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Alzheimer’s disease is neurodegenerative disorder due to the accumulation of amyloid-𝛽 in the brain and causes dementia with
ageing. Some researches indicate that the RXR agonist, Targretin, has also been used for treatment of Alzheimer’s disease in
mouse models. We investigate the potent candidates as RXR agonists from the vast repertoire of TCM compounds in TCM
Database@Taiwan. The potential TCM compounds, 𝛽-lipoic acid and sulfanilic acid, had higher potent binding affinities than
both 9-cis-retinoic acid and Targretin in docking simulation and have stable H-bonds with residues Arg316 and some equivalent
hydrophobic contacts with residues Ala272, Gln275, Leu309, Phe313, Val342, Ile345, and Cys432 as Targretin. The carboxyl or
sulfonyl hydroxide group can form a H-bond with key residue Arg316 in the docking pose, and the phenyl group next to the
carboxyl or sulfonyl hydroxide group can form a 𝜋 interaction with residue Phe313. Moreover, 𝛽-lipoic acid and sulfanilic acid have
stable H-bonds with residue Gln275, Ser313, and residue Ala327, respectively, which may strengthen and stabilize TCM candidates
inside the binding domain of RXR protein. Hence, we propose 𝛽-lipoic acid and sulfanilic acid as potential lead compounds for
further study in drug development process with the RXR protein against Alzheimer’s disease.

1. Introduction

Alzheimer’s disease is serious problem which will cause huge
cost for taking care of the patient. It is neurodegenerative
disorder due to the accumulation of amyloid-𝛽 in the brain
and causes dementia with ageing [1, 2]. The cholesterol
transport protein apolipoprotein E plays the important role in
the clearance of amyloid-𝛽 from the brain [3]. In addition, the
transcription of apolipoprotein E expression is also regulated
by the heterodimers of RXR with PPAR-𝛾 and LXRs [4, 5].
The RXR agonist, Targretin, has also been used for treatment
of Alzheimer’s disease in mouse models [6].

The retinoic X receptors (RXRs) belong to a super-
family of eukaryotic transcription factors. They are ligand-
dependent nuclear receptors involved in the processes of
retinoid signaling in normal hematopoiesis [7, 8] and cell

development such as cell patterning, organogenesis, prolifer-
ation, and differentiation [9, 10]. RXRs have three different
isoforms (𝛼, 𝛽, and 𝛾) which form heterodimers with other
nuclear receptors, such as retinoid acid receptor (RAR),
peroxisome proliferator-activated receptor (PPAR), farnesoid
X receptor (FXR), liver X receptor (LXR), thyroid hormone
receptor (TR), and vitamin D receptor (VDR) as coregulators
[11–17].The transcription of RXRs is activated by endogenous
9-cis-retinoic acid, which is a vitamin A derivative for reg-
ulation of growth and morphogenesis [18–21]. The selective
synthetic ligands for the RXRs have been also indicated as
therapeutic agents to treat cancer and dermatological diseases
[22–27].

Nowadays, more and more mechanisms of diseases had
been determined to detect the useful target protein against
diseases [28–33]. Previously to in silico drug discovery
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Figure 1: Disordered amino acids predicted by PONDR-Fit and sequence alignment with disordered residues (yellow regions) and residues
in the binding domain (magenta regions).

researches, many compounds extracted from traditional
Chinese medicine (TCM) have been indicated as potential
lead compounds used for wide range of diseases, includ-
ing metabolic syndrome [34–36], stroke [37–40], cancers
[41–45], influenza [46–49], viral infection [50], diabetes
[51], inflammation [52], and some other diseases [53, 54].
To improve drug discovery from TCM compounds, we
aim to investigate the potent candidates as RXR agonists
from the vast repertoire of TCM compounds in TCM
Database@Taiwan. As the side effect and ligand binding
with target protein may affect by the structural disorders of
residues in the protein [55, 56], the prediction of disordered
amino acids of RXR protein was performed before virtual
screening. After virtual screening the TCM compounds,

the molecular dynamics (MD) simulations were then em-
ployed to study protein dynamics and analyze the stability of
interactions for each docking poses of TCM candidates.

2. Materials and Methods

2.1. Data Collection. The X-ray crystallography structure of
the intact PPAR-𝛾-RXR-nuclear receptor complex on DNA
with 9-cis-retinoic acid was obtained from RCSB Protein
Data Bank with PDB ID: 3DZY [57]. To protonate the struc-
ture of protein with Chemistry at HARvard Macromolecular
Mechanics (CHARMM) force field [58] and remove crystal
water, the crystal structure of RXR protein was prepared by
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Figure 2: Chemical scaffold of controls and two TCM candidates with their scoring function and sources.

Prepare Protein module in Discovery Studio 2.5 (DS2.5).The
binding site for virtual screening was defined by the volume
and location of 9-cis-retinoic acid. A total of 9,029 nondu-
plicate TCM compounds from TCM Database@Taiwan [59]
were protonating the structure by Prepare Ligand module
in DS2.5 after filtering by Lipinski’s Rule of Five [60].
The sequence of RXR protein from Swiss-Prot (UniProtKB:
P19793) was employed to predict the disordered amino acids
using PONDR-Fit [61].

2.2. Docking Simulation. The TCM compounds were vir-
tually screened by LigandFit protocol [62] in DS2.5. The
LigandFit docking procedure was performed by five major
steps. Firstly, it generates candidate ligand conformations
using Monte Carlo for docking.Then it positions each ligand
conformation in the binding site by multiple orientation or
permutation sampling of the ligand principal moments with
the principal moments of the site. The docking poses were
then optionally minimized with CHARMM force field [58]
and calculated the score using the dock score energy function
as follows:

Dock Score = − (ligand receptor interaction energy

+ ligand internal energy) .
(1)

A pose-saving algorithm was employed to compare the
candidate poses and reject the similar poses.

2.3. Molecular Dynamics (MD) Simulation. Gromacs [63] is
employed to study protein dynamics using classicalmolecular
dynamics theory.The global MD algorithm is defined by four

major parts. (1)We input the initial conditions with potential
interaction (𝑉), position (𝑟), and velocities (V) for all atoms in
the system in this part. (2)The program computes the forces
on each atom in the system as follows:

𝐹
𝑖
=
𝜕𝑉

𝜕𝑟
𝑖

, (2)

where 𝐹
𝑖
is obtained by calculating the forces between

nonbonded atom pairs, bonded interactions, and restraining
and external forces.

The potential and kinetic energies and the pressure tensor
are also computed in this part. (3)TheMD program updates
the configuration by simulating the movement of the atoms
using Newton’s equations of motion as follows:

𝜕𝑟
𝑖

𝜕𝑡
= V
𝑖
;
𝜕V
𝑖

𝜕𝑡
=
𝐹
𝑖

𝑚
𝑖

. (3)

(4) The MD program outputs the information of posi-
tions, velocities, energies, temperature, pressure, and so forth.
Finally, the MD program repeats the 2–4 parts for the
required number of steps.

The molecular dynamics simulations (MD) are per-
formed by Gromacs. To obtain the initial conditions of
each protein-ligand complex, the topology of RXR protein,
including charmm27 force fields, was reprepared by Gro-
macs. The topology and parameters of each ligand for use
with Gromacs were provided by SwissParam program [64].
The program has employed a cubic box with a minimum
distance of 12 Å from the molecules periphery and solvated
by a water model of TIP3P. Firstly, a maximum of 5,000 steps
energy minimization were performed using Steepest Descent
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Figure 3: Docking pose of RXR protein complexes with (a) 9-cis-retinoic acid, (b) Targretin, (c) 𝛽-lipoic acid, and (d) sulfanilic acid.

algorithm [65]. Then a single constant temperature (NVT
ensemble) equilibration was performed using Berendsen
weak thermal coupling method.TheMD program repeats 2–
4 parts in a time step unit of 2 fs under the particle mesh
Ewald (PME) option to obtain a total of 20 ns production
simulation. The 20 ns MD trajectories were analyzed by a
series of protocols in Gromacs.

3. Results and Discussion

3.1. Disordered Protein Prediction. The disordered amino
acids of RXR protein were predicted by PONDR-Fit with
the protein sequence from Swiss-Prot (UniProtKB: P19793).
The sequence alignment and result of disordered amino
acids prediction were displayed in Figure 1. The residues in

the binding domain do not deposit in the disordered region.
It has shown that the RXR proteinmay have a stable structure
of binding domain in protein folding.

3.2. Docking Simulation. Figure 2 displays the chemical scaf-
fold of 9-cis-retinoic acid, Targretin, and the top TCM
compounds ranked by dock score with their scoring function
and sources. The scoring function of dock score indicates
that the TCM compounds 𝛽-lipoic acid and sulfanilic acid
have higher binding affinities than both 9-cis-retinoic acid
and Targretin.The TCM compound 𝛽-lipoic acid is extracted
from Porphyra tenera Kjellm., whereas sulfanilic acid is
extracted from Capsella bursa-pastoris (L.) Medik.The dock-
ing pose of RXR protein complexes with 9-cis-retinoic acid,
Targretin, and two top TCM candidates was illustrated in
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Figure 6: Distance matrices consisting of the mean smallest distance between residue pairs for RXR protein complexes with (a) Targretin,
(b) 𝛽-lipoic acid, and (c) sulfanilic acid. Residues 1–110 in 𝑦-axis correspond to residues 132–241. Residues 111–302 in 𝑦-axis correspond to
residues 264–455.

Figure 3. All compounds have a hydrogen bond (H-bond)
with key residue Arg316. Moreover, both TCM candidates,
𝛽-lipoic acid and sulfanilic acid, has a H-bond with residue
Ala327. Both Targretin and sulfanilic acid, which have a
phenyl group, have a 𝜋 interaction with residue Phe313.
It shows that the carboxyl group or the group of sulfonyl
hydroxide can form a H-bond with key residue Arg316 in the
docking pose. The phenyl group next to the carboxyl group
or the group of sulfonyl hydroxide can form a 𝜋 interaction
with residue Phe313.

3.3. Molecular Dynamics Simulation. As the docking sim-
ulations are perform in the condition of rigid body of
RXR protein, the molecular dynamics (MD) simulations
were then employed to study of protein dynamics and
analyze the stability of interactions for each docking poses.
The root-mean-square deviations (RMSDs) and total ener-
gies over 20 ns MD simulation for RXR protein complexes

with Targretin,𝛽-lipoic acid, and sulfanilic acid are illustrated
in Figure 4. The complexes with Targretin, 𝛽-lipoic acid,
and sulfanilic acid tend to be stable after 16 ns, 16.2 ns,
and 17.4 ns MD simulation, respectively. The analysis of
solvent accessible surface area for complexes under dynamics
condition in Figure 5 indicates that the RXR protein com-
plexes with Targretin, 𝛽-lipoic acid, and sulfanilic acid have
similar hydrophobic and hydrophilic surface area and the
MD simulation tends to be stable. Figure 6 also shows that
the RXR protein has similar mean smallest distance between
residue pairs for protein complex with Targretin and two top
TCM compounds. They indicate that the protein structure
of RXR protein complex with top two TCM compounds, 𝛽-
lipoic acid and sulfanilic acid, may not cause the significant
differences from docking with Targretin.

Root-mean-square deviation value and graphical depic-
tion of the clusters with cutoff 0.11 nm for each RXR pro-
tein complexes are employed to display the RMSD values
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Figure 7: (a) Root-mean-square deviation value (upper left half) and graphical depiction of the clusters with cutoff 0.11 nm (lower right half)
for RXR protein complexes with Targretin. (b) Docking poses of middle RMSD structure in the major cluster for RXR protein complexes
with Targretin. (c) Distances of hydrogen bonds with common residues during 20 ns MD simulation.

between MD trajectories and identify the middle RMSD
structure in the major cluster as the representative structures
of each protein-ligand complex after MD simulation. For
RXR protein complexes with Targretin, the docking poses of
middle RMSD structure in the major cluster after 16 ns MD
simulation are illustrated in Figure 7(b). Targretin has the
similar docking pose as docking simulation and maintains
the H-bond with key residue Arg316 and 𝜋 interaction with
residue Phe313. According to the occupancies of H-bonds for
common residues of RXR protein listed in Table 1 and the
fluctuation of distances for H-bonds displayed in Figure 7(c),
they show that the carboxyl group of Targretin can form

stable interactions with residue Arg316. For RXR protein
complexes with 𝛽-lipoic acid, the representative structures
of docking pose after MD simulation are illustrated in
Figure 8(b). 𝛽-lipoic acid maintains the H-bond with key
residue Arg316 and forms the other H-bonds with residue
Gln275 and Ser313, which can stabilize the docking pose in
the binding domain. From the occupancies of H-bonds for
common residues of RXR protein listed in Table 1 and the
fluctuation of distances for H-bonds displayed in Figure 8(c),
they indicate that the H-bonds between 𝛽-lipoic acid and
residue Ala241 existing in the initial period ofMD simulation
were not stable. However, the carboxyl group of 𝛽-lipoic
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acid has stable H-bonds with residues Arg316, Gln275, and
Ser313. From the representative structures of RXR protein
complexwith sulfanilic acid afterMD simulation displayed in
Figure 9(b), it is illustrated that the group of sulfonyl hydrox-
ide of sulfanilic acidmaintains theH-bonds with key residues
Arg316 and Ala327 and the phenyl group next to sulfonyl
hydroxide keeps the 𝜋 interaction with residue Phe313. The
fluctuation of distances for H-bonds displayed in Figure 9(c)
indicates that sulfanilic acid had the H-bonds with residue

Gln275, but it misses those H-bonds when the system tends
to be stable after 18 ns MD simulation. Figure 10 displays
the docking poses of the representative structures for RXR
protein complexeswithTargretin,𝛽-lipoic acid, and sulfanilic
acid. It indicates that the TCM candidates, 𝛽-lipoic acid and
sulfanilic acid, have some equivalent hydrophobic contacts
with residues Ala272, Gln275, Leu309, Phe313, Val342, Ile345,
andCys432 as Targretin.These hydrophobic contacts hold the
compounds in the binding domain.
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Table 1: H-bond occupancy for key residues of RXR protein with
Targretin and two candidates overall 20 ns molecular dynamics
simulation.

Name H-bond Interaction Occupancy

Targretin
Gln275:HE22/O25 1%
Gln275:HE22/O26 1%
Arg316:HH22/O25 17%

𝛽-lipoic acid

Ala241:HN/O10 10%
Ala241:HN/O12 3%
Gln275:HE22/O10 2%
Gln275:HE22/O12 2%
Ser312:HG1/O12 60%
Arg316:HH22/O10 89%
Arg316:HH22/O12 39%
Arg316:HH12/O10 96%
Arg316:HH12/O12 86%

Sulfanilic acid

Gln275:HE22/O9 1%
Gln275:HE22/O10 1%
Gln275:HE22/O11 2%
Arg316:HH22/O9 53%
Arg316:HH22/O10 45%
Arg316:HH22/O11 49%
Arg316:HH12/O9 25%
Arg316:HH12/O10 23%
Arg316:HH12/O11 16%
Ala327:HN/O9 39%
Ala327:HN/O10 24%
Ala327:HN/O11 17%

H-bond occupancy cutoff: 0.3 nm.

4. Conclusion

The cholesterol transport protein apolipoprotein E plays the
important role in the clearance of amyloid-𝛽 from the brain,
and the transcription of apolipoprotein E expression is also
regulated by the heterodimers of RXR with PPAR-𝛾 and
LXRs. In this study, we aim to investigate the potent TCM
candidates of agonists for RXR protein, and the prediction
of disordered amino acids of RXR protein was performed
to discuss the stability of residues for RXR protein before
virtual screening. The top TCM candidates, 𝛽-lipoic acid
and sulfanilic acid, had higher potent binding affinities than
both 9-cis-retinoic acid and Targretin. After optimizing the
result of docking simulation to validate the stability of H-
bonds between each ligand and RXR protein under dynamic
conditions, the top TCM compounds, 𝛽-lipoic acid and
sulfanilic acid, have stable H-bonds with residues Arg316
and some equivalent hydrophobic contacts with residues
Ala272, Gln275, Leu309, Phe313, Val342, Ile345, and Cys432
as Targretin. The carboxyl group or the group of sulfonyl
hydroxide can form a H-bond with key residue Arg316
in the docking pose, and the phenyl group next to the
carboxyl group or the group of sulfonyl hydroxide can form
a 𝜋 interaction with residue Phe313. In addition, 𝛽-lipoic
acid has stable H-bonds with residues Gln275 and Ser313,

and sulfanilic acid has stable H-bonds with residue Ala327.
These stable H-bonds may strengthen and stabilize TCM
candidates inside the binding domain of RXR protein. Hence,
we propose 𝛽-lipoic acid and sulfanilic acid as potential lead
compounds for further study in drug development process
with the RXR protein against Alzheimer’s disease.
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