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Abstract

Amnestic mild cognitive impairment (aMCI) often is an early stage of Alzheimer’s disease (AD).

MCI is characterized by cognitive decline departing from normal cognitive aging but that does not

significantly interfere with daily activities. This study explores the potential of scalp EEG for early

detection of alterations from cognitively normal status of older adults signifying MCI and AD.

Resting 32-channel EEG records from 48 age-matched participants (mean age 75.7 years)–15

normal controls (NC), 16 early MCI, and 17 early stage AD–are examined. Regional spectral and

complexity features are computed and used in a support vector machine model to discriminate

between groups. Analyses based on three-way classifications demonstrate discrimination

accuracies of 83.9%–96.8% for MCI vs. NC (p-value<0.0029), 71.9%–96.9% for AD vs. NC (p-

value<0.0333), and 87.9%–90.9% for AD vs. MCI (pvalue<0.0136), depending on the EEG

protocol condition employed. These results demonstrate the great promise for scalp EEG spectral

and complexity features as noninvasive biomarkers for detection of MCI and early AD.
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INTRODUCTION

Mild cognitive impairment (MCI), especially the amnestic type, is a degenerative

neurological disorder characterized by cognitive decline which is greater than expected for

an individual’s age, but does not necessarily interfere with daily activities [1]. Early stages

of Alzheimer’s disease (AD) are characterized by progressive memory loss, diminished

vocabulary, and lowered ability to execute precise motor movements, together with impaired

activities of daily living. Previous research has shown that MCI patients progress to AD at a

rate of approximately 10% to 15% of patients per year [2],[3]. The prevalence of MCI and

AD increases with age, making MCI/AD research of significant interest in geriatric

medicine. Current interest in the field is focused on detection of MCI at the earliest possible

time for purposes of instituting medication and lifestyle changes to slow or halt progression

of further cognitive decline. However, there is no biomarker-based test or screening tool of

utility in the primary care setting.

Several causes of MCI and AD have been hypothesized based on pathologic features

observed in the brains of AD patients. The current leading hypothesis for the cause of AD is

abnormal deposition of amyloid beta protein in the brain together with a second abnormal

protein, microtubule-associated tau [4],[5]. No single root cause can be attributed to MCI.

However, given the high number of MCI patients who progress to AD, the fundamental

cause of both MCI and AD is likely to be the same in many cases [6]. In the current study,

the MCI participants were all diagnosed as amnestic MCI.

The earliest stage of MCI and AD diagnosis is often based on neuropsychological tests and

patient history evaluations [7]. Once it is determined that the subject is experiencing

abnormal cognitive decline, physicians in advanced memory disorders clinics employ more

quantitative diagnostic tools. One such tool is the analysis of cerebrospinal fluid (CSF)

biomarkers. The most common CSF biomarkers used for AD diagnosis are amyloid beta and

tau. These biomarkers provide a reliable means to distinguish AD from other forms of

dementia and appear in characteristically abnormal levels at the earliest onset of the disease

[8],[9]. Published findings suggest that CSF examination can identify abnormal proteins in

patients who went on to develop AD later [10].

Imaging in AD has been studied intensively in recent years [11]. Positron emission

tomography (PET) detects fibrillar amyloid protein in living subjects using amyloid-binding

tracer, Pittsburgh Compound B (PiB)14. The regional variations in PiB binding in vivo are

strikingly similar to the deposits of amyloid beta and tau neurofibrillary tangle distributions

post-mortem [12]. PET scans have been able to measure the PiB uptake in the neocortex and

identify the regional distribution of amyloid beta plaque burden with high specificity in AD.

Additionally, structural magnetic resonance imaging (sMRI) studies have shown reductions

in volume of the hippocampus, one of the key areas of the brain affected by amyloid beta

and tau deposition early in the disease [13]. Diffusion tensor MRI can measure white matter
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integrity in the brain and may be more useful as an earlier biomarker of AD than sMRI [14].

Structural MRI and amyloid-PET scans may be used in combination in AD, but they are

complex, expensive, require radiation exposure in the case of PET, and are not yet

standardized tools for AD detection and diagnosis.

EEG is a noninvasive method indirectly measuring brain neural electric activity from the

scalp of the head. Even though it has been around for decades, using EEG as cognitive

biomarker to detect and predict MCI and AD in individuals is a relatively new effort [15].

Scalp EEG has the potential to play a significant role as one of the earliest biomarkers for

MCI and early-stage AD, before clinical diagnosis. EEG operates through the recording of

oscillations of brain electric potentials from electrodes attached to the scalp. EEG data from

MCI and AD patients have been shown to have lower mean levels of channel-to-channel

synchronization than those of healthy controls [16],[17]. The effects of cortical neurons’

deaths, axonal pathology, cholinergic deficits, and other neural network disconnections as

concomitants of the disease are manifested by multiple changes in EEG characteristics [18]–

[21]. Cognitive impairment as a result of AD is correlated with a reduction in dominant

posterior rhythm while dementia in general correlates well with a rise in theta activity [19].

Decreased synchronization in local and global networks is also observed with AD [17],[22],

[23]. Other potential differences in spectral features of EEG for MCI/AD have also been

noted [24]–[28]. Experimental results using EEG to correctly distinguish AD patients from

healthy controls have proven promising; however, researchers have encountered difficulty in

distinguishing between different stages of dementia (e.g., MCI vs. AD) [29],[30]. In many

cases, group differences can be demonstrated, but group means are not sufficiently different

to allow for diagnostic identification of an individual with a specific group [31]–[37]. If

EEG technology can be developed to discriminate MCI from normal EEG for individuals

and to show changes over relatively short time periods in and individual, it will be

transformative in the early detection of MCI, AD, and other dementias, as it is more

sensitive than behavioral testing, inexpensive, noninvasive, and can be made practical for

primary care settings. In this study we focus on the spectral and complexity features of EEG

as distinctions between normal older, MCI, and AD subjects.

MATERIALS AND METHODS

Participants

The EEG data used in this study were recorded in the Aging Brain and Cognition laboratory

in the Behavioral Science Department and Sanders-Brown Center on Aging at the

University of Kentucky (UK) College of Medicine. Participants between the ages of 60 and

90 years were recruited from a study cohort of cognitively normal older adults identified by

the Alzheimer’s Disease Center (ADC) of the UK College of Medicine. The normal older

participants are screened annually and were followed into likely MCI or AD stage till

autopsy. MCI and AD participants were diagnosed and recruited by cognitive neurologists

Drs. C. Smith and G. Jicha at the UK ADC Clinical Core and from its Research Memory

Disorders Clinic. All MCI participants belonged to the amnestic MCI subtype. A list of

neurological assessments used to make MCI/AD diagnoses is provided in Table 1 [26].

Means and standard deviations for MMSE scores for the three groups are presented in Table

McBride et al. Page 3

Comput Methods Programs Biomed. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2. The MCI and early AD participants’ EEG data were recorded as soon as possible after

diagnoses were made.

All participants were screened to exclude active or unstable medical conditions, depression,

and other psychiatric disorders, or history of neurologic or neurosurgical conditions. No

participants were to have the ApoE4 allele for Alzheimer’s risk or to be on any psychoactive

medication other than antidepressants. For cognitively normal individuals, we excluded

those with the ApoE4 genes risk factor in order to have low-risk normal control (NC) group.

Systolic hypertension, donepezil, and anti-depressants are known to modulate EEG markers

including event-related potentials associated with cognitive functions. These conditions are

very common in the population of interest, complicating outright exclusion; however,

uncontrolled hypertension or use of sedatives such as the benzodiazepines were bases for

exclusion from the study.

Participants were well-matched with regards to age, with normal controls, MCI, and AD

participants having mean ages of 75.7 years (SD 5.5 years), 74.6 years (SD 9.0 years), and

76.7 years (SD 5.2 years). NC and AD participants were also well-matched in regards to

gender, with NC and AD participants being comprised of 60% females. MCI participants

were only 25% female. Difference in MCI gender was likely due to recruiting and does not

reflect population trends.

EEG Protocols

Participants were connected to 64- or 32-channel EEG caps using a Neuroscan II system

(10–20 montage). In either case, only the 32 common channels were recorded. EEG data

were recorded under a protocol using three different non-memory-task conditions. These

included: (1) resting with eyes open for 5 minutes, (2) resting with eyes closed while

counting backwards by ones for 10 minutes while tapping a finger, and (3) resting with eyes

closed for 10 minutes, followed by another 5 minutes of eyes open while resting. EEG

recordings were performed without interruption at the same appointment for each

participant. EEG data were acquired at 500 Hz. The 32 EEG channels included 2 ocular

channels that were used to determine the dominant eye blink frequency. A simple 2nd order

Butterworth filter was used to attenuate frequencies greater than 200 Hz. Notch filters were

used to remove dominant eye blink frequencies and to remove 60 Hz frequencies, which

may have been amplified by background electronic devices. In addition, localized

subtraction of baseline for identified muscular and other low frequency artifacts was

performed. Analysis of EEG data examined only frequency components less than 40 Hz.

Feature Extraction

Spectral and complexity features were computed for the preprocessed EEG based on

oscillations. A few spectral and complexity features were also computed for the first time

derivative of the EEG. Investigation of spectral and complexity features of the first time

derivatives was motivated by the fact that time derivatives of the EEG voltages (V′(t))
contain indirect information regarding time-dependent rate of change of impedance (Z′(t))
and distribution of charge (rate of change of current flow, l′(t)) in the brain, both of which

may be affected by disruption of neural pathways due to disease pathology (V′(t) = Z′(t)l(t)
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+ l′(t)Z(t)). A total of 24 features were calculated for each channel: 18 for the preprocessed

EEG and 6 for the time derivatives; see Table 3 for a list of features.

Spectral Features

Relative spectral power in the θ band ( , 3.5–7.5 Hz), α1 band ( , 7.5–9.5 Hz), α2 band

( , 9.5–12.5 Hz), β1 band ( , 12.5–17.5 Hz), β2 band ( , 17.5–25 Hz), and γ band

( , 25–40 Hz) were computed. Additional spectral features included total spectral power

(Ptotal, 3.5–40 Hz), peak α band frequency ( ), median frequency (fmed), and spectral

entropy (Sspec). Peak α band frequency is defined as the frequency in the range 7.5–12.5 Hz

at which the power spectral density curve is maximized. Median frequency is defined as the

frequency at which the total spectral power is halved. Spectral entropy is defined as Shannon

entropy computed over the normalized power spectral density curve. The mathematical

definition for Sspec is given by Equation (1), where p(fi) is the probability of occurrence of

frequency fi, P(fi) is the spectral power at frequency fi, and Ptotal is the total spectral power

(3.5–40 Hz).

(1)

Three spectral power ratios were also computed. These ratios were used based on previous

observations of increased power in the θ band of EEG taken from MCI and AD individuals

[30],[38]. The definitions for these ratios are presented in Equations (2), (3), and (4).

(2)

(3)

(4)

Spectral features were computed using the power spectral density of individual channels’

records as determined by the Welch Modified Averaged Periodogram Method [39]. In

applying Welch’s method, a signal is split into overlapping segments of a given length. The

overlapping segments have a tapering window applied to them in the time domain which

tapers the data at either end. Periodograms are then calculated for each segment by

computing the discrete Fourier transform and the squared magnitude of the result. The

periodograms are then averaged. In calculating spectral features, two-second segments with

50% overlap were used. Each two-second segment was modified by a Hanning window

(50% cosine taper). Periodograms were then calculated for each two-second segment and
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averaged. Choice of window length and tapering window were based on methods for

computing other common spectral features of EEG presented by previous researchers [30].

Entropy and Complexity Features

Entropy and complexity measures were also computed, including activity (A), mobility (M),

complexity (C), sample entropy (Ssamp), and Lempel-Ziv complexity (CLZ). The definitions

for activity, mobility, and complexity are presented in Equation (5), where σ0 is the variance

of the signal, σ1 is the variance of the first derivative of the signal, and σ2 is the variance of

the second derivative of the signal.

(5)

Sample entropy is defined as the negative natural log of the conditional probability that time

series of length N, having repeated itself within a tolerance of r for m data points, will also

repeat itself for m + 1 points. Note that this definition excludes self-matches. One can define

Nm as the number of matches of length m and  as the subset of Nm that also matches

for length m + 1. Sample entropy can then be defined mathematically by Equation (6). In our

analyses, we chose m = 2 and r = 0.2 times the standard deviation of the signal. Choice of m

and r were based on approaches presented by previous researchers [30].

(6)

Lempel-Ziv complexity CLZ is a commonly-used measure for characterizing the randomness

of biomedical signals. To compute CLZ, the numerical sequence (signal) must first be

transformed into a symbolic sequence S. The most usual means to do this is to convert the

signal into a 1/0 symbolic sequence by comparing the signal to a threshold value, usually the

median value of the signal. For example, whenever the signal is larger than the median

value, one maps the signal to 1, otherwise, to 0. After mapping the signal into its symbolic

1/0 sequence, the sequence can be parsed to obtain distinct “words”, and the “words” can be

encoded. Lempel-Ziv complexity can then be defined as the length of the encoded sequence

L divided by the length of the signal n.

In order to parse the signal one can sequentially scan the sequence and S = s1s2 … sn rewrite

it as a concatenation W = w1−w2 … wk of k “words” chosen such that w1 = s1 and wj is the

shortest “word” that has not appeared previously. Thus, wj = wi0 or wi1, where 1 ≤ i ≤ j−1.

For example, for the sequence S = 1011010100010, W = 1-0-11-01-010-00-10. The “word”

sequence W must then be encoded. This can be done as follows. For each “word” use log2 k

bits to describe the location of the prefix to each “word” and 1 bit to describe the last bit of

the “word”. For this example, k = 7 words. Thus, one would use 3 bits to describe the prefix

location for each word, with 000 being the prefix for an empty set. The encoded sequence

would then be (000,1)-(000,0)-(001,1)-(010,1)-(100,0)-(010,0)-(001,0). The length of the

encoded sequence L is then equal to k(log2 k + 1). Lempel-Ziv complexity can then be
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defined mathematically by Equation (7). When the length of the signal n is very large, k ≤

n/log2 n and Equation (7) reduces to Equation (8) [30].

Entropy and complexity features were computed using five-second windows with 50%

overlap and then averaged. Choice of window length was based on methods presented by

previous researchers [30].

(7)

(8)

Regionally-Averaged Features

The 24 features described above and presented in Table 3 were calculated for the first 2

minutes of data for each protocol condition. Features were computed for each channel used

in analyses. The 30 channels were grouped into 12 scalp regions based on their arrangement

and location on the scalp. The regions included: (1) left frontal (LF); (2) right frontal (RF);

(3) frontal (F = LF + RF + channel FZ); (4) left temporal (LT); (5) right temporal (RT); (6)

left central (LC); (7) right central (RC); (8) central (C = LC + RC + channels FCZ and CZ);

(9) left parietal (LP); (10) right parietal (RP); (11) parietal (P = LP + RP + channels CPZ

and PZ); and (12) occipital (O). Note that left and right regions do not include central line

channels; see Fig. 1 for regional boundaries. A global region (G) comprised of all channels

was also considered. Each of the 24 features was averaged over each region (including G)

for a total of 13 regional average feature groups.

Feature Selection

The three groups of participants (NC, MCI, and AD) provided three binary discrimination

problems: (1) MCI vs. NC, (2) AD vs. NC, and (3) MCI vs. AD. Twenty-four features were

computed for each of the 13 regions described above for each subject for each protocol

condition. Feature selection was performed as follows. For each discrimination problem and

each condition, combinations of up to eight features were tested using support vector

machine (SVM) functions in MATLAB™ [39]. Quadratic kernel functions were used in all

discriminations and the cost coefficient was held constant at unity. To help avoid overfitting,

nested leave-one-out cross-validation loops were used to suggest and test different

combinations of features. The inner loop was used to generate a list of suggested

combinations of features using a forward, supervised, high-score feature selection method

where combinations were scored using leave-one-out cross-validation accuracy of SVM

model predictions based on a smaller, randomized, subset of records [24]. The outer loop

determined the leave-one-out cross-validation accuracy of the combinations of features

suggested by the inner loop for all available records. The contribution of individual features

was then assessed based on how often they appeared in the 200 best performing feature

combinations tested in the outer loop simulations. Ultimately, the eight features that

appeared most often were selected for each protocol condition and binary classifier.
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Statistical Significance of Binary Classifiers

The statistical significance of the leave-one-out cross-validation accuracies of the binary

classifiers was assessed using Monte Carlo permutation testing [40]. Specifically, a random

sample of 10,000 permutations of shuffled labels indicating groups (NC, MCI, or AD) was

used to estimate a 95% confidence interval for the probability that the leave-one-out cross-

validation accuracies obtained were due to chance. The p-values presented were determined

using this method.

Three-way Classification via Binary Classifiers

For each protocol condition, a three-way classification scheme was constructed using the

pairwise coupling approach proposed by Hastie and Tibshirani [41]. For a given record, each

binary SVM classifier was trained using all other available records and was applied to the

given record. If two out of three of the SVM binary classifiers classified a record as

belonging to class i, then the final decision of the classifier was to classify the record as

belonging to class i. If instead, each of the three binary classifiers classified the record as a

different one of the three possible classes, then the record was categorized as undetermined.

For each undetermined record, the probability of that record belonging to each class, pi, i =

1, 2, 3, was then estimated. The final decision for an undetermined record was chosen as the

class corresponding to the largest probability, argmaxi(pi)[41].

RESULTS

For each protocol condition, the selected features for each binary classifier were selected for

further analyses. Two-sample Student t-distribution tests (unequal variance) were performed

on group means of individual features in order to determine whether linear group differences

based on the given samples were great enough to statistically infer differences in the groups’

populations. The results of the t-distribution tests thus provided a measure of linear

separability of groups for individual features. Features for which significant linear

separation existed, and the significance of the separability, are indicated in Table 4. Given

the small sample sizes, such inference required large differences between group means and

small variation within groups. It should be noted that such tests are dependent on the

assumption of representative samples.

Leave-one-out binary classification accuracies were computed for each binary classifier for

each protocol condition. In each case, all eight of selected features listed in Table 4 were

employed in combination using a quadratic SVM model. The results are summarized in

Table 4 where 95% confidence intervals for corresponding p-values of the resulting leave-

one-out cross-validation accuracies were assessed using Monte Carlo permutation testing.

MCI vs. NC Binary Classification

For both the eyes open, resting protocol condition and the counting task, MCI patients

demonstrated a significant increase in total power in the central region (C-Ptotal) compared

to normal controls. While resting with eyes open, the MCI group’s data show a decreased in

alpha and beta activity in the first derivative for the right frontal (RF) and parietal (P)

regions, as evidenced by a significant decrease in the median frequency in the right frontal
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region (RF-fmed) and peak alpha frequency in the parietal region ( ). A significant

decrease in the alpha and beta activity of the first derivative was also observed in the right

frontal region (decreased RF-(fmed)′) during the counting task. MCI participants also

demonstrated a significant increase in the activity measure (A) in the central region (C)

during the counting task. When resting with eyes closed, MCI participants exhibited

increased theta activity in the central (C) and left temporal (LT) regions coupled with

decreased higher beta band activity in the left frontal (LF) region compared to NC

participants, although these differences were not substantial enough to allow statistical

inferences regarding population trends. Significant differences observed for MCI

participants while resting with eyes closed included a decrease in the sample entropy of the

first derivative (C-(Ssamp)′), a decrease in total power in the left parietal regions (LP-Ptotal),

and an increase in gamma band activity on a global level ( ).

Leave-one-out cross-validation discrimination accuracies of 96.8% (p<0.0014), 83.9%

(p<0.0029), and 93.6% (p<0.0003) were achieved for MCI vs. NC discrimination for the

eyes open condition, counting task, and eyes closed while resting conditions, respectively.

AD vs. NC Binary Classification

A leave-one-out cross-validation accuracy of 84.4% (p<0.0043) was achieved for AD vs.

NC discrimination during the eyes open, resting condition. Group differences in selected

features indicate a significant increase in the total power of the first derivative in the frontal

region (F-(Ptotal)′) and a decrease in spectral entropy of the first derivative in the left

parietal region (LP-(Sspec)′) for AD participants. AD participants also demonstrated an

increase in complexity in the left temporal region (LT-C). Increases in theta activity and

decreases in alpha and beta activity were also observed in the frontal (F) regions; however,

groups were not linearly separable at a significant level for these features.

While counting backwards with eyes closed, AD patients were observed to have a

significant increase in total power (Ptotal) and activity (A) in the frontal region (F) compared

to normal controls, including a significant increase in total power of the first derivative in

the right frontal region (RF-(Ptotal)′). Increases in theta activity were also observed in the

left temporal (LT) and parietal (P) regions; however group differences were not significantly

linearly separable. A leave-one-out cross-validation accuracy of 96.9% (p-value<0.0003)

was achieved for AD vs. NC discrimination during the counting task.

For resting with eyes closed, the AD group data show significant increases in the total power

(LC-Ptotal) and activity (C-A) in the central region compared to normals. In addition, AD

participants were also observed to have a significant decrease the total power of the first

derivative in the right temporal region (RT-(Ptotal)′). Increases in theta activity in the central

(C) region and a decrease in sample entropy in the occipital (O) region were also observed

in AD data, although differences were not linear. A leave-one-out cross-validation accuracy

of only 71.9% (p-value<0.0333) was achieved for the eyes closed, resting condition.
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AD vs. MCI Binary Classification

Differences between MCI and AD patients while resting with eyes open included a

significant increase in total power in the right temporal region (RT-Ptotal), total power of the

first derivative in the frontal region (F-(Ptotal)′), and sample entropy of the first derivative in

the left frontal region (LF-(Ssamp)′) for AD participants. In addition, AD participants were

observed to have lower gamma activity in the right frontal (RF) and left temporal (LT)

regions, decreased alpha and beta activity in the left temporal (LT) region, and increased

alpha and beta activity in the right parietal (P) and occipital (O) regions. These differences,

however, did not significantly deviate in a linear manner from patterns observed for MCI

participants. During the counting task, AD participants demonstrated significant increases in

total power in the right central region (RC-Ptotal) and activity (A) in the right central (RC)

and parietal (P) regions. Less significant differences included increased alpha activity in the

central regions and decreases in alpha activity and complexity in the left frontal and

occipital regions, respectively. While resting with eyes closed, AD participants again

demonstrated significant increases in total power (Ptotal) in the central (C) regions. This was

accompanied by a significant increase in activity in the left temporal region (LT-A). AD

participants also had decreased beta activity in the right central (RC) and frontal (F) regions.

Leave-one-out cross-validation discrimination accuracies of 90.9% (p<0.0136), 90.9%

(p<0.0081), and 87.9% (p<0.0063) were achieved for AD vs. MCI discrimination for the

eyes open condition, counting task, and eyes closed while resting conditions, respectively.

Three-way Classification Results

Three-way classification results for eye open condition are presented in Table 5. Of those

records classified as MCI, 100% were MCI; and of those records classified as AD, 81.3%

were AD. Normal predictions were not as accurate, with only 70.6% of those records

classified as being normal actually being normal. On the other hand, of all the true normal

participants, 80.0% of them were accurately identified; of all the true MCI participants,

93.8% were accurately identified; and of all the true AD participants, 76.5% were accurately

identified. Overall, the prediction accuracy was 83.3%.

Three-way classification results for the counting task are presented in Table 6. Of those

records classified as normal, 100% were normal; of those classified as MCI, 75% were MCI;

and of those classified as AD, 88.2% were AD. On the other hand, of all the true normal

participants, 73.3% of them were accurately identified; of all the true MCI participants,

93.8% were accurately identified; and of all the true AD participants, 88.2% were accurately

identified. Overall, the prediction accuracy was 85.4%.

Three-way classification results for the resting with eyes closed condition are presented in

Table 7. Of those records classified as normal, 78.6% were normal; of those classified as

MCI, 82.4% were MCI; and of those classified as AD, 76.5% were AD. On the other hand,

of all the true normal participants, 73.3% of them were accurately identified; of all the true

MCI participants, 87.5% were accurately identified; and of all the true AD participants,

76.5% were accurately identified. Overall, the prediction accuracy was 79.2%. Among all

the protocol conditions, the resting with eyes closed three-way classifier performed most
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poorly in overall accuracy. This is not surprising, however, given the resting with eyes

closed condition resulted in the poorest binary classifier performance for distinguishing AD

from normal or MCI participants.

DISCUSSION

In this study, regional spectral and complexity features of scalp EEG recorded during resting

state conditions and a simple cognitive task of counting backwards by ones are explored as

potential biomarkers for discriminating among NC, MCI and AD groups. Resting state

protocols and a simple cognitive task (i.e., counting backwards) eliminates the need for extra

training of primary care personnel in administering complex cognitive tasks. We have also

demonstrated good result from analyzing short data segments (two minutes), practical for a

primary care setting.

Previous studies have explored various EEG features for the discrimination of MCI/AD

from normal individuals. Several of these researchers have observed that features which

appear to discriminate AD from NC well, do not necessarily perform well when applied to

MCI data [4],[5],[26]. While it would be convenient to have features that operate with

normals at one extreme value, AD at the other extreme, and MCI somewhere in the middle,

thus making the three groups clearly and linearly separable with a clear linear pattern of

progression, that is often not the case. Instead, MCI individuals often appear to be spread

across boundaries that otherwise clearly discriminate AD from normal participants. A

different set of features may, therefore, be required for discriminating between MCI vs. NC,

AD vs. NC, and MCI vs. AD [42].

Three generally accepted trends in the literature for MCI/AD discrimination via EEG are:

(1) a shift in the power spectrum toward the lower frequencies (delta and theta band)

coupled with a decrease in alpha and beta band activity; (2) decreased complexity; and (3)

decreased synchronization [17],[23],[22],[43]. These trends, however, are generally reported

as global trends observed during eyes closed, resting protocol conditions. Trends in the

complexity and spectral power distribution of the first derivative of EEG for MCI and AD

are less well established. Furthermore, patterns may differ at different parts of the brain. The

features selected to serve as discriminating features for the binary classifiers were examined

for trends between groups. For the eyes closed, resting condition, we have consistent results

(i.e., decreased complexity, decreased alpha and beta band activity), however these trends

were not statistically significant for our participants.

As stated in [44], evidence of the diagnostic utility of resting EEG in dementia and mild

cognitive impairment (MCI) is still not sufficient to establish this method for the initial

evaluation of subjects with cognitive impairment in the routine clinical practice. In addition,

AD EEG studies have been done at the group level. Much work has been done showing

group differences, i.e. AD brains differ from those of the normal brains, but differences were

not sufficient to categorize individuals. In this work, participants are classified at the

individual level, which is the case when a patient comes into a doctor’s office.

Individualized analysis allows these EEG markers to be tested against known biomarkers for

Alzheimer's disease and with cognitive tests. It is our goal to be able to use easy neural
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indicators to diagnose and predict cognitive decline pre-clinically, such as among people

with subjective memory complaints.

Dementia can cause different neurological changes in different individuals–especially in the

case of more enigmatic diagnoses such as MCI [45],[46]. Such differences may lead to the

failure in the generalization of globally-averaged spectral measures to other data sets. While

most of the features employed have been used before on either a global or individual

channel basis, we examine how the features' values change on a topographical regional

basis. The topographical regions do not necessarily correspond to the cortical location of the

source of the brain activity; e.g., activity recorded at a central electrode site may reflect a

source from the frontal cortex. One goal of this work was to discover regional differences in

common EEG features to be potential indicators for cognitive degeneration. In addition, we

examined the discriminating power of different features for different protocols, including

resting protocols—eyes open and eyes closed—and a simple cognitive task.

This study explores differences in common spectral and complexity measures of EEG on a

regional and global basis for the discrimination of preclinical dementia from the normal

aging condition. The successful discrimination between the three groups of EEG records

(NC, MCI, and AD) are the result of differences in regional electrical activity in specific

frequency bands in resting states and during a simple cognitive task. The current work does

not distinguish between different subtypes of MCI such as single- vs. multiple-domain

deficits. Such questions are potential topics for future research.

The results for the three-way discrimination presented here are encouraging, especially those

for MCI, as detection of MCI at the earliest possible stage is currently of great interest in the

field. Precisions of 100%, 75%, and 82.4% were achieved for MCI participants for the eyes

open condition, counting task, and eyes closed condition, respectively. The highest

precisions for NC and AD participants were achieved during the counting task, which

suggests that a simple cognitive task may be a reliable protocol for detection of

characteristic EEG differences associated with AD. The three-way classification scheme

presented here allows for the differentiation of the three groups without a priori knowledge

that individuals fall into two of the three groups. One limitation of this study is the small

number of participants. Future work will increase the sample size, and examine our EEG

indicators against AD biomarkers (e.g., CSF) to test the robustness and generality of the

results here. Future work will also examine whether longitudinal changes over relatively

short time periods can be detected at the individual level.
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Fig. 1.
Regional Boundaries. Left: major regions; right: subregions. LF=left frontal; RF=right

frontal; F=frontal; LT=left temporal; RT=right temporal; LC=left central; RC=right central;

C=central; LP=left parietal; RP=right parietal; P=parietal; O=occipital.
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Table 1

UK-ADC Uniform Research Battery of Cognitive Tests and Other Evaluations

General Cognitive Measures

MMSE; Kokmen Test

Clinical Dementia Rating (CDR)

Memory Domain Measures

WMS Logical Memory I & II

California Verbal Learning Test*

Attention/Executive Domain Measures

Trail Making Tests A & B

WAIS-R Digit Span & Digit Symbol

Language Domain Measures

COWAT*

Animal & Vegetable Fluency

Boston Naming

Visual/Spatial Domain Measures

CERAD Figures

Baseline Only

National Adult Reading Test*

Medical Evaluation

Physical exam*

Neurological exam*

Medical history*

Medications

Nutritional supplements

Food Frequency Questionnaire (FFQ)

Psychiatric Evaluation

Neuropsychiatric Inventory Questionnaire (NPI-Q)

Geriatric Depression Scale (GDS)

Functional Ability Measures

Functional Assessment Questionnaire (FAQ)

SF-36*

ADCS-ADL*

*
Additional test measures or expanded content beyond UDS core measures
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Table 2

MMSE Scores for Groups

AD MCI NC

24.26 (2.42) 27.40 (2.00) 29.43 (0.73)

Group means for Mini Mental; standard deviations in parentheses
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Table 3

Features

Relative Spectral Power Features

(1) : relative power in θ band

(2) : relative power in α1 band

(3) : relative power in α2 band

(4) : relative power in β1 band

(5) : relative power in β2 band

(6) : relative power in γ band

Additional Spectral Features

(7) Ptotal: total spectral power

(8) : peak α band freq.

(9) fmed: median freq.

(10) Sspec: spectral entropy

Spectral Power Ratios

(11) R1: first ratio

(12) R2: second ratio

(13) R3: third ratio

Entropy/Complexity Features

(14) A: activity

(15) M: mobility

(16) C: complexity

(17) Ssamp: sample entropy

(18) CLZ: Lempel-Ziv complexity

First Derivative Features

(19) (Ptotal)′: total spectral power of first derivative

(20) : peak α band freq. of first derivative

(21) (fmed)′: median freq. of first derivative

(22) (Sspec)′: spectral entropy of first derivative

(23) (Ssamp)′: sample entropy of first derivative

(24) (CLZ)′: Lempel-Ziv complexity of first derivative

Definitions for features and descriptions of how they were computed are provided in the Spectral Features and Entropy and Complexity Features
sections.
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