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Abstract

Cancer is a disease that results from the successive accumu-
lation of genetic and epigenetic alterations. Despite intense 
study, many unanswered questions about the nature of the 
contribution of epigenetic changes to carcinogenesis remain. 
In this review, we describe principles of epigenetics as they 
relate to our current understanding of carcinogenesis. There 
are a number of in vivo models of specifi c pathways of car-
cinogenesis that are very useful for the characterization of 
epigenetic mechanisms that link environmental exposures or 
genetic susceptibility and cancer progression. Because epi-
genetic alterations are thought to be reversible, they offer 
great promise for treatment of cancer. The use of animal 
models to evaluate the effects of decitabine and zebularine 
has elucidated the mechanisms of action and indicated the 
potential for these types of treatment. Ultimately, the great-
est challenge lies in the integration of laboratory and epide-
miologic data to best prevent and treat this deadly disease.
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Introduction

T he fi eld of cancer epigenetics has thrived on discover-
ies from in vitro, in vivo, and human clinical and epi-
demiologic studies. Results from these complimentary 

approaches have challenged the classic view of cancer, 
which has traditionally been hypothesized as a disease that 
results from the successive accumulation of genetic altera-
tions in oncogenes and tumor-suppressor genes, which leads 
to uncontrolled cell growth. It is now appreciated that epi-
genetic alterations contribute to carcinogenesis and a mechanis-
tic link exists between environmental and dietary exposures 
and disease. Despite the rapidly developing breadth of 

knowledge in this fi eld, many questions remain to under-
stand the contribution of epigenetics to the carcinogenic pro-
cess. Do environmental toxicants induce epigenetic changes 
to infl uence the initiation or promotion of cancer? Can 
epigenetic changes be initiators in the carcinogenic process, 
or are they a consequence of cellular transformation and 
genetic alterations? Most important, because epigenetic 
changes are largely thought to be reversible, can epigenetic 
therapy offer an avenue for cancer treatment? In this review, 
we will describe epigenetic changes in the context of carci-
nogenesis and offer examples of models of cancer progres-
sion and treatment that allow for the elucidation of the role 
epigenetics plays in cancer progression and treatment. 
First, we will introduce principles of epigenetic mecha-
nisms in light of carcinogenesis. Then we will discuss how 
animal models contribute to our understanding of the contri-
bution of epigenetics to understanding distinct pathways of 
carcinogenesis.

DNA Methylation

One of the most extensively studied epigenetic mechanisms 
is the methylation of the fi fth carbon of a cytosine nucleotide 
to create 5-methylcytosine (5mC1). The methyl group of 
5mC lies in the major groove of the double helix and can 
interfere with transcription factor binding to prevent gene 
expression. Additionally, there is a class of methylated 
DNA-binding proteins, specifi cally MECP2 and the MBD 
family of proteins, which bind to methylated cytosines and 
repress gene transcription by blocking transcription factors. 
Cytosine pairs with guanine by means of a phosphate group, 
and this dinucleotide (CpG) has been a major focus of epi-
genetic research because of its capacity to directly silence 
gene expression, particularly with respect to tumor-suppressor 
genes in carcinogenesis. CpG sites are unevenly distributed 
throughout the genome, concentrating in repetitive sequences 
such as tandem and interspersed repeats, distal gene regula-
tory regions, and CpG islands (Bird 2002; Ehrlich 2009; 
Ehrlich et al. 1982). DNA methylation is highly dysregu-
lated in cancer. Aberrant patterns of methylation arise, leading 
to hypomethylation of distal regulatory regions and repeti-
tive elements along with hypermethylation of CpG islands 
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(Bird 2002; Ehrlich 2009). It has been known for some time 
that tumors from different sites display distinct CpG meth-
ylation profi les (Esteller et al. 2001) and exhibit distinct 
pathways of carcinogenesis within tumor sites (Sartor et al. 
2011; Shen et al. 2007). However, how CpG methylation re-
lates to epidemiologic and clinical characteristics is not yet 
fully understood.

Loss of DNA methylation was one of the fi rst epigenetic 
changes described in human cancer. The fi rst study of DNA 
methylation in human tumor tissue, using methylation-sensitive 
restriction enzyme digestion paired with Southern blotting, re-
vealed that tumor tissues had a lower proportion of methylated 
cytosine than normal tissues (Feinberg and Vogelstein 1983). 
Shortly thereafter, whole genome enzymatic digests paired 
with high-performance liquid chromatography were used to 
show that overall 5mC content was inversely associated with 
tumor progression (Gama-Sosa et al. 1983). Since the publi-
cation of these seminal studies, almost every type of cancer 
has been shown to have an overall defi ciency of 5mC com-
pared with normal tissue, occurring specifi cally in intergenic 
repetitive regions, which increases genomic instability and 
promotes the progression of tumorigenesis. 

Repetitive Elements

Repetitive elements make up about half of the genome and 
are normally heavily methylated. In cancer, hypomethyl-
ation of these genomic regions make up a large percentage 
of 5mC loss in cancers (Ehrlich 2009; Lander et al. 2001). 
Centromeric tandem repeats, adjacent-centromeric (juxta-
centromeric) tandem repeats, and short- (Alu) and long-
interspersed elements (LINE-1) are the most frequently studied 
repetitive elements in cancer that are found to be hypometh-
ylated. Tandem repeats at and near the centromere play a 
role in keeping the DNA packaged into heterochromatin at 
the point of sister chromatid association, allowing for chromo-
some stability. Hypomethylation of these regions can lead to 
chromatin decondensation and chromosome rearrangements 
through unstable translocations, leading to widespread ge-
nomic instability (Eden et al. 2003). For example, in vitro 
experiments conducted to knock out DnmtI, a DNA methyl-
transferase (DNMT1), in murine embryonic stem cells showed 
an increase in chromosomal translocations (Chen et al. 
1998). Additionally, loss of heterochromatin can affect the 
copy number of genes involved in tumorigenesis (Eden et al. 
2003; Ehrlich 2009; Kokalj-Vokac et al. 1993). Hypometh-
ylation of tandem repeats at or near centromeric regions 
contributes to tumorigenesis by unraveling the structure of 
the genome and amplifying genomic rearrangements (Kokalj-
Vokac et al. 1993). However, chromosomal abnormalities 
are not the only process that occurs in tumor cells, and this is 
signifi ed by other repetitive elements that are found to be 
hypomethylated in cancer. 

Alu and LINE-1 elements are retrotransposons—that is, 
genetic elements that have the ability to amplify themselves 
by means of RNA intermediates. These elements together 

make up about 30% of the genome (Chen et al. 1998). 
There are more than 500,000 LINE-1 elements in the ge-
nome, although because of truncations, mutations, and dele-
tions, only about 100 copies are functional. There are more 
than 1 million copies of Alu (Batzer and Deininger 2002). 
Both elements contain promoter sequences, which indicates 
their capacity for gene transcription if unregulated (Cordaux 
and Batzer 2009; Kazazian and Goodier 2002). In normal 
tissues, LINE-1 and Alu elements are silenced through DNA 
methylation; these elements are hypomethylated in cancer 
(Bird 2002; Thayer 1993). For example, it has been shown 
that hypomethylation of LINE-1 elements occurs in colorec-
tal cancer early in tumorigenesis, disrupting normal patterns 
of gene expression (Suter et al. 2004). Hypomethylation of 
LINE-1 sequences has also been shown in urothelial and 
hepatocellular cancers (Jurgens et al. 1996; Takai et al. 
2000). Alu elements, although less studied, have been shown 
to be hypomethylated with LINE-1 elements in prostate 
adenocarcinomas (Cho et al. 2007), pancreatic endocrine 
tumors, and carcinoid tumors (Choi et al. 2007). Hypo-
methylation of LINE-1 and Alu elements was found to be 
strongly linked to genomic instability early in non-small-
cell lung cancer, playing a potential role in the formation of 
lung neoplasias (Daskalos et al. 2009). 

Hypomethylation of these elements and their consequent 
activation has many implications for tumorigenesis. They 
can cause insertional mutagenesis and potentially disperse 
processed pseudogenes, which occur when spliced messen-
ger RNA is reverse transcribed by L1 reverse transcriptase 
and reinserted into the genome. Transduction can occur 
when LINE-1 elements mobilize their 3’ and 5’ ends sepa-
rately and carry them to new genomic locations. Rearrange-
ments also take place when Alu and LINE-1 elements insert 
to potentially cause deletions or inversions in the genome 
(Kazazian 2004; Kazazian and Goodier 2002). This results 
in chromosomal abnormalities, aberrant gene expression, 
and overall genomic instability. 

Other targets of hypomethylation are the CpG sites found 
in promoter regions that are outside CpG islands. These are 
found in promoter regions of normally repressed genes and 
are methylated in normal cells (Bird 2002; Ehrlich 2002, 
2009). In cancer cells, these regions are found to be hypo-
methylated, affecting repression of normally silenced genes. 
For example, imprinted genes are normally monoallelically 
expressed; however, hypomethylation of CpG sites in pro-
moter regions of these genes leads to their biallelic expres-
sion and is linked to carcinogenesis (Holm et al. 2005). 
Hypomethylation of promoter regions leads to activation of 
otherwise silenced genes, promoting aberrant gene expres-
sion, disruption of normal cellular processes, and overall ge-
nomic instability.

DNA Methyltransferases

Although cancer genomes are globally hypomethylated, some 
regions of the genome are found to be hypermethylated. The 
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mechanism through which this occurs is DNMT overex-
pression. DNA methylation is regulated by DNMTs that act 
as the methyl donors to the cytosine residue. Although fi ve 
members of the DNMT family have been discovered, only 
DNMT1, DNMT3a, and DNMT3b are known to contribute to 
the global pattern of cytosine methylation (Kulis and Esteller 
2010; Okano et al. 1999). DNMT1 is classifi ed as a mainte-
nance protein and appears to be involved in methylation of 
CpG sites in newly synthesized daughter DNA strands to 
match the methylation pattern of the parental strand. It also 
directly binds histone deacetylases to promote heterochroma-
tin formation and silence gene activity (Bird 2002; Kulis and 
Esteller 2010; Li et al. 1992). DNMT3a and DNMT3b are 
classifi ed as de novo enzymes that are essential for establish-
ment of mammalian development methylation patterns during 
embryogenesis and germ-cell development (Kulis and Esteller 
2010). 

DNMT overexpression seems to be a common character-
istic of tumors, although only DNMT1 and DNMT3a/b are 
implicated in tumorigenesis (Issa et al. 1993). It has been 
proposed that these enzymes cooperate to initiate and main-
tain de novo methylation in cancer cells (Rhee et al. 2002). 
DNMT1 and DNMT3b have been shown to form a complex 
with oncogenic transcription factors to induce de novo meth-
ylation of CpG islands in promoter regions (Di Croce et al. 
2002). Patients with DNMT3a mutations had signifi cantly 
worse prognosis in acute myeloid leukemia (Ley et al. 2010). 
Therefore, DNMTs in cancer have a crucial role in the hy-
permethylation that is found on CpG islands and its subse-
quent downstream effects. 

The genomic regions that are targeted for hypermethyl-
ation tend to be CpG islands. Contrary to individual CpG 
sites throughout the genome in intergenic regions, CpG is-
lands are usually unmethylated in normal cells, regardless of 
gene expression (Jones and Laird 1999). However, there are 
very specifi c instances in which CpG islands are methylated 
in normal cells, such as in imprinted genes and X-chromosome 
inactivation. 

CpG Islands and Gene Expression

CpG islands occupy approximately 60% of human gene pro-
moters, most of which are constitutively expressed genes 
(Vu et al. 2000). A CpG island is generally defi ned as a 
1000-kb stretch of DNA with GC content greater than 50%. 
The normal hypomethylated pattern of CpG islands is 
found to be consistent across various types of somatic tis-
sues despite tissue-specifi c differences, illustrating that 
DNA methylation of these islands is not used as a regula-
tory mechanism of gene expression (Cotton et al. 2011). 
Therefore, when a CpG island becomes aberrantly methyl-
ated, it can have detrimental effects by stably silencing the 
associated gene (Cotton et al. 2011). The cancer cell ge-
nome is characterized by hypermethylation of CpG islands 
in promoter regions (Edwards and Ferguson-Smith 2007; 
Jones and Laird 1999; Meehan et al. 1992; Riggs and 
Pfeifer 1992). In contrast with hypomethylation of intergenic 

CpG sites in cancer that lead to genomic instability, hyper-
methylation of CpG islands promotes the progression of 
tumorigenesis by silencing tumor-suppressor genes. For 
example, PTEN, a protein that prevents rapid proliferation, 
is commonly hypermethylated in brain and thyroid cancers, 
whereas APC, a protein involved in cell-cycle regulation, 
cell–cell adhesion, and cell mobility, is inactivated by hyper-
methylation in many lung, breast, and colorectal cancers 
(Fan and Zhang 2009; Hatziapostolou and Iliopoulos 2011; 
Illingworth and Bird 2009). Suppression of p16, a cell-cycle 
regulator, occurs in essentially all common human cancers 
(Ligget and Sidransky 1998). Inactivating these tumor sup-
pressors directly promotes tumorigenesis due to lack of con-
trol over cellular processes. 

In addition to tumor-suppressor genes, hypermethylation 
of other classes of genes such as DNA repair genes and tran-
scription factors can indirectly lead to tumorigenesis through 
silencing of further downstream targets or accumulation of 
genetic errors. For example, GATA-4 and GATA-5 are tran-
scription factors silenced in colorectal and gastric cancers 
(Alvarez-Nunez et al. 2006). Inactivation of DNA repair 
genes, such as O-6-methylguanine-DNMT, is commonly 
found in primary neoplasias (Esteller et al. 2000). Therefore, 
hypermethylation of CpG islands in cancers can affect mul-
tiple pathways to promote carcinogenesis.

Promoter hypermethylation is often an early event in 
tumorigenesis. Several mechanisms have been proposed for 
targeting CpG islands for hypermethylation. One explana-
tion is that the location of these islands in genomic regions 
that have potentially undergone massive epigenetic repro-
gramming leads to hypermethylation as a byproduct or for 
prevention of error (Bird 2002). Another explanation is that 
some gene promoters are targeted specifi cally by DNMTs 
complexed to oncogenic transcription factors (Okano et al. 
1999). Finally, it has been proposed that hypermethylation is 
a result of histone marks created in a tumor-specifi c manner 
(Hatziapostolou and Iliopoulos 2011). 

Although it may appear that hypomethylation and hyper-
methylation in cancer are opposing forces, the patterns usu-
ally coexist within the same tumor, although they occur in 
different genomic regions. Further, the epigenetic abnormal-
ities that occur because of hypo- and hypermethylation 
can interact in various ways to produce distinct subtypes 
of cancer. However, these patterns are stable but not irre-
versible and remain fl exible as the cellular environment 
changes, contributing to the complexity of the cancer cell 
epigenome. 

The dysregulation of DNA methylation patterns ob-
served in cancer does not occur independent of other epige-
netic changes. Methylated DNA-binding proteins, which are 
attracted to methylated cytosine residues and contribute in 
gene silencing, have been shown to interact with a number of 
other partners involved in epigenetic regulation. In particu-
lar, methylated DNA-binding proteins have been shown to 
interact with proteins that are involved in controlling the in-
teraction between DNA and histones, the proteins involved 
in DNA packaging.
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Chromatin Remodeling in Cancer

The estimated 1.8 linear meters of DNA in the human cell 
are organized into a 3-dimensional structure and compacted 
within the cell nucleus by means of associations with his-
tones, the major DNA packaging proteins. These DNA–
histone complexes are the primary components of chromatin, 
which makes up the bulk of the material in the nucleus. The 
basic chromatin unit is the nucleosome, which consists of a 
protein octamer containing pairs of each of the four core his-
tone proteins (H2A, H2B, H3, H4). Nucleosome structures 
are highly conserved and repetitive throughout the genome, 
forming a “beads-on-a-string” structure. Nucleosomes are 
organized by histone protein H1, a linker protein found out-
side the main histone octamer complex that binds to linker 
DNA at the entry and exit points of the nucleosome (Allan 
et al. 1980). 

There are two common higher levels of nucleosome or-
ganization that are defi ned by the level of compaction of the 
nucleosome structures euchromatin and heterochromatin. 
Euchromatin is loosely packed and typically represents 
transcriptionally active genic regions due to the increased 
accessibility of the DNA in the nucleosome structure. Het-
erochromatin is densely packed, with intense cytological 
nuclear staining due to the high density of nuclear proteins. 
Heterochromatin is further classifi ed into constitutive het-
erochromatin, or permanently silenced chromatin, and fac-
ultative heterochromatin, which is silenced chromatin that 
can become reactivated in response to appropriate genetic 
or environmental cues. Thus, throughout an organism’s 
lifetime, chromatin conformation is a fl uid, cell type–spe-
cifi c process, and it is prone to restructuring in response to 
environmental or physiologic signals. Altered or abnormal 
chromatin conformation has also now been recognized as 
an epigenetic hallmark of many cancers.

Chromatin conformation is controlled by chemical mod-
ifi cations, mainly covalent modifi cations, of the N-terminus 
tails of the histone proteins that form the core of the nucleo-
some. Histone modifi cations can affect the interaction be-
tween histone proteins and DNA as well as between adjacent 
histone proteins. Histone modifi cation is a dynamic process, 
with enzymes catalyzing the addition of covalent modifi ca-
tions (“writers”), their removal (“erasers”), and recognition 
of marks previously laid down (“readers”) (Wang et al. 
2007). Dysregulation of each of these classes of enzymes 
has been associated with a variety of cancer types. Here, we 
will detail the functional consequences of aberrant control of 
these enzymes during the carcinogenic process for histone 
methylation and acetylation, the two best-characterized his-
tone modifi cations.

Histone Methylation

Histone methylation has been widely shown to regulate tran-
scription; methylation at specifi c histone tail residues is asso-
ciated with both transcriptional activation and repression. 

Histone methylation occurs at both arginine and lysine resi-
dues on the tails of histone proteins H3 and H4. A summary 
of enzymes that modify or read histone methylation marks 
that have been shown to be dysregulated in cancer is shown 
in Table 1. Lysine methylation is catalyzed by histone-lysine-
N-methyltransferases, also known as K-methyltransferases, 
and involves the transfer of methyl groups from the cofactor 
S-adenosyl methionine. A key protein involved in control of 
stem cell maintenance and differentiation, EZH2 (enhancer 
of Zeste 2), is a K-methyltransferase that catalyzes the tri-
methylation of H3K27 (Cao et al. 2002). EZH2 is a member 
of the polycomb repressive complex 2, a protein complex 
that involves both a K-methyltransferase and “reader” pro-
teins that recognize H3K27me3. The H3K27me3 mark is 
normally involved in silencing genes related to development 
and stem cell differentiation, including the Hox gene cluster 
(Lewis 1978). In many cancers, however, EZH2 is overex-
pressed both at the transcriptional and protein levels. EZH2 
overexpression has been described as important in prostate 
cancer, where an increase in EZH2 protein staining in the cell 
nucleus was observed with a progression from benign to 
metastatic disease (Varambally et al. 2002). Further studies 
have identifi ed overexpression of EZH2 as a key feature in 
breast cancer, lymphomas, and glioblastomas, among other 
cancers (Kleer et al. 2003; Suvà et al. 2009; van Kemenade 
et al. 2001). In cancer cells, H3K27me3 has also been shown 
to repress gene expression independent of gene-promoter 
DNA methylation (Kondo et al. 2008), whereas in normal 
cells, EZH2 has been shown to control DNA methylation by 
interacting with DNMTs (Vire et al. 2006). Additionally, 
dysregulation of other members of the polycomb repressive 
complex, including proteins that interact with polycomb 
repressive complex 2 proteins following the transfer of the 
H3K27me3 mark by EZH2, have also been recently described. 
In contrast with the silencing histone modifi cation H3K27me3, 
histone methylation can also be a mark associated with tran-
scriptional activation. The mixed lineage leukemia (MLL) is 
a K-methyltransferase that catalyzes the methylation of 
H3K4. MLL acts in opposition to polycomb repressive com-
plex proteins, activating genes involved in development and 
differentiation (Milne et al. 2002). MLL genetic events, par-
ticularly gene fusions and overamplifi cation, have been shown 
to be an important characteristic of leukemia. An experimental 
mouse model with an MLL–AF9 gene fusion introduced by 
homologous recombination led to the development of acute 
leukemia in all chimeric mice (Corral et al. 1996). A study of 
acute lymphoblastic leukemia patients with MLL transloca-
tions found a unique gene expression profi le when compared 
with patients with conventional B-precursor acute lympho-
blastic leukemia (Armstrong et al. 2002). Specifi cally, patients 
with MLL translocations were found to have multilineage 
gene expression, aberrantly overexpressing genes associated 
with early-stage hematopoiesis.

Histone methylation marks are removed by a variety 
of enzymes, with marks at specifi c histone tail residues 
interacting with distinct histone lysine demethylases, or 
K-demethylases. JMJD2C is a K-demethylase that catalyzes 
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the removal of methylation marks from H3K9, a mark typi-
cally associated with gene repression (Snowden et al. 2002). 
Amplifi cation of JMJD2C has been observed in a variety of 
cancers, including breast and esophageal cancer (Liu et al. 
2009; Yang et al. 2000). Lysine specifi c demethylase 1, a 
K-demethylase that targets H3K9 and H3K4 methylation, 
has recently shown to be overexpressed in estrogen recep-
tor–negative breast cancer (Lim et al. 2010), mesenchymal 
tumors (Schildhaus et al. 2011), and bladder cancers (Hayami 
et al. 2011). Although more research is necessary to fully 
understand the functional consequences of dysregulation 
of histone methylation, it is clear that K-demethylases and 
K-methyltransferases are important in the carcinogenic 
process and represent novel targets for therapy.

Histone Acetylation

Unlike histone methylation, which can be associated with 
transcriptional activation or repression based on the specifi c 
residue methylated, histone acetylation is strongly associ-
ated with transcriptional activation. Histone acetylation oc-
curs on lysine residues and is thought to enhance transcription 
by charge neutralization of the positively charged histones, 
decreasing their interaction with the negatively charged DNA 
phosphate backbone. Maintenance of histone acetylation 
marks and the dynamic state of chromatin conformation are 
controlled by histone acetyltransferases (HATs), also known 
as K-acetyltransferases, and histone deacetylases (HDACs1). 
HATs catalyze the addition of acetyl groups to histone lysines 

Histone- 
modifying 
enzyme

Target 
modifi cation Cellular function/related cancers References

Lysine methyltransferases (KMTs)

MLL H3K4 Transcriptional activation; gene fusions 
 identifi ed in leukemia

Armstrong et al. 2002; 
 Corral et al. 1996

SETDB1 H3K9 Transcriptional repression; amplifi ed in melanoma Ceol et al. 2011
EZH2 H3K27 Transcriptional repression; associated 

 with tumor aggressiveness 
Upregulated in breast cancer, prostate 
 cancer, lymphoma, glioblastoma

Kleer et al. 2003; Suvà et al. 2009; 
 van Kemenade et al. 2001; 
 Varambally et al. 2002

NSD1 H3K36, H4K20 Transcriptional activation; gene fusions 
 in leukemia, multiple myeloma

Taketani et al. 2009; 
 Wang et al. 2007

DOT1 H3K79 DNA damage repair; involved in leukemia Chang et al. 2010; Okada et al. 
 2005; Tatum and Li 2011

Lysine demethylases (KDMs)

LSD1 H3K4, H3K9 Transcriptional repression; dysregulated 
 in breast cancer, upregulated in aggressive 
 prostate cancer

Kahl et al. 2006; Lim et al. 2010; 
 Wang et al. 2009

JMJD2C H3K9 Transcriptional activation; rearranged 
 in lymphoma, amplifi ed in breast cancer and 
 esophageal cancer

Liu et al. 2009; Vinatzer et al. 2008; 
 Yang et al. 2000

JMJD3 H3K27 Transcriptional activation; upregulated 
 in aggressive prostate cancer 

Xiang et al. 2007

Lysine methylation readers

ING4 H3K4 Tumor suppressor; deleted in head 
 and neck cancer and breast cancer, 
 reduced expression in glioma 

Garkavtsev et al. 2004; 
 Gunduz et al. 2005; Kim, Chin, 
 et al. 2004; Tapia et al. 2011

BMI-1 H3K27 Oncogene; overexpressed in lymphoma, 
 leukemia, colorectal and breast cancer

Beà et al. 2001; Kim, Yoon, Kim, 
 et al. 2004; Kim, Yoon, Jeong, 
 et al. 2004; Lessard et al. 
 2003; Pietersen et al. 2008

Table 1 Examples of histone methylation dysregulation in cancer
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using acetyl coenzyme A as a cofactor and induce an open or 
permissive chromatin state, whereas HDACs remove acetyl 
groups and induce a closed or repressive state (Roth et al. 
2001). The normal in vivo role of HATs and HDACs is often 
obfuscated in cancer, leading to an abnormal chromatin 
phenotype. 

There are three distinct families of HATs: The Gcn5 
family, the p300/CBP family, and the MYST family (Lee 
and Workman 2007). HATs from each of these families have 
been shown to play a role in carcinogenesis, from either 
inappropriate activation or repression of target gene activity. 
The Wnt signaling pathway, previously shown to be com-
monly dysregulated in cancers, particularly those with a 
stem cell phenotype, has been shown to be augmented by the 
HAT Gcn5 in breast cancer (Chen et al. 2010). CBP (cyclic 
AMP response element-binding [CREB] protein) and p300, 
have been shown to be capable of acetylation of all four core 
histones as well as a number of other nonhistone proteins, 
including p53, Rb, E2F, and myb (Iyer et al. 2004). Loss of 
heterozygosity at either p300 or CBP has been detected in a 
large proportion of cancer cell lines examined, with 51% of 
cell lines experiencing loss at p300 and 35% experiencing 
loss at CBP (Tillinghast et al. 2003). These fi ndings suggest 
that both p300 and CBP are important tumor-suppressor 
genes that may be lost through loss of heterozygosity in a 
number of different cancers. MYST family HATs have been 
identifi ed as important in hematopoesis and, as such, also 
identifi ed as dysregulated in acute myeloid leukemia (Yang 
and Ullah 2007). In the M4/M5 subset of leukemia cases, a 
stable and recurrent translocation t(8;16)(p11;p13) causes a 
fusion between MOZ, a MYST family acetyltransferase, and 
CBP, leading to aberrant chromatin acetylation (Borrow et al. 
1996). Similarly, MOZ is found fused to p300 following a 
t(8;22)(p11;q13) translocation observed in a subset of acute 
monocytic leukemia cases (Chaffanet et al. 2000).

HDACs are enzymes that catalyze the removal of histone 
acetyl marks and are involved in transcriptional repression. 
HDACs, like HATs, also have nonhistone proteins as poten-
tial substrates and are involved in the deacetylation of a 
number of proteins identifi ed as important in carcinogenesis, 
including p53, YY1, and STAT3 (Glozak et al. 2005). The 18 
human proteins identifi ed with HDAC activity suggest that 
there is likely some redundancy in function between HDACs 
as well as the potential for different histone tail residues or 
other nonhistone proteins as targets.

Studies of multistage models of carcinogenesis have 
identifi ed histone deactylation as an early step in the process 
(Fraga et al. 2005). Specifi cally, early loss of monoactylation 
of histone H4K16 was observed in a mouse model of multi-
stage skin carcinogenesis. Additionally, a number of cancer 
cell lines, as well as primary lymphomas and colorectal ad-
enomas, were also found to be hypoacetylated compared 
with normal cells, suggesting that histone deacetylation is a 
widespread event in cancer. HDACs are often overexpressed 
in many different tumor types, including breast (Krusche 
et al. 2005), prostate (Weichert, Röske, Niesporek, et al. 2008), 
and colorectal cancer (Weichert, Röske, Gekeler, et al. 

2008). A study of the function of HDAC3, a class 1 HDAC, 
in cancer cells, found that long term knockdown by means of 
RNA interference led to inhibition of �-catenin’s transloca-
tion to the nucleus (Godman et al. 2008). In addition to dis-
rupting Wnt signaling, HDAC3 inhibition also increased 
expression of the vitamin D receptor, rendering those cells 
more sensitive to the effects of vitamin D. The common pat-
tern of HDAC deregulation in cancer cells has provided a 
novel target for chemotherapeutic intervention—the HDAC 
inhibitor. HDAC inhibitors, both natural and synthetic, have 
been widely used in the treatment of a number of diseases, 
including psychiatric diseases and cancer. There are two 
HDAC inhibitors currently approved by the US Food and 
Drug Administration for the treatment of cutaneous T-cell 
lymphoma—suberoylanilide hydroxaminc acid (vorinostat) 
and romidepsin. Additionally, there are a number of other 
HDAC inhibitors under investigation in early- and late-stage 
clinical trials, which may provide novel epigenetic therapies 
for cancer treatment.

Animal Models of Carcinogenesis

Findings from in vivo models of carcinogenesis can be used 
to predict how the most susceptible humans in the popula-
tion may respond to genetic lesions or exposure to environ-
mental carcinogens. Additionally, these studies can identify 
epigenetic biomarkers and provide insight into the specifi c 
mechanisms of tumor progression.

There are a number of in vivo models of carcinogenesis 
that allow for the characterization of epigenetic mechanisms 
that link environmental exposures or genetic susceptibility 
and cancer progression. These models typically involve the 
induction of tissue-specifi c cancer through toxicant expo-
sure or transgenic manipulation. A carefully designed ani-
mal model can specifi cally characterize molecular pathways 
of carcinogenesis, providing evidence for a sequential series 
of epigenetic and genetic effects as a malignancy progresses 
from carcinoma in situ to metastatic disease. Often these 
models are particularly useful for elucidating the contribu-
tion of epigenetic dysregulation of specifi c pathways in car-
cinogenesis in a temporal fashion. Lung cancer is an example 
of a cancer where epidemiologic studies have identifi ed rel-
evant exposures, but the early events in carcinogenesis are 
not well characterized (Betancourt et al. 2010; Jenkins et al. 
2009). Exposure to 3-methylcholanthrene and diethylnitro-
samine has been known for at least two decades to induce 
lung tumors in animal models (Henry et al. 1981; Schuller 
et al. 1988). These models have proven useful to understand 
the basic processes that underlie neoplastic lung adenocarci-
noma initiation and progression. More recently, researchers 
have extended the use of these lung carcinogenesis models 
to understand the specifi c epigenetic mechanisms involved 
in lung cancer progression, including increases in promoter 
methylation of the cell-cycle regulator genes p27 and p57 
(Liu et al. 2010). Epidemiologic studies have consistently 
identifi ed infl ammation as an important initiator and promoter 
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of lung carcinogenesis, but human studies are limited in 
studying the sequential molecular events that characterize 
this pathway. Blanco and colleagues (2007) used a silica 
exposure–based infl ammatory in vivo model of lung carci-
nogenesis to study the role of infl ammation in lung carcino-
genesis. They identifi ed multiple epigenetic alterations, 
particularly methylation of the cell-cycle control proteins 
p16, APC, and Cdh13, during tumor progression that charac-
terize lung cancers arising from this pathway. Similarly, 
chronic infl ammation is hypothesized to drive somatic mutation 
and neoplastic transformation in prostate cancer. A study of 
prostate carcinogenesis using transgenic adenocarcinoma of 
mouse prostate (TRAMP) mice identifi ed that expression of 
the oxidative stress–sensing enzyme Nrf2 is suppressed by 
DNA methylation and chromatin silencing in prostate cancer 
(Yu et al. 2010). There are also a number of in vivo models 
of carcinogenesis that focus on the progression of hemato-
logical malignancies, such as leukemias and lymphomas. 
A mouse model of acute lymphoblastic leukemia, Il15 trans-
genic FVB/NJ mice, was used to identify epigenetic altera-
tions specifi c to leukemia progression, fi nding that the 
putative tumor-suppressor gene Idb4 was epigenetically si-
lenced in both mouse and human leukemias but not in solid 
tumors (Yu et al. 2005). Epigenetic alterations, particularly 
the DNA methylation silencing of tumor-suppressor genes 
Pten and p53, after overexpression of the oncogene MYC 
were found using a bitransgenic mouse model of T cell lym-
phoma (Opavsky et al. 2007). 

The elucidation of epigenetic mechanisms through ani-
mal models has given rise to therapeutic interventions in the 
treatment of carcinogenesis. Because methylation of tumor-
suppressor genes is a common characteristic of tumorigene-
sis, demethylating agents such as 5-azacytidine, decitabine, 
and zebularine have been studied in various animal models. 
Mice induced to develop oral cavity carcinogenesis were 
treated with 5-azacytidine and exhibited reduced lesions 
compared with untreated mice (Tang et al. 2009). Zebularine 
administered to BALB/c nu/nu mice with human bladder 
carcinoma xenografts signifi cantly reduced tumor size through 
demethylation of the p16 promoter (Cheng et al. 2003). 
Aside from methylation, histone acetylation also occurs 
early in carcinogenesis, and as such, HDAC inhibitors have 
been considered as treatment options. Bachmann and col-
leagues (2010) used the acute lymphoblastic leukemia xeno-
graft SCID mouse model to fi nd that vorinostat, an HDAC 
inhibitor, reinstated gene expression of BIM, a tumor suppres-
sor, which is silenced in lymphoid malignancies. Valproic 
acid, another HDAC inhibitor, was found to induce histone 
hyperacetylation and inhibit angiogenesis, resulting in pro-
longed survival of orthotopic xenograft mouse models of 
medulloblastoma (Zhang et al. 2011). Although therapeutic 
effects have been ascertained from administering demethyl-
ating agents and HDAC inhibitors alone, combination treat-
ments of epigenetic therapies with either chemotherapeutic 
drugs or each other have been found to be most effective in 
stimulating synergistic antitumor activity (Fang et al. 2010; 
Gagnon et al. 2003; Gollob et al. 2006; Lemaire et al. 2009; 

Plumb et al. 2000; Venturelli et al. 2007). Drug-resistant 
ovarian and colon tumor xenograft mouse models treated 
with decitabine increased hMLH1 expression through pro-
moter demethylation. Although this did not affect tumor 
growth, the treatment sensitized the xenografts to cisplatin 
and other chemotherapeutic drugs, increasing their effi cacy 
(Plumb et al. 2000). Xenograft hepatoma models were used 
to examine the effects of azacytidine and an HDAC inhibitor 
when administered alone or in combination. It was found 
that the combination therapy generated signifi cant antitumor 
effects compared with each agent administered alone 
(Venturelli et al. 2007). The potential of combination ther-
apy with epigenetic agents has been established through the 
use of in vivo models, and many demethylating agents and 
HDAC inhibitors are currently in or have completed clinical 
trials for human use (Amatori et al. 2010; Fang et al. 2010; 
Gollob et al. 2006). 

Conclusions 

The greatest challenge to cancer researchers is the integra-
tion of human and animal data to realize the translational 
potential of fi ndings. Although epidemiologic studies have 
identifi ed dietary and environmental factors as associated 
with risk of cancer, animal models can identify the mecha-
nisms and temporal relationship between these factors and 
carcinogenesis. Translational research that integrates results 
from human and animal studies will provide insight into the 
temporal nature of epigenetic dysregulation during tumor 
initiation and progression and into how environmental and 
dietary exposures infl uence the epigenetic phenotype of a 
tumor. Additionally, these studies will determine which can-
cer subtypes are susceptible to chemotherapy that infl uences 
epigenetic state, including DNA demethylating agents, 
HDAC inhibitors, or a number of the other promising epi-
genetic therapies currently in preclinical and clinical trials. 
Molecular characterization of tumor progression, including 
genetic and epigenetic profi les, is a key step in the development 
of individualized treatment modalities and personalized 
cancer therapy. 
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