. As an alternative, the simula-

tion model also caters for a site by year interaction in

which the “environments” are now structured by sites

and years.

All these elements are implemented into a single com-

puter program which can handle non-normal distribu-

tions for counts and absence/presence data possibly with

excess-zeros, accommodates reference varieties in addition

to the GM plant and its comparator, employs completely

randomized or randomized block experiments, enables

genotype by environment interaction by adding random

variety effects, and finally repeated measures in time fol-

lowing a constant, linear, or quadratic pattern in time

possibly with some form of autocorrelation. The com-

puter program is available as Supplementary Material to

this paper.

Although the tool is quite comprehensive, there are

certain restrictions. It is not possible to define different

dispersion parameters for different varieties or for differ-

ent trials. This might be useful when one would like to

keep the coefficient of variation constant across varieties

rather than the dispersion parameter. Simulation by

means of Taylor’s power law is not implemented as there

is no distribution associated with this law. In the current

simulation model, it is not possible to have a linear effect

in time for one variety and a quadratic time effect for

another variety, but if needed, pseudo-linear behavior can

be obtained by specific choices of the quadratic parame-

ters. Also the time dependence is assumed to be equal

across varieties. Split-plot experiments, with for example

agronomical treatments on the main plot level and varie-

ties on the subplot level, are not supported.

The tool was used to perform a series of simple preli-

minary simulations to demonstrate various aspects which

can be studied by means of the tool. It is shown that the

tool can be used for a prospective power analysis for both

difference testing and equivalence testing. A simple sensi-

tivity analysis seems to imply that, for simple experi-

ments, the assumed distributional form may not be very

critical. The effect of a small proportion of excess-zeros
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might be small when the mean count itself is also small.

Finally, it appears that the benefit of repeated measures,

assuming autoregressive correlation in time, becomes

smaller when the mean increases.

Based on the simulation model as described in this

paper, further work is needed to develop a protocol for

prospective power analysis when designing field experi-

ments for environmental non-target effects of GM plants.

Requiring the use of such a protocol could avoid litera-

ture reports where the conclusion of non-significant dif-

ferences between GM and non-GM plants is not

accompanied by a report on the statistical power of the

field experiment.
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