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Abstract

Recycling old drugs, rescuing shelved drugs and extending patents' lives make drug repositioning

an attractive form of drug discovery. Drug repositioning accounts for approximately 30% of the

newly US Food and Drug Administration (FDA)-approved drugs and vaccines in recent years. The

prevalence of drug-repositioning studies has resulted in a variety of innovative computational

methods for the identification of new opportunities for the use of old drugs. Questions often arise

from customizing or optimizing these methods into efficient drug-repositioning pipelines for

alternative applications. It requires a comprehensive understanding of the available methods

gained by evaluating both biological and pharmaceutical knowledge and the elucidated

mechanism-of-action of drugs. Here, we provide guidance for prioritizing and integrating drug-

repositioning methods for specific drug-repositioning pipelines.
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Teaser

Drug repositioning reuses old drugs for new indications. This article provides a guide for

understanding the existing drug-repositioning methods and customizing them into new

efficient drug-repositioning pipelines. A repositioned drug does not need the initial 6–9

years typically required for the development of new drugs, but instead goes directly to

preclinical testing and clinical trials, thus reducing risk and costs [1]. Repositioning or

repurposing drugs has been implemented in several ways. One of the well-known examples

is sildenafil citrate (brand name: Viagra), which was repositioned from a common
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hypertension drug to a therapy for erectile dysfunction [2]. Similarly, off-label use of FDA-

approved drugs for cancer medical practice is also popular. The National Comprehensive

Cancer Network (NCCN) estimates off-label use accounts for 50–75% of drugs or biologic

therapies for cancer in the USA [3]. It has been reported that 78% and 75% of patients with

breast or lung cancer, respectively received FDA-approved drugs, although 68% and 95% of

these drugs, respectively, were used for off-label indications not approved by the FDA [4].

Obviously, these examples were serendipitously identified and these repositioning strategies

lack guidance and information to support clinical decision.

Pharmaceutical companies rely on traditional drug discovery methods to seek repositioning

opportunities. Among the 75 agents (50 small molecules and 25 biologics) approved

between 1999 and 2008, 28 first-in-class small molecules were discovered by phenotypic

drug screening and 17 were identified by target-based methods [5,6], accounting for more

than 50% of the FDA-approved small molecules and biologics. Phenotypic drug-screening

approaches discover drug candidates from libraries serendipitously. Alternatively, target-

based methods improve the repositioning process by including known target information

into drug-repositioning studies.

Nevertheless, the low knowledge content of elucidated mechanisms for traditional drug-

repositioning methods makes it hard to satisfy unmet medical needs by successfully

repositioning a large number of existing or shelved drugs. Computational methods are able

to alleviate this problem by high-level integration of available knowledge and elucidation of

unknown mechanisms. These computational methods significantly improve the discovery

process in which new indications for a drug or new drugs for a disease can be identified.

They take advantage of the methods and tools available in chemoinformatics [7–9],

bioinformatics [10–14], network biology [15–17] and systems biology [18–20] to make full

use of known targets, drugs and disease biomarkers or pathways, thus leading to the

development of proof-of-concept methods and the design of clinical studies with accelerated

timelines. Accordingly, computational drug-repositioning methods can be classified into

target-based, knowledge-based, signature-based, pathway- or network-based, and targeted-

mechanism-based methods, as shown in Figure 1. These methods focus on different

orientations defined by available information and elucidated mechanisms, such as drug

oriented, disease oriented and treatment oriented. These computational drug-repositioning

methods enable researchers to examine nearly all drug candidates and test on a relatively

large number of diseases within significantly shortened time lines.

In recent years, the number of drug-repositioning methods has dramatically increased. It is

essential to better understand these existing methods and prioritize them based on specific

studies. Application of an efficient drug-srepositioning pipeline to a specific study needs

identification of feasible methods based on available information of the drugs or diseases of

interest. In this review, we link existing drug-repositioning methods with their integrated

biological and pharmaceutical knowledge and discuss how to customize a new drug-

repositioning pipeline for specific studies.
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Prioritize available drug-repositioning methods

Figure 1 is a top-down flowchart that we developed to better understand orientations,

integrated information types, categories and complexities of existing drug-repositioning

methods. We call this flowchart a lotus leaves flowchart (LLF). It enables better

understanding of repositioning methods from the top down while customizing new

repositioning pipelines from the bottom up. As an example, if one wants to reposition drugs

for an orphan disease, one needs to identify how much pharmaceutical or biological

knowledge is available for this disease and whether understanding the mechanisms of action

of repositioned drugs is necessary. There are several options to do such drug repositioning.

Option 1: when little information is available for the disease, phenotypic screening or FDA

off-label use would be the best option. Option 2: if there exists one protein biomarker for the

disease, target-based or knowledge-based methods should be prioritized for the study.

Option 3: if there is more disease information available, either knowledge-based or

signature-based methods can be deployed to integrate available disease pathways or disease

omics data (i.e., omics data generated from diseases) into the drug-repositioning process.

Lastly, option 4: if treatment omics data (i.e., omics data generated from drug treatment) are

available, it is possible to use signature-based or targeted-mechanism-based methods to

elucidate unknown targeted mechanisms, such as off-targets and targeted signaling

pathways.

It is easy to see that the development of an efficient drug-repositioning pipeline is a process

of tradeoff among purposes, methods and available information. Here, we introduce the

repositioning methods shown in the LLF to facilitate understanding the purpose, the

integrated information and the complexities of these methods. The LLF flowchart will be

helpful for scientists and researchers to better understand existing computational methods

and customize these methods into their own pipelines for drug-repositioning studies.

Blinded search or screening methods

Blinded drug-repositioning methods do not include pharmaceutical or biological information

and are less likely to help elucidate any mechanisms of action of drugs. Most of them

depend on serendipitous identification from tests aimed at specific diseases and drugs

[3,4,21]. The advantage of these methods, which include FDA off-label use and phenotypic

screening, is that they have high flexibility for application to a large number of drugs or

diseases. This explains why the phenotypic screening method was used in the discovery of

28 of 75 small molecules and biologics approved by the FDA between 1999 and 2008.

Target-based methods

Target-based drug-repositioning methods comprise in vitro and in vivo high-throughput

and/or high-content screening (HTS/HCS) of drugs for a protein or a biomarker of interest

[7–9] and in silico screening of drugs or compounds from drug libraries [7,22], such as

ligand-based screening or docking [23,24]. Compared with blinded methods, targeted-based

methods significantly improve the likelihood of drug discovery because most targets link

directly with the disease mechanisms. Integration of target information into the drug

repositioning process ensures a higher possibility of finding useful drugs compared with
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traditional blinded methods. The advantage of targeted-based methods, such as docking, is

that these methods enable researchers to screen nearly all drugs or compounds with known

chemical structure information (e.g., SMILES[LM1]) within a few days. This is why so

many pharmaceutical companies, including Genentech and Melior, have been using these

methods to find new indications.

Knowledge-based methods

Knowledge-based drug-repositioning methods are those applying bioinformatics or

cheminformatics approaches to include the available information of drugs, drug–target

networks [10–14], chemical structures of targets and drugs [14], clinical trial information

(adverse effects) [25,26], FDA approval labels [27], signaling or metabolic pathways [28],

and so on, into drug-repositioning studies. The information content of blinded and target-

based methods are poor and they cannot be used to identify new mechanisms beyond the

known targets. By contrast, knowledge-based methods incorporate known information into

predicting unknown mechanisms, such as unknown targets for drugs, unknown drug–drug

similarities and new biomarkers for diseases. The advantage of knowledge-based methods is

that they include a large amount of known information into the drug-repositioning process to

improve its prediction accuracy. For example, THOMSON REUTERS™ has used this

strategy to do drug repositioning based on its rich volumes of accumulated prior knowledge.

Moreover, these methods have been applied to repurpose known drugs to pediatric

hematology oncology. Blatt and Corey describe how the knowledge in the Harriet Lane

Handbook (HLH) of the Johns Hopkins School of Medicine (compiled based on perceived

interest to the general pediatric practitioners) and information acquired by searching

PubMed and Google.com might also be helpful to repurpose drugs for children [29].

Signature-based methods

Signature-based drug-repositioning methods make use of gene signatures derived from

disease omics data with or without treatments [30–37] to discover unknown off-targets or

unknown disease mechanisms. As the advancement of microarray and next generation

sequencing techniques speed up the generation of vast volumes of genomics data pertinent

for drug-repositioning studies, gene signatures can be used to discover unknown

mechanisms. One can easily access such genomics data in publicly available databases, such

as NCBI-GEO (http://www.ncbi.nlm.nih.gov/geo/), SRA [LM2](http://

www.ncbi.nlm.nih.gov/Traces/sra/), CMAP [38], and CCLE [39]. More details on these

databases are shown in Table 2. The advantage of signature-based methods is that they are

useful to uncover unknown mechanisms of action of molecules and drugs. Compared with

knowledge-based methods, signature-based methods involve more molecular-level

mechanisms, such as the significantly changed genes, by using computational approaches.

Pathway- or network-based methods

Pathway- or network-based drug-repositioning methods utilize disease omics data, available

signaling or metabolic pathways and protein interaction networks to reconstruct disease-

specific pathways that provide the key targets for repositioned drugs [15–17]. The advantage

of these methods is that they are helpful in narrowing general signaling networks from a
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large number of proteins down to a specific network with a few proteins (or targets). A

recent study of drug repositioning addressed distinct signaling mechanisms of metastatic

subtypes of breast cancer [17]. Neither knowledge-based nor signature-based methods can

address these repositioning results because the subtype signaling mechanisms are hard to

elucidate from existing breast cancer pathways or the gene signatures.

Targeted mechanism-based methods

Targeted mechanism-based drug-repositioning methods integrate treatment omics data,

available signaling pathway information and protein interaction networks to delineate the

unknown mechanisms of action of drugs [18–20]. The era of precision medicine motivates

such drug-repositioning studies. For instance, drug resistance remains an unresolved issue in

cancer therapy. Although patients respond well to a drug initially, they often acquire

resistance to that drug after a few months of treatment. This indicates that deriving a

successful drug treatment needs additional information about the mechanisms of action of

drugs to find better drug targets. Systems biology approaches are promising in addressing

this challenge. The advantage of these methods is that their goals are not only to discover the

mechanisms related to diseases or drugs, but also to identify those directly related to

treatments of drugs to specific diseases. Owing to the difficulties in deriving effective

computational models, there are only a few studies on these targeted mechanism-based

methods [18–20] that developed elegant computational models to predict the drug effects

and related targeted pathways. Comprehensive overviews of these drug-repositioning

methods are given in Tables 1 and 2.

Customize and generate new drug-repositioning pipelines

The low-risk and low-cost drug-repositioning strategies have been widely used to identify

new clinical opportunities for old drugs. Accordingly, numerous strategies have been

developed from drug-repositioning studies. Based on the LLF, we use a fishbone flowchart

to present the existing methods with preclinical and clinical validations (Figure 2). The

fishbone flowchart helps readers to understand the existing drug-repositioning pipelines and

shows how to generate new drug-repositioning pipelines.

A general fishbone flowchart of existing methods

The fishbone flowchart includes general methods used for drug-repositioning studies.

Starting with a disease or a drug, one can choose the feasible methods determined by the

available information or prior knowledge about the disease or drug. Then, during the

validation stages, one can decide which in vitro and in vivo validations are needed for

further testing of the newly identified indication(s). Eventually, the repositioned drugs will

enter into clinical trials to evaluate their efficacy and performance in patients. Here, we take

advantage of already published pipelines to discuss how to select the best drug-repositioning

methods for specific studies.
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Example pipeline 1: neglected tropical diseases (malaria) + phenotypic screening methods
+ drug libraries + in vivo validations ⇒ Astemizole

Orphan or rare diseases are those diseases that affect small numbers of people compared

with the general population (<200 000 patient population per year in the USA) [40,41]. The

orphan and/or rare diseases in developing regions of Africa, Asia and the Americas are also

known as neglected tropical diseases. Most of these diseases receive less treatment and

research funding, which results in little information about the disease mechanisms.

According to the fishbone flowchart in Figure 2, the methods involving little information

would be useful to reposition drugs for these diseases. In one such study using phenotypic

screening, Chong et al. screened 1937 FDA-approved drugs and 750 drugs that were either

approved for use abroad or undergoing phase II clinical trials for inhibition of Plasmodium

falciparum growth. They identified a drug, astemizole, as an antimalarial agent by testing

the drug using two mouse models of malaria [42].

Example pipeline 2: distinct breast cancer metastases + knowledge-based methods +
pathway- or network-based methods + drug libraries + in vitro and in vivo validations +
clinical trials ⇒ sunitinib for brain metastasis

We remain unclear about the pathways or mechanisms responsible for breast cancer

metastasis to brain, bone and lung, leading to challenges in repositioning drugs for these

cancer subtypes. Knowledge-based methods alone cannot solve this repositioning issue

because these methods provide only general or canonical breast cancer signaling pathways

instead of those specific to various types of metastasis. In a recent study, knowledge-based

and network-based methods were combined to reconstruct the signaling networks for these

metastatic breast cancer subtypes so that drug repositioning for each type was feasible to

implement [17]. The knowledge-based method in this study deployed newly discovered

signaling network elements, called cancer signaling bridges [18], to identify general known

signaling information for breast cancer, whereas the network-based method used a

mathematical model to address the specific signaling networks for subtypes of metastatic

breast cancer. By checking the known targets in a recently developed drug database,

DrugMap Central [43], 15, nine and two drug candidates were repositioned for brain, lung

and bone metastases, respectively. For breast cancer brain metastasis, in vitro and in vivo

validations were used to test the efficacies of these 15 drug candidates and two drugs were

identified (sunitinib and dasatinib); the efficacy of sunitinib for breast cancer brain

metastasis is now being tested in a phase II clinical trial (ClinicalTrials.gov ID:

NCT00570908).

Example pipeline 3: treatment omics data (164 drug compounds) + disease omics data
(100 diseases) + signature-based methods + in vivo validations ⇒ Cimetidine for lung
adenocarcinoma

To test a large number of diseases for a specific drug or a large number of drugs for a

specific disease, it is difficult to unify the needed computational approaches because the

available information for different diseases or drugs varies. For example, to use target-based

methods to reposition drugs for 100 diseases, one would have to know the biomarkers or

available pathways for each of these diseases. The knowledge needed for this type of drug
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repositioning might be unavailable or difficult to derive from the literature or available

databases. However, one can derive the gene signatures for these diseases from the publicly

available genomics data. Together with the drug signatures identified from treatment omics

data, Sirota et al. considered signature-based methods to evaluate the drug–disease scores

[44]. Based on the drug–disease score map, they validated cimetidine for lung

adenocarcinoma using tumor xenograft experiments.

Example pipeline 4: treatment omics data (>1000 drug–dose pairs) + targeted mechanism-
based methods + in vitro validations ⇒ repositioned drugs with targeted mechanisms

In example pipeline 3, there is an issue in the gene signatures for 164 drugs: the treatment

gene signatures for the 100 diseases are only based on treatments on three to five cancer cell

lines in the CMAP database. Thus, when applying these drug gene signatures to other

diseases, it is hard to ensure that the disease–drug scores are not biased by the limited

treatment information. Another issue encountered with signature-based methods is in

evaluating the accuracy of the large number of predictions on disease–drug associations. By

integrating the targeted mechanisms into the drug-repositioning process, new computational

approaches for predicting the efficacies of repositioned drugs were tested [18]. It was

confirmed that the analysis could accurately predict clinical responses to more than 90% of

drugs approved by the FDA and more than 75% of experimental clinical drugs that were

tested. The high accuracy of prediction ensures more favorable repositioning results for

disease–drug associations. To keep the accuracies of treatment information, only drugs for

three cancer cell lines were repositioned that were used for treatments in CMAP. Moreover,

the importance of the identified targeted pathways was addressed by explaining the

differences in treatment responses.

Concluding remarks

Drug-repositioning studies are dependent on the prior knowledge and available information

from specific studies to select and determine appropriate repositioning methods.

Establishing accurate and efficient drug-repositioning pipelines for specific studies requires

the prioritization of existing computational methods based on the available knowledge or the

development of new computational methods. In this review, we described the available

drug-repositioning methods according to the categorization of their integrated knowledge

and information. We introduced the LLF to characterize existing repositioning methods and

presented them in a generalized drug-repositioning pipeline (Fishbone flowchart). These

flowcharts are powerful tools to understand the existing drug-repositioning methods and

customize them into new drug-repositioning pipelines for specific studies.

Still, many challenges remain for cost-effective drug-repositioning studies. Not every

existing drug-repositioning study can be generalized to a new study, especially those

including computational methods. One has to evaluate carefully the available drug-

repositioning methods according to the prior knowledge and available information of the

study of interest and determine which is the best for that study. Another issue for the

available drug-repositioning studies for diseases with low knowledge and low complexity-

of-mechanism is that they have relatively low success rates. The complexities and richness

of information available to drug-repositioning studies largely determine their success rates;
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obviously, knowledge-based and signature-based methods are more likely to identify more

successful repurposed drugs than are blinded search or screening methods. As an example,

we mentioned drug repositioning for pediatric population in the ‘Knowledge-based drug-

repositioning methods’ section. The existing studies did not consider the blinded search or

screening methods for drug repositioning for pediatric diseases. Instead, the drug knowledge

from HLH, PubMed and Google was used in the drug repositioning targeting this special

population [29], because knowledge-based methods consider the factor of patient variability

in the drug-repositioning process.

In the era of precision medicine, it is important to delineate disease mechanisms, such as

signaling pathways, or treatment mechanisms, such as off-targets and targeted pathways, to

explain the mechanisms of action of drugs. This also leads to the application of drug

repositioning to new indications for individual patients. Mechanism-based repositioning

approaches are able to consider fully the heterogeneity and complexity of patients while

reducing the inefficacy and toxicity caused by patient variability [45]. We would like to

emphasize that drug-repositioning studies have to be solidly grounded on science to be

successful. Toward better drug repositioning, the field needs better development of more in-

depth mechanistic computational methods or models that can readily be customized into

drug-repositioning pipelines that integrate computational and experimental methods

seamlessly to ensure high success rates of repositioned drugs.
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• Understanding the existing drug repositioning methods with a top-down

flowchart

• Prioritizing repositioning methods using their integrated knowledge and

information

• A general drug repositioning pipeline with a fishbone flowchart

• Guidance for Customizing and generating new drug repositioning pipelines

Jin and Wong Page 12

Drug Discov Today. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.
Lotus leaves flowchart (LLF) for categorization of existing drug-repositioning methods.

Drug repositioning takes advantage of different potential avenues to repurpose drugs for

new indications, including drug, disease and treatment oriented. These avenues were

developed according to the availability of biological and pharmaceutical knowledge and

requirement of understanding the mechanisms of action of drugs. Traditional phenotype-

based screening methods do not need prior knowledge, and the repositioned drugs are just

serendipitously tested. Targeted-based methods need specific knowledge about the targets,

such as 3D protein structures, whereas knowledge-based methods require the knowledge

about the drugs or diseases, such as adverse effects, FDA approval labels, records of clinical

trials and published disease biomarkers (potential targets) or disease pathways. Signature-

based methods mainly make use of gene signatures defined by ‘-omics’ data (for diseases,

drug treatments, or both). Pathway- or network-based methods generally use pathway

analysis or network biology methods to discover essential pathways from genetic, genomic,

proteomic and metabolic data of diseases to find new targets for repositioned drugs. More

advanced drug-repositioning methods, such as targeted mechanism-based methods, aim to

discover mechanisms of action of drugs by identification of off-targets or targeted pathways

of treated drugs using drug omics data (before and after drug treatments). Details of these

methods are in Table 1 (main text). Integrated knowledge and elucidated mechanisms of

drug actions increases with the complexity of modeling methods.
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Figure 2.
Fishbone flowchart of drug-repositioning pipelines. Developed drug-repositioning pipelines

comprise at least one of these methods (i.e., blinded, target based, knowledge based,

signature based, pathway or network based, and targeted-mechanism based), preclinical

studies (in vitro and/or in vivo validations) and clinical development (testing the new

indications identified from the preclinical development). Development of a new drug-

repositioning pipeline for a drug or a disease of interest should evaluate the priorities of

these repositioning methods based on the available information of the drug or the disease.

For example, an infectious disease that only has limited available signaling information

related to cell wall and cytoplasmic membrane proteins would lead to high priority of target-

based drug-repositioning studies focusing on these cell wall and cytoplasmic membrane

proteins. Many drug-repositioning pipelines can reverse the order of the listed methods in

the fishbone flowchart and make use of them flexibly. As an example, several existing drug-

repositioning pipelines first consider pathway- or network-based drug-repositioning methods

to reconstruct disease pathways and then use knowledge-based or targeted-based methods to

identify candidate drugs. The fishbone provides all relevant components of general drug-

repositioning pipelines, and one can customize specific drug-repositioning pipelines

according to the available knowledge and information of targeted drugs or diseases.

Abbreviations: FDA, Food and Drug Administration; GWAS, genome-wide association

study; HTS/HCS, high-throughput and/or high-content screening; PK/PD, pharmacokinetics/

pharmacodynamics.
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Table 2
Databases used for drug-repositioning studies

Fields Databases[LM6] Website[LM7] Refs

Chemical structure PubChem http://pubchem.ncbi.nlm.nih.gov

Collaborative Drug Discovery Vault https://www.collaborativedrug.com

Drugbank [51]

TTD [52]

PharmGKB [53]

DrugMap Central [43]

ChemSpider http://www.chemspider.com

ChemFrog http://www.chemfrog.com

ChemDB http://www.chemdb.com

iScienceSearch http://cwmglobalsearch.com/gs/Default.aspx

Chemicalize (ChemAxon) http://www.chemicalize.org

DistilBio http://distilbio.com

Target 3D structure PDB http://www.rcsb.org

OCA http://oca.weizmann.ac.il/oca-bin/ocamain

OPM (membrane proteins) http://opm.phar.umich.edu

Proteopedia http://proteopedia.org

TOPSAN http://www.topsan.org

Drug-target information Drugbank [51]

TTD [52]

PharmGKB [53]

DrugMap Central [43]

MATADOR (manually annotated) http://matador.embl.de

SuperTarget [54]

STITCH [55]

GLIDA [56]

PDSP Ki [57]

BindingDB [58]

Adverse effects and clinical trial information SIDER [59]

FAERS (US FDA) http://www.fda.gov/Drugs/

Adverse Reaction Database (Canada) http://www.hc-sc.gc.ca

IDIS http://itsnt14.its.uiowa.edu

Clinicaltrial.gov http://clinicaltrials.gov

DrugMap Central [43]

FDA label information FDALABEL(US FDA)

DailyMed (US FDA)

SPL (US FDA)

DrugMap Central [43]
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http://www.chemfrog.com
http://www.chemdb.com
http://cwmglobalsearch.com/gs/Default.aspx
http://www.chemicalize.org
http://distilbio.com
http://www.rcsb.org
http://oca.weizmann.ac.il/oca-bin/ocamain
http://opm.phar.umich.edu
http://proteopedia.org
http://www.topsan.org
http://matador.embl.de
http://www.fda.gov/Drugs/
http://www.hc-sc.gc.ca
http://itsnt14.its.uiowa.edu
http://clinicaltrials.gov
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Fields Databases[LM6] Website[LM7] Refs

Pathway information NCI PID [60]

KEGG [61]

BioCarta http://www.biocarta.com

Reactome http://www.reactome.org

PathwayCommons [62]

DrugMap Central [43]

Protein interaction information HPRD [63]

BioGRID [64]

STRING [65]

PathwayCommons [62]

MIPS [66]

IntAct [67]

DIP [68]

Molecular omics data NCBI-GEO http://www.ncbi.nlm.nih.gov/geo/

SRA http://www.ncbi.nlm.nih.gov/Traces/sra/)

Stanford Microarray Database http://smd.princeton.edu

ArrayExpress http://www.ebi.ac.uk/arrayexpress/)

PUMAdb http://puma.princeton.edu

CellMiner (for NCI-60) http://discover.nci.nih.gov/cellminer/

Oncomine https://www.oncomine.org

CCLE [39]

Genetic data or information dbSNP http://www.ncbi.nlm.nih.gov/projects/SNP/)

SRA http://www.ncbi.nlm.nih.gov/Traces/sra/),

OMIM [69]

Drug omics data CMAP [38]

CCLE [39]

NCBI-GEO http://www.ncbi.nlm.nih.gov/geo/)

SRA http://www.ncbi.nlm.nih.gov/Traces/sra/)
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http://www.ncbi.nlm.nih.gov/Traces/sra/
http://smd.princeton.edu
http://www.ebi.ac.uk/arrayexpress/
http://puma.princeton.edu
http://discover.nci.nih.gov/cellminer/
https://www.oncomine.org
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.ncbi.nlm.nih.gov/Traces/sra/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/Traces/sra/

