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a b s t r a c t

Exercise has been shown to have positive effects on the brain and behavior throughout
various stages of the lifespan. However, little is known about the impact of exercise on
neurodevelopment during the adolescent years, particularly with regard to white mat-
ter microstructure, as assessed by diffusion tensor imaging (DTI). Both tract-based spatial
statistics (TBSS) and tractography-based along-tract statistics were utilized to examine
the relationship between white matter microstructure and aerobic exercise in adolescent
males, ages 15–18. Furthermore, we examined the data by both (1) grouping individuals
based on aerobic fitness self-reports (high fit (HF) vs. low fit (LF)), and (2) using VO2 peak as
a continuous variable across the entire sample. Results showed that HF youth had an over-
all higher number of streamline counts compared to LF peers, which was driven by group
differences in corticospinal tract (CST) and anterior corpus callosum (Fminor). In addition,
ractography VO2 peak was negatively related to FA in the left CST. Together, these results suggest that
aerobic fitness relates to white matter connectivity and microstructure in tracts carrying
frontal and motor fibers during adolescence. Furthermore, the current study highlights the

importance of considering the environmental factor of aerobic exercise when examining

adolescent brain developm
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1. Introduction

The adolescent brain undergoes significant changes
(Giedd et al., 1996, 1999; Dahl, 2004; Casey et al., 2008),
and this period of neurodevelopment may be particularly
sensitive for environmental factors to impart their effects
on brain and behavior (Andersen, 2003; Masten, 2004;
Marco et al., 2011). Thus, it is important to identify envi-
ronmental factors that may influence typical adolescent
neurodevelopment. Aerobic exercise is defined as sus-
tained activity that stimulates heart and lung function,
resulting in improved bodily oxygen consumption, and
includes a number of physical activities, such as running,
walking, swimming, and cycling (Armstrong et al., 2007).
Given the widespread epidemic of an increasing sedentary
lifestyle for children and adolescents in Western countries,
it has become of increasing interest to understand how aer-
obic exercise may influence not only the body but also the
brain. In fact, aerobic exercise is an environmental factor
that has been shown to substantially impact gray matter
brain structure in children, adults, and elderly (for review
see Hillman et al., 2008; van Praag, 2009). Furthermore, we
have shown that aerobic exercise also relates to structure
and function in the adolescent brain (Herting et al., 2012b,
2013). However, no study to date has assessed if aerobic
fitness also relates to white matter microstructure during
adolescence. White matter is primarily comprised of glial
cells and myelinated neurons. Myelination leads to efficient
neural transmission throughout the brain, and it is thought
to contribute to enhanced processing speed and cognitive
function seen to occur during childhood and adolescence
(Casey et al., 2008). Thus, determining how exercise affects
white matter connectivity may be particularly impor-
tant for further understanding the developing adolescent
brain.

In recent years, MRI advancements, such as diffusion
tensor imaging (DTI), have allowed for in vivo assessment
of white matter microstructure and connectivity in the
human brain. DTI exploits characteristics of water diffu-
sion in the brain to make inferences about white matter
fiber microstructure (Basser, 1995). Primary metrics of DTI
include fractional anisotropy (FA), radial diffusivity (RD),
and axial diffusivity (AD). Together these variables charac-
terize different components of water diffusion, including
restricted, or anisotropic, diffusion (FA), diffusion along
the primary eigenvector (AD), and diffusion perpendicular
to the primary eigenvector (RD). These diffusion charac-
teristics are thought to reflect different neurobiological
components of white matter microstructure, with higher
FA and AD, and/or lower RD values, likely representing
increased axon caliber, myelination, and/or fiber organiza-
tion in white matter pathways (Beaulieu, 2002; Alexander
et al., 2007). Beyond quantifying diffusion patterns, DTI
data can also be utilized to perform tractography, a three-
dimensional modeling technique to estimate fiber tracts
(Mori et al., 1999). This technique provides useful informa-
tion by virtually separating different white matter tracts

for each individual, and can be combined with basic DTI
metrics (i.e., FA, RD, and AD) to provide individual volumes
of interest for the assessment of white matter microstruc-
ture (Colby et al., 2012).
tive Neuroscience 7 (2014) 65–75

While no study has examined these relationships in
youth, recent studies in healthy adults (≥21 years) and
elderly samples (≥55 years) suggest aerobic exercise may
influence white matter microstructural properties (Marks
et al., 2011; Johnson et al., 2012; Voss et al., 2012; Tseng
et al., 2013). However, one of the challenges facing aerobic
exercise studies is accurately quantifying aerobic fitness in
humans (Etnier et al., 2006; Armstrong et al., 2008). One
approach is dichotomizing individuals into groups based
on their history of aerobic training (frequency, type of
exercise, etc.). However, self-reports of aerobic training
can be biased by perception (Armstrong et al., 2008). Fur-
thermore, an important factor in exercise training is the
intensity with which the activity is performed. That is, aer-
obic quantity does not necessarily reflect aerobic intensity,
and an increase in an individual’s oxygen utilization of
the body requires high intensity training (Midgley et al.,
2006). In this regard, an individual’s ability to utilize oxy-
gen during exercise can be objectively measured by their
body’s maximum aerobic capacity, or VO2 peak (Armstrong
et al., 2007). To date, adult and elderly studies have utilized
both approaches. Positive relationships have been detected
between cardiovascular fitness (as indexed by VO2) and
FA in cingulum white matter (Marks et al., 2011), as well
as in portions of the corpus callosum carrying premotor
and prefrontal cortex fibers (Johnson et al., 2012). Simi-
larly, using training experience as a dichotomous variable,
a recent study showed higher FA in regions associated with
motor function in previous Master athletes versus age-
matched elderly controls (Tseng et al., 2013). However,
Voss and colleagues (Voss et al., 2012) recently imple-
mented an aerobic fitness intervention study to assess
how aerobic exercise affects white matter microstruc-
ture. Interestingly, no significant differences were seen
for FA, RD, or AD between groups, but greater improve-
ments in aerobic fitness predicted larger increases in FA
values in the prefrontal, parietal, and temporal cortex of a
walking intervention group, but not a control (stretching)
group (Voss et al., 2012). Together these findings reflect
that exercise modality is not only important, but that the
magnitude of fitness on white matter microstructure may
matter.

Thus, the goal of the current study was to examine how
aerobic fitness relates to white matter connectivity and
microstructure in male youth, ages 15–18. To accomplish
this, we employed DTI and assessed relationships between
aerobic fitness and WM microstructure using tract-based
spatial statistics and tractography-based along-tract statis-
tics. Furthermore, given the aforementioned limitations in
quantifying aerobic fitness (Etnier et al., 2006; Armstrong
et al., 2008), we examined the data by both (1) grouping
individuals based on aerobic exercise self-report (high fit
(HF) vs. low fit (LF)), as well as (2) examining the relation-
ship between VO2 peak and white matter microstructure
across the entire sample. Based on research in adults and
elderly (Marks et al., 2011; Johnson et al., 2012; Voss et al.,
2012), we hypothesized that HF youth would have higher

FA (driven by lower RD) in white matter tracts carrying
premotor and frontal cortical white matter fibers when
compared to their LF peers. Based on Voss et al. (2012),
we also hypothesized these relationships would be largely
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ccounted for by aerobic fitness (e.g. VO2 peak) and not
verall differences in general activity between the groups.

. Materials and methods

.1. Participants

Participants were recruited from the larger Portland,
regon community as part of an ongoing adolescent neu-

odevelopment study. Informed written parent consent
nd child assent were obtained for all participants, and
rocedures were approved Oregon Health & Science Uni-
ersity’s Institutional Review Board. Inclusionary criteria
or youth included being of the male sex, 15–18 years
f age, and meeting either high or low-fit criteria based
n aerobic physical activity self-report (see Section 2.2).
he male sex was specifically chosen, as sex differences
re reported in white matter microstructure across adoles-
ence (Szeszko et al., 2003; Silveri et al., 2006; Schmithorst
t al., 2008; Perrin et al., 2009; Herting et al., 2012a), as
ell as differences in activity levels (Riddoch et al., 2004)

nd aerobic capacity (Krahenbuhl et al., 1985). To elim-
nate potential sex-related confounds, we chose to first
xamine these relationships in male adolescents alone.
xclusionary criteria included current DSM-IV psychiatric
iagnoses [Diagnostic Interview Schedule for Children Pre-
ictive Scales (Lucas et al., 2001; Hoven et al., 2005)];
ignificant substance use (>10 lifetime alcoholic drinks or
drinks per occasion, >5 uses of marijuana, >4 cigarettes

er day, or any other drug use) [Brief Lifetime Custom-
ry Drinking and Drug Use Record (Brown et al., 1998)];
istory of psychotic disorders in biological parents [Fam-

ly History Assessment Module (Rice et al., 1995)]; major
edical condition or significant head trauma [Structured

linical Interview (Brown et al., 1994)]; left-handedness
Edinburgh Handedness Inventory (Oldfield, 1971)], or
rremovable metal. Youth and parents were each compen-
ated for completing behavioral tests and MRI scanning.
articipants in this study have been used in previously pub-
ished studies examining exercise and brain structure and
unction (Herting et al., 2012b, 2013).

.2. High and low-fit criteria based on self-report

A modified version of the Youth Adolescent Activity
uestionnaire (YAAQ) was administered to youth to assess
articipation in exercise over the past year. The YAAQ asks
etailed questions about participation in different types
f physical activity across all four seasons of the year, as
ell as the number of hours per week spent doing each

ctivity (Wolf et al., 1994). Both highly aerobic (e.g. basket-
all, soccer, track, swimming, etc.) and less aerobic physical
ctivities (e.g. baseball, weight-lifting, etc.) were included
n the YAAQ. Based on hours of highly aerobic physical
ctivity reported by the youth on the YAAQ, HF youth were
efined as those participating in an average of ≥10 h per
eek of regular, organized highly aerobic physical activity,

urposely performed to allow for improvement or mainte-
ance of aerobic fitness across one or more seasons, within
he past year. LF youth were defined as those individuals
hat had participated in ≤1.5 h of highly aerobic physical
ive Neuroscience 7 (2014) 65–75 67

activity per week over the past year. HF youth were asked
to participate in the study during the season in which
they were most physically active based on their YAAQ self-
report. These criteria were set forth, as significant increases
in aerobic fitness have been seen in adolescents who partic-
ipated in ≥10 h of aerobic exercise per week (Brown et al.,
1972; Weber et al., 1976; Lussier et al., 1977), and relatively
extreme categorizations (≥10 h versus ≤1.5 h per week)
maximize the likelihood of detecting group differences.

2.3. Objective measures of daytime activity levels and
aerobic fitness

Daytime activity levels were assessed via ambulatory
actigraphy using an Actiwatch (Mini Mitter Company,
Bend, OR, USA). The procedures for data collection and
scoring were implemented as previously published (Long
et al., 2008). Specifically, the watch was worn on the non-
dominant wrist for 24 h per day for 7 days to provide
continuous monitoring of subject’s activity levels (except
during the aerobic fitness test and MRI scan in which they
were instructed to remove it). Counts were stored on the
device in 1 min epochs, beginning on the subject’s first visit
to the lab. Data were extracted using Mini Mitter’s Acti-
ware software. Daytime activity scores that were obtained
from the data included mean activity level and peak activity
level. Mean activity level was calculated as the mean num-
ber of activity counts per 1 min epoch during each daytime
wake period. Peak activity level was calculated as the high-
est number of 1 min epochs per day.

Aerobic fitness was objectively measured by peak aero-
bic uptake (VO2 peak) for each participant, as it is the gold
standard method for assessing aerobic fitness (Armstrong
et al., 2007). VO2 peak was measured using the same
computerized indirect calorimetry system (VMax Series,
V6200 Autobox) during a Bruce Protocol (Bruce et al., 1973).
VO2 peak values were only considered valid if the partic-
ipant delivered maximal effort on the test, as defined by
one of the following the physiological criteria (Armstrong
et al., 2008): (1) oxygen consumption remained at a steady
state despite an increase in workload, as evidenced by
a plateau in oxygen consumption, (2) heart rate reached
≥200 beats per minute, (3) the respiratory exchange ratio
was ≥1.0; and/or the subjective criteria of reporting a 10
on the perceived exertion scale. Lean body mass (LBM) was
determined just prior to aerobic testing by conducting a
bioelectrical impedance test on each subject using the Body
Composition Analyzer (Model 310e; Biodynamics Corp.),
allowing for peak oxygen consumption to be expressed in
mL/kg LBM/min.

2.4. Lifestyle assessment

In physical fitness studies, there is often concern that
other non-exercise related factors might account for group
differences that may coexist with exercise. In the current
study, we assessed these variables, and to the best of our

ability, matched groups. Groups were assessed for general
intelligence [IQ; 2-subtest version of the Wechsler Abbrevi-
ated Scale of Intelligence (Wechsler, 1999)], socioeconomic
status (SES) [Hollingshead Index of Social Position and
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household income (Hollingshead, 1975)], body mass index
(BMI) [Center for Disease Control and Prevention Child and
Teen Calculator (Center for Disease Control, 2011)], puber-
tal status [Pubertal Development Scale (PDS) (Petersen
et al., 1988)], personal lifestyle habits involving nutrition,
safety, relaxation, health promotion, and substance use
[Revised Personal Lifestyle Questionnaire (PLQ) (Mahon
et al., 2003)], and extracurricular activities [number, fre-
quency, and type].

2.5. Imaging acquisition and preprocessing

Images were acquired on a 3.0 Tesla Siemens Magne-
tom Tim Trio system (Siemens Medical Solutions, Erlangen,
Germany) with a twelve-channel head coil. Whole-
brain, high-resolution structural anatomical images were
acquired in the sagittal plane using a T1 weighted
MPRAGE scanning sequence (TI = 900 ms, flip angle = 10◦,
TE = 3.58 ms, TR = 2300 ms, acquisition matrix = 256 × 240,
resolution = 1 mm3). Diffusion-weighted images (DWI)
were acquired oblique to the AC–PC plane using a
high-angular resolution echo planar imaging sequence
(TR = 9500 ms, TE = 95 ms, field of view = 240 mm2, 72 slices,
slice thickness = 2 mm). Gradient encoding pulses were
applied in 30 directions with a b-value of 1000 s/mm2, 2
diffusion-weighted acquisitions were collected, with 6 b0
(non-diffusion weighted) images per acquisition.

Each raw diffusion weighted acquisition for each subject
was preprocessed separately according to standard proto-
cols available in FSL (http://www.fmrib.ox.ac.uk/fsl) and
TrackVis (http://www.trackvis.org). Briefly, eddy current
effects, magnetic field inhomogeneities, and head motion
were corrected using FMRIB’s Diffusion Toolbox and Utility
for Geometrically Unwarping EPIs (Jenkinson, 2003). Affine
registration was applied to align the corrected DWI data
to the averaged b0 volume for each run. Using FSL, a six-
parameter tensor model of diffusion was then fit to the
raw data to give voxelwise maps of the 3 principle diffu-
sion directions, as well as the magnitudes of diffusion along
these three axes.

2.6. Tract-based spatial statistics (TBSS)

Tract-based spatial statistics (TBSS, version 1.1) was uti-
lized to conduct voxel-wise analyses (Smith et al., 2006,
2007). First, individual FA maps from the 2 DTI runs were
aligned and averaged for each subject. Next, using indi-
vidual’s averaged FA maps, a common registration target
image was identified from the data and affine aligned
to standard MNI space. Each participant’s FA map was
then nonlinearly registered to this common target using
FMRIB’s Non-linear Image Registration Tool (Andersson
et al., 2007). Aligned FA images were averaged to create
a group-wise mean FA map and a white matter skele-
ton, representing only the major tracts common across all
participants. A mean FA threshold of 0.3 was applied to

the white matter skeleton to reduce partial volume effects
and each participant’s aligned FA image projected onto the
white matter skeleton to run voxelwise group-level statis-
tics.
tive Neuroscience 7 (2014) 65–75

2.7. Tractography and along-tract statistics

Whole-brain brute-force, atlas-based tractography
was performed in Diffusion Toolkit v0.6 (http://www.
trackvis.org/dtk), using the previously published Fiber
Assignment by Continuous Tracking (FACT) algorithm
(Mori et al., 1999). This process generates deterministic
streamlines by iteratively moving from voxel to voxel
along the direction of maximal diffusion, while using
the following constraints: (1) a whole-brain mask, (2)
an FA threshold of 0.2 to prevent spurious fibers, and
(3) a tract-dependent turning angle threshold of 60◦, to
prevent biologically implausible fibers. Successful tracts
were defined as those with ≥1 streamline. Atlas-based
white matter tracts were identified using a multi-ROI
approach established by Wakana et al. (2007). This
included performing a twelve-mode affine transformation
to co-register the subjects’ DTI images to standardized
(MNI) space, applying white matter atlas-based ROIs, and
assigning fibers that intersected these ROIs to a given
white matter tract. The atlas-based ROIs were based on
Wakana’s standardized dataset and were identical for
each subject. Fourteen atlas-based white matter tracts
were used for the current study, including: forceps major
(Fmajor), forceps minor (Fminor), as well as the arcuate
fasciculus (AF), anterior thalamic radiations (ATR), corti-
cospinal tract (CST), and inferior fronto-occipital fasciculus
(IFO), inferior longitudinal fasciculus (ILF), and uncinate
fasciculus (UNC) for each hemisphere (right = R; left = L).

The along-tract mapping toolbox (Colby et al., 2012)
was utilized to assess FA at multiple locations parameter-
ized along the tract lengths. This toolbox was implemented
via MATLAB (MATLAB) and R software (Team, 2008), and
included: (1) reorientation of streamlines toward a com-
mon origin, (2) re-parameterization of streamlines with
cubic B-splines, (3) resampling of streamlines into a dis-
crete number of evenly spread vertices along the length of
the tract, (4) resampling the metric volume (e.g. FA map)
at these new streamline vertices, and (5) collapsing metrics
values (i.e. FA, RD, and AD) across streamlines at each group
of vertices to obtain mean scalar estimates (mean (M) and
standard error (SE)) along the length of the tract (Colby
et al., 2012). For tracts created, along-tract statistics were
then averaged across the successfully estimated white mat-
ter tracts from the 2 DTI runs for each subject (see Table 1
for break down by group). Importantly, there was no sig-
nificant difference in the number of successful tracts (i.e.
tracts with ≥1 streamline) mapped for each atlas-based ROI
between groups. However, some tracts were unpowered,
with as little as 50% of subjects from one or both groups
not having successful tracts for either DTI run (i.e. R and
L AF; R and L IFO). Thus, to eliminate unnecessary testing
on extremely low-powered fiber tracts, statistical analyses
were performed only for tracts for which at least 60% of
subjects from each group had successful tracking for both
DTI runs.
2.8. Statistical analyses

All statistical analyses for participant demographics
were carried out using PASW 18 (Chicago, IL) and R

http://www.fmrib.ox.ac.uk/fsl
http://www.trackvis.org/
http://www.trackvis.org/dtk
http://www.trackvis.org/dtk
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Table 1
Number of subjects with successful tracts. Tractography analyses were performed on two DTI runs per subject. Successful tracts were defined as those
with ≥1 streamline. For each tract of interest, the numbers of subjects are reported for successful and unsuccessful tracks generated, as well as the chi-
square (and its associated p-value) test for differences in the proportion of successful tracts between groups. Both = number of subjects with successful
tracts generated for one DTI runs; One = number of subjects with successful tracts generated for both DTI runs; None = number of subjects in which tracks
could not be generated for either DTI run. Note: Only tracts with ≥60% of subjects per/group with successful tracts for both DTI runs were utilized. Tract
abbreviations: see text (methods).

Tracts HF LF X2

Both One None Both One None

L AF 8 2 7 12 1 4 (2) 2.0, p = .38
R AF 8 4 5 11 2 4 (2) 1.3, p = .53
L ATR 17 – – 17 – – –
R ATR 17 – – 17 – – –
L CST 16 – 1 17 – – (1) 1.0, p = .31
R CST 15 1 1 17 – – (2) 2.1, p = .34
Fmajor 16 1 – 17 – – (1) 1.0, p = .31
Fminor 17 – – 17 – – –
L IFO 8 3 6 13 1 3 (2) 3.2, p = .20
R IFO 9 4 4 12 1 4 (2) 2.2, p = .33
L ILF 16 1 – 16 – 1 (2) 2.0 p = .37
R ILF 16 1 – 15 1 1 (2) 1.0, p = .60
L UNC 17 – – 17 – – –
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oftware (Team, 2008). Normality was verified on all vari-
bles, and transformations were used when appropriate.
hen data continued to violate normality, nonparamet-

ic tests were employed. Independent t-tests were used
o examine participant demographics, aerobic fitness,
aytime activity levels, BMI, as well as lifestyle differ-
nces between the two groups, whereas Pearson’s r was
sed to determine correlations between aerobic fitness
VO2 peak) and other theoretical demographic confounds,
ncluding PDS, SES, and daytime activity levels. Significant
roup differences or fitness-related correlations for any
emographic or lifestyle variables were then included as
ovariates in all further analyses. Furthermore, follow-up
nalyses, including daytime activity levels as a covariate
ere performed to address if general motor or activity lev-

ls contributed to the results.
TBSS data was analyzed using FSL’s randomize soft-

are (Smith et al., 2004). Models included general linear
egression, including group or VO2 peak as the independent
ariables, controlling for SES and puberty levels as covari-
tes, when appropriate. Statistical thresholding included
luster-based correction for multiple comparisons using
he default threshold-free cluster enhancement (TFCE) for
TI data as implemented within randomize (Smith et al.,
009).

Along-tract statistical analyses were performed using
software (Team, 2008). First, streamline number per

ach tract and hemisphere was examined using linear
ixed-effects (LME), with fixed between-subject effects

ncluding overall intercept, tract, hemisphere, and group
HF and LF), controlling for significant group differences in
ES and puberty, when appropriate. Next, cross-sectional
calar estimates obtained along a tract were examined

sing LME modeling for each tract and hemisphere,
ith fixed between-subject effects including overall inter-

ept, position along tract (dummy coded), group (HF and
F), and group by position interactions, controlling for
16 – 1 (2) 2.0, p = .37

significant group differences in SES and puberty. Similar
LME models were run using VO2 peak as a continuous
variable, rather than group, to more directly assess the
relationship between aerobic fitness and white matter. To
reduce family-wise Type 1 error rate, Bonferroni correc-
tion was applied to LME F-tests (p < .005 (.05/10 tracts)).
Furthermore, an analogous approach to FSL’s TFCE was
implemented in MATLAB to enhance the initial statistic
from each model using the intensity of the data point
and information from its neighboring voxels, followed
by applying a maximum-statistic permutation method to
the enhanced statistic to correct for multiple comparisons
(Smith et al., 2009). Specifically, the following algorithm
was applied in MATLAB:

TFCEi =
∑

(h, sh, 2sh, . . ., hmax) ∗ eiE ∗ hiH

with ‘i’ being the data (FA scalar value at one point),
‘h’ representing height of the statistic, and ‘e’ as the
neighborhood information surrounding that point (e.g.,
extent of the cluster). As suggested for white matter
(Smith et al., 2009), TFCE parameters used were E = 0.5
and H = 2. The maximum-statistic permutation included
permutating of the independent variable of interest, fit-
ting the model again, and recording the maximum statistic
across all comparisons. This process was repeated mul-
tiple times to empirically build up a distribution of the
maximum test statistic under the null, against which
the original results were compared to obtained corrected
p-values.

To better characterize white matter differences, FA,
AD and RD values were extracted for the significant
regions generated from the group by position tract

analyses. Independent t-tests or general linear regres-
sion were then performed to assess group differences
or VO2 peak relationships with AD and RD for these
regions.
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Table 2
Participant characteristics by group. Means and standard deviations unless otherwise noted. hrs/wk = hours per week. HF = high-fit and LF = low-fit, as
defined by self-report on the YAAQ.

Demographics HF LF

N 17 17
Age 16.6 (.8) 16.2 (.8) t(32) = 1.36, p = .19
% Caucasian 82.4 82.4
IQa 117.1 (11.8) 118.0 (8.1) t(26.1) = .26, p = .79
SESb 18.3 (5.9) 26.5 (12.9)* t(22.6) = 2.39, p = .03
Median household incomeb (thousands) 130 90h

Pubertyc 3.06 (.4) 3.3 (.3)* U = 80, z = 2.24, p = .026

Daytime activity levels and aerobic fitness
Mean activity leveld 435349.8 (95458) 373182.1 (95392.71) t(32) = −1.90, p = .07
Peak activity leveld 3711.4 (780.5) 3046.1 (589.91)** t(29.8) = −2.80, p = .009
Aerobic activity (hrs/wk over past year)e 11.3 (3.4) .26 (.5)** t(16.6) = 11.33, p < .001
Aerobic activity (hrs/wk in season scanned)e 12.6 (3.8) .23 (.5)** t(16.5) = 13.39, p < .001
VO2 peak (mL/kg LBM/min) 77.7 (10.5) 67.0 (7.4)** t(32) = 3.41, p = .002

Body composition
BMIf 21.6 (2.9) 22.4 (4.4) t(25.72) = .67, p = .51

Lifestyle
Nutritiong,h 12.0 (1.0) 12.4 (1.5) t(31) = .77, p = .45
Relaxationg,h 15.2 (2.2) 15.4 (2.2) t(31) = .22, p = .83
Health promotiong,h 13.7 (1.3) 13.0 (2.3) U = 117, z = .70, p = .51
Safetyg,h 14.2 (1.3) 15.0 (1.2) U = 86.5, z = 1.8, p = .07
Substance useg,h 11.6 (0.5) 11.3 (1.0) U = 122, z = .58, p = .63
Extracurricular activities

Frequency 4 (0) 3.5 (1.0) U = 110.5, z = 2.09, p = .25
Number 2.9 (1.3) 2.3 (1.3) U = 109, z = 1.28, p = .23

a Wechsler Abbreviated Scale of Intelligence.
b Hollingshead Index of Social Position; lower values reflect higher SES.
c Pubertal Development Scale.
d Actiwatch data.
e Youth Adolescent Activity Questionnaire.
f Body Mass Index.
g Personal Lifestyle Questionnaire.
h n = 16 due to missing data.

* Denotes p < .05.

** Denotes p < .01

3. Results

3.1. Participant characteristics

One participant’s parent (LF) chose not to disclose
total household income, and one subject (HF) did not
complete the PLQ, resulting in pairwise missing data for
these measures. Participant characteristics can be found
in Table 2. The groups were matched on age and IQ, and
displayed similar self-reports of lifestyle behaviors (nutri-
tion, relaxation, health promotion, safety, substance use,
BMI, frequency and number of extracurricular activities).
Mean activity levels and peak activity levels were higher
in HF compared to LF youth, although only peak activity
levels reached statistical significance. VO2 peak testing
was used to objectively measure aerobic fitness, and as
expected, was significantly different between the groups,
confirming better aerobic fitness in HF youth. Although
both groups came from households that made above the
national income average, the HF had an overall higher
SES (reflected by lower scores on the Hollingshead) and

median household income, as reported by their parents.
Self-report of pubertal maturation was also different
between the groups, with HF being less mature compared
to LF youth. A significant correlation was found between
VO2 peak and puberty (r(32) = −.36, p = .03). VO2 peak
did not significantly relate to SES (r(32) = −.21, p = .23),
mean activity levels (r(32) = .12, p = .51), or peak activity
levels (r(32) = .15, p = .39). To account for these associa-
tions, follow-up analyses were performed covarying for
SES and puberty in subsequent group-level analyses, as
well as covarying for puberty for VO2 peak regression
analyses.

3.2. TBSS

No significant voxel-based group differences in FA were
found between HF and LF youth, nor did aerobic fitness
(VO2 peak) predict FA values across the sample. These find-
ings were similar after controlling for SES and puberty
between groups, as well as covarying for puberty in VO2
peak analyses.

3.3. Along-tract statistics

For group analyses, models including covariates (SES

and puberty) showed that neither covariate significantly
related to FA in the 10 tracts of interest (all p’s > .05).
Furthermore, similar results were obtained with and with-
out including these covariates. Thus, to conserve power,
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ig. 1. Tractography streamline counts. The number of streamlines (±95%
ess streamlines compared to HF youth (post hoc group-by-tract interacti

hese variables were excluded from the final model. No
ignificant differences were seen for streamline counts
etween hemispheres within each group, but streamline
umbers did vary between tracts (Fig. 1). An overall sig-
ificant main effect of group was seen, with LF youth
aving significantly fewer streamlines than their HF peers
t = 6.10, df = 466, p = 2.27e−9). To further elucidate if group
ifferences in streamline number varied across the 10
racts, a follow-up post hoc LME was performed, with

xed effects including overall intercept, tract, group, and
group-by-tract interaction term. This analysis revealed

hat group differences in streamline count were signifi-
ant for only the CST (t = 2.17, df = 460, p = .03) and Fminor
ce interval) is shown for each group. *Denotes LF youth have significantly
lt, p ≤ .05).

(t = 2.17, df = 460, p = .03). Group differences in streamline
count remained significant after controlling for daytime
activity levels between the groups (p’s < 2.25e−6). After cor-
recting for multiple comparisons, there were no significant
group differences in FA for any of the 10 tracts of interest.

Aerobic fitness, as measured by VO2 peak did not relate
to total streamline number nor streamline counts for any of
the 10 tracts of interest (p’s > .12). However, mixed-effect
modeling results showed a significant negative relation-

ship between aerobic fitness and FA in the L CST (tract
positions 27 through 31) (Fig. 2). After controlling for day-
time activity levels in the model, aerobic fitness and L
CST FA findings remained significant for tract positions
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Fig. 2. Visualization of along-tract statistics for FA. Significant negative V
comparisons) overlaid on a representative geometry of the L CST tract (re
across the sample. (For interpretation of the references to color in this fig

28 through 31 (p’s < .05), whereas position 27 became a
trend (p = .059). Follow-up analyses showed that neither
RD nor AD significantly related to aerobic fitness on their
own (p’s > .21), suggesting aerobic fitness relates to both
decreased axial and increased radial diffusion in this region.

3.4. Exploratory comparison of left CST between TBSS
and along-tract statistics

Given that the negative L CST along-tract finding was
contrary to our hypothesis, we aimed to determine if this
result was spurious by performing a post hoc exploratory
examination of the uncorrected TBSS data. Thus, while
TBSS results did not reach statistical significance, we exam-
ined uncorrected data to determine if similar patterns
could be seen between aerobic fitness and microstructural
properties of the L CST, as detected by tractography
and along-tract data analyses. At a threshold of p < .05,
uncorrected for multiple comparisons, a similar negative
relationship was seen between VO2 peak and FA in the L
CST portion of the TBSS white matter skeleton (t = 3.34;
x = −29, y = −7, z = 17; 28 voxels). This comparison verifies
that the significant negative correlation seen in the L CST
using along-tract analyses is not merely an artifact of the
method.

4. Discussion

To our knowledge, the current study is the first to
examine how aerobic fitness relates to white matter
microstructure in youth. Using tractography and along-
tract statistics, our results showed HF youth had a greater
number of streamlines, especially in the CST and Fminor,
when compared to their LF peers. In addition, greater aer-

obic fitness, as indexed by higher VO2 peak, was related
to lower FA values in the L CST. Together, these findings
provide support that aerobic exercise relates to white mat-
ter structural connectivity during adolescence.
relationships with FA are shown in yellow (p < .05, corrected for multiple
epicts the negative relationship between FA in this region and VO2 peak

nd, the reader is referred to the web version of the article.)

Collapsed across the 10 defined tracts of interest, HF
youth had significantly greater streamline count per tract
compared to their LF youth. However, follow-up anal-
yses showed that these group differences were largely
driven by streamline numbers in the CST and the ante-
rior corpus callosum (Fminor). The CST is comprised of
projections of sensorimotor and motor neurons and car-
ries motor information to the spinal cord. Alternatively,
Fminor fibers connect lateral and medial frontal regions
via the genu of the corpus callosum. Given the length,
curvature, and degree of branching that occurs within a
fiber tract, the number of reconstructed streamlines does
not directly translate to fiber count (Jones et al., 2012).
However, lower streamline counts have been shown for
pathways affected by lesions following stroke (Schaechter
et al., 2008), suggesting tractography-based streamline
counts can also capture important structural information.
Thus, it is feasible that higher streamline counts in HF
youth may reflect better axonal organization or bigger fiber
bundles, which would ultimately lead to greater number
of streamlines in the CST and Fminor. This idea may be
supported by research showing that voluntary exercise
induces increases in axonal outgrowth in the spinal cord
in rodents (Molteni et al., 2004; Ghiani et al., 2007).

Despite group differences in streamline count, we did
not replicate previous findings showing positive relation-
ships between aerobic exercise and FA in frontal and motor
regions in adult and elderly samples (Marks et al., 2011;
Johnson et al., 2012; Voss et al., 2012; Tseng et al., 2013). In
contrast to our hypothesis, aerobic fitness predicted lower
FA values in the L CST across all subjects. The direction of
this relationship may seem surprising and initially counter-
intuitive. However, DTI indices are not selective markers of
specific neurobiological properties. That is, while in the lit-

erature lower FA values are often thought to reflect less
myelination or axonal organization, other tissue proper-
ties such as glial cell number and increases in the number
of crossing fibers may contribute to decreased FA in HF
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outh. In this regard, a recent animal study showed that
oluntary exercise increases oligodendrocytes, which are
he cells responsible for myelinating axons (Krityakiarana
t al., 2010). Furthermore, exercise has also been shown to
ecrease myelin-associated glycoprotein expression in the
pinal cord (Molteni et al., 2004; Ghiani et al., 2007). Given
hat inhibition of these myelin-associated glycoproteins
llows for more axonal outgrowth, it may be feasible that
erobic exercise could potentially lead to less axonal orga-
ization and/or crossing fibers, as indexed by lower FA
alues. Additional tractography studies in humans, as well
s empirical animal work regarding exercise-induced brain
hanges, are necessary to help confirm such possibilities.

While only indirect inferences can be made about the
nderlying tissue composition contributing to the current
ndings, the streamline differences between high and low
t-groups and VO2 peak associations with L CST FA are

n agreement with previous research showing aerobic fit-
ess to be related to white matter properties in motor and

rontal regions in adults and elderly. Together, these find-
ngs suggest that aerobic fitness may have a specific impact
n frontal and motor white matter at many stages across
he lifespan. That said, results found using VO2 peak as
continuous independent variable were not synonymous
ith those seen when splitting the sample into two groups

ased on self-report of aerobic exercise fitness. Again, the
urpose of examining both group (HF vs. LF) and VO2 peak
as to help clarify and better characterize how aerobic

xercise relates to white matter microstructure in ado-
escents. Notably, self-report may be a good indicator of
erobic exercise quantity, whereas VO2 peak may be influ-
nced more by aerobic intensity. For this reason, aerobic
xercise self-reports and VO2 peak, as well as each of their
ssociations with white matter microstructure, may not
how a 1-to-1 correspondence in adolescents. Differences
n results seen between VO2 peak and aerobic training
roups may stem from the differences in what each inde-
endent variable is able to capture about aerobic exercise
raining experience. Thus, more research is warranted to
etermine if perhaps the amount of aerobic exercise may
ead to thicker white matter axon bundles, whereas aer-
bic exercise intensity may have larger effects on axonal
utgrowth and glial cell numbers within whiter matter
egions.

ig. 3. Comparison of TBSS and along-tract statistics results. Visualization of un
eak and FA in the L CST of the white matter skeleton (voxelwise thresholded on
ive Neuroscience 7 (2014) 65–75 73

Overall, this study provides an important extension of
previous research on how aerobic exercise relates to brain
structure in adolescents. However, a number of limita-
tions must be mentioned. There is often concern that other
non-exercise, such as lifestyle factors that may coexist
with exercise, and/or non-aerobic motor behaviors, may
account for aerobic fitness findings. In the current study, we
assessed a number of these variables via the lifestyle ques-
tionnaire, including nutrition and health promotion, and
to the best of our ability, matched groups, as well as statis-
tically controlled for any remaining group differences (SES
and puberty). Furthermore, controlling for general daytime
activity levels, as objectively measured by actigraphy, did
not account for these relationships. However, the lifestyle
measures were brief, so it is impossible to entirely rule-
out non-exercise factors as potential confounds, as well
as possibility that these difference may be premorbid and
contribute to self-selection into aerobic exercise behaviors.
Nonetheless, the current cross-sectional preliminary find-
ings warrant the implementation of longitudinal aerobic
exercise intervention study to confirm the influence of
aerobic fitness on white matter microstructure in youth.
In addition, while tractography and along-tract mapping
have a number of advantages (spatial localization, creating
individualized tracts), there are limitations to these tech-
niques as well. In the current study, we tried to reduce
these methodological issues by performing analyses on two
DWI runs per subject and utilizing an additional whole-
brain voxelwise analytic approach (e.g. TBSS). Patterns in
the L CST were similar between the along-tract statis-
tics and TBSS results when left uncorrected for multiple
comparisons (Fig. 3), although the tractography and along-
tract statistics approach yielded more statistically robust
findings. However, tractography was not successful for a
large portion of subjects for two of the tracts (AF and IFO),
inhibiting our ability to assess FA along these pathways.
Although aerobic fitness effects could not be differenti-
ated from the null hypothesis when assessed in these
regions via the TBSS skeleton analysis, it is feasible that
we may have missed fully capturing the effect of aerobic

fitness through our inability to examine these regions with
along-tract statistics. Moving forward, using newer DTI col-
lection methods, such as high angular resolution diffusion
imaging acquisition schemes and image reconstruction

corrected TBSS data also revealed a negative relationship between VO2

ly; p < .05) that mirrored corrected along-tract statistics results.
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based on alternative models of diffusion, may be useful to
implement in future studies of aerobic exercise and white
matter to better accommodate these aforementioned lim-
itations of streamline-type tractography (Kuhnt et al.,
2013).

In summary, aerobic fitness relates to white matter con-
nectivity and microstructure in adolescent male youth.
Taken together with previous research, these findings sug-
gest aerobic exercise may impact brain structure in frontal
and motor regions, not only in adulthood and aging, but
also in adolescence. Moving forward it will be important to
clarify the functional implications for these associations,
as well as to replicate these preliminary findings using an
exercise intervention design to better infer causality. Given
previous work showing that aerobic exercise relates to
white matter microstructure in various age groups, future
research is also needed to determine if aerobic exercise
during each of these periods has long-lasting, additive
effects throughout the lifespan.
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