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Diabetes mellitus is a metabolic disorder resulting from an inadequate mass of insulin-producing pancreatic beta cells. 
The replacement or restoration of damaged beta cells would be considered the optimal therapeutic options. Islet trans-
plantation seems to be a promising approach for replacement therapy; however, the main obstacle is the shortage of 
organ donors. As mature beta cells have been shown to be difficult to expand in vitro, regeneration of beta cells from 
embryonic or adult stem cells or pancreatic progenitor cells is an attractive method to restore the islet cell mass. So 
far, multiple studies using various strategies have shown direct differentiation of stem and progenitor cells toward 
insulin-producing cells. The important issue to be solved is how to differentiate these cells into mature functional 
insulin-producing cells. Further research is required to understand how endogenous beta cells differentiate and to devel-
op methods to regenerate enough functional beta cells for clinically applicable therapies for diabetes.
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Introduction

  Diabetes mellitus is one of the major chronic metabolic 
diseases, affecting at least 200 million people worldwide  
(1). According to the statistics of the Korean Diabetes 
Association, the prevalence of diabetes in Korea was 1% 
in 1970 and is estimated to be 14.4% in 2030 (http:// 
www.diabetes.or.kr). Diabetes is characterized by uncon-
trolled hyperglycemia, which causes serious clinical prob-
lems including blindness, kidney failure, stroke, heart dis-
ease, and vascular disease.
  Diabetes results from absolute or relative insulin de-
ficiency. Type 1 diabetes is caused by autoimmune-mediated 
pancreatic beta cell destruction, and type 2 diabetes is 
caused by both insulin resistance in peripheral tissues and 
impaired beta cell function. Therefore, restoration of in-

sulin-producing beta cells would be a logical strategy for 
the cure of both forms of diabetes. Injection of insulin is 
a way to treat diabetes, but it can have side effects such 
as hypoglycemic episodes. Islet transplantation is consid-
ered to be an effective method for the control of type 1 
diabetes; however, it is hampered by limited donor organ 
availability.
  Thus, recent studies have focused on generation of in-
sulin-producing cells from renewable and limitless stem 
cells, which are able to differentiate into specialized cell 
types. There are two types of stem cells: embryonic stem 
cells and adult stem cells. Mesenchymal stem cells in adult 
tissues such as liver, adipose tissue, bone marrow, and in-
testine, and the umbilical cord blood stem cells have been 
reported to have the potential to differentiate into in-
sulin-producing cells. In this review, we will discuss the dif-
ferentiation of insulin-producing cells from adult stem/pro-
genitor cells in pancreatic and non-pancreatic tissues.

A brief overview of beta cell development

  The pancreas is composed of endocrine and exocrine 
tissues. The exocrine tissue occupies more than 80% of the 
pancreas and consists of acinar and ductal cells. The endo-
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crine pancreas occupies less than 5% of the pancreatic tis-
sue mass and is composed of cell clusters called the islets 
of Langerhans. The islets of Langerhans contain in-
sulin-producing beta cells (about 80% of the cells in the 
islets), glucagon-producing alpha cells, somatostatin-pro-
ducing delta cells, pancreatic polypeptide-producing cells, 
and ghrelin-producing epsilon cells.
  During embryogenesis, gastrulation results in three 
principal germ layers: ectoderm, mesoderm, and endo-
derm. The endoderm germ layer forms the foregut, which 
then gives rise to the thyroid, lungs, liver, stomach, and 
pancreas. Following pancreas specification and budding, 
the cells proliferate and differentiate into endocrine and 
exocrine cells, and eventually form a fully developed pan-
creas (reviewed in 2, 3). Both extrinsic signals and in-
trinsic signals are involved in the programming of pancre-
atic endocrine cell differentiation. Extrinsic signals in-
clude intercellular signalings, and intrinsic signals include 
various transcription factors. Fibroblast growth factor 
(FGF), retinoic acid, and hedgehog signaling pathways are 
required for establishing the pancreatic organ within the 
developing gut tube, and transcription factors such as SRY 
(sex determining region Y)-box (Sox)17, homeobox gene 
HB9 (Hlxb9), hepatocyte nuclear factor (HNF)-6, 
HNF-3beta (also known as forkhead box A2, Foxa2), and 
pancreatic and duodenal homeobox 1 (Pdx-1) are required 
for proper pancreatic development (2, 3). Sox17 is the ear-
liest specific marker of definitive endoderm and is re-
quired for pancreas formation. Hlxb9 is a critical factor 
for pancreatic endoderm development. Pancreas-specific 
transcription factor-1a (Ptf-1a) is known to be responsible 
for ventral pancreas specification. 
  Expansion and differentiation of pancreatic progenitor 
cells appear to be regulated by Notch signaling (4). 
FGF-10 is the mesenchymal signal and is important for 
expansion of Pdx-1-positive pancreatic progenitor cells (5). 
Notch signaling regulates the expression of neurogenin-3 
(Ngn-3), which is a key regulator of pancreatic endocrine 
development and is expressed exclusively in endocrine 
precursor cells (6). Many transcription factors such as 
Pdx-1, ISL LIM homeobox 1 (Isl-1), NK2 homeobox 2 
(Nkx2.2), NK6 homeobox 1 (Nkx6.1), neurogenic differ-
entiation factor (NeuroD), Hlxb9, paired box gene (Pax)4, 
and Pax6 have been identified as islet differentiation 
factors. Much progress has been made on pancreas devel-
opmental biology including transcriptional regulation of 
pancreatic endocrine specification, growth, and lineage al-
location, which contributes to our understanding of how 
to develop a method for efficient differentiation of pancre-
atic beta cells. 

Bone marrow-derived stem cells

  Bone marrow-derived stem cells are attractive source for 
differentiation protocols because these cells can be ob-
tained easily from the patients. Many reports suggested 
that bone marrow cells have capacity to differentiate into 
multiple lineages, such as the hematopoietic lineage, en-
dothelial cells, and mesenchymal cells. There have been 
controversial reports regarding the differentiation of pan-
creatic beta cells from bone marrow-derived stem cells. 
Ianus et al. reported that transplanted bone marrow cells 
differentiated into functional pancreatic beta cells in vivo 
without cell fusion (7). In this experiment, male mouse 
bone marrow cells that expressed green fluorescent protein 
(EGFP) when the insulin gene transcription was induced 
were transplanted into lethally irradiated female mouse 
recipients. The investigators detected EGFP+/insulin-pos-
itive cells in the pancreas of recipient mice at 4∼6 weeks 
after transplantation. However, other investigators could 
not reproduce these results (8, 9), suggesting that there is 
no evidence of transdifferentiation of bone marrow cells 
into pancreatic beta cells. Instead, it was suggested that 
the transplanted bone marrow cells secrete unknown fac-
tors that support the regeneration of pancreatic beta cells 
in the recipients. However, as all these studies used un-
fractionated heterogeneous bone marrow cells, it is not 
known which specific cell type contributed to the differ-
entiation into insulin-producing cells or to regeneration of 
endogenous pancreatic beta cells.
  As bone marrow cells contain two distinct stem cell pop-
ulation, hematopoietic stem cells (HSCs) and mesenchy-
mal stem cells (MSCs), Tang et al. used single-cell-derived, 
bone marrow-derived MSCs from mice for in vitro differ-
entiation and found that the differentiated cells expressed 
pancreas-specific marker genes (10). When these differ-
entiated cells were transplanted into streptozotocin (STZ)- 
induced diabetic mice, hyperglycemia was reversed within 
1 week. Others also showed that bone marrow-derived 
MSCs could trans-differentiate into insulin-producing 
cells by defined culture conditions (11). In contrast, anoth-
er study demonstrated that transplantation of human bone 
marrow-derived MSCs into STZ-induced diabetic non-
obese diabetic (NOD)/severe combined immune-deficient 
(scid) mice increased the number of endogeneous mouse 
beta cells and concomitantly increased mouse insulin, sug-
gesting a supportive role of MSCs for regeneration of en-
dogeneous beta cells (12).
  Some papers reported that bone marrow-derived MSCs 
could be differentiated into insulin-producing cells by ge-
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Fig. 1. Protocols used for differentiation of adipocyte-derived stem cells into insulin-producing cells. Human or mouse adipose tissue-derived
stem cells (ADSCs) and human eyelid adipose tissue-derived stem cells (HEACs) were used for differentiation. The factors used for differ-
entiation at each stage, and in vitro characterization and outcomes of in vivo functional tests of the differentiated insulin-producing cells 
are denoted. DMEM: dulbecco’s modified eagle’ medium, HGF: hepatocyte growth factor, FBS: fetal bovine serum, GLP-1: glucagon-like 
peptide, BSA: bovine serum albumin, ITS: insulin-transferrin-selenium, Sod. butyrate: sodium butyrate, 2-ME: 2-mercaptoethanol, NEAA:
non essential amino acids

netic manipulation. Overexpression of Pdx-1 in human 
bone marrow-derived MSCs resulted in differentiation in-
to insulin-producing cells (13). Human bone marrow-de-
rived MSCs transfected with three genes, Pdx-1, NeuroD, 
and Ngn-3, could be differentiated into insulin-expressing 
cells in vitro, but lacked glucose-responsive insulin 
expression. However, transplantation of these differ-
entiated cells reduced blood glucose levels in diabetic 
mice. In a recent report, Luo et al. sorted several bone 
marrow subpopulations from GFP-positive mice, treated 
them with cytokines such as IL-3, IL-6, IL-11 and steel 
factors in vitro, and transplanted them into irradiated 
GFP-negative mice. They found that cytokine-treated bone 
marrow Sca+ subpopulations migrated to the pancreatic 

islets and differentiated into insulin-producing cells in 
vivo (14). However, the detailed mechanisms by which this 
process occurs remains to be determined. Although there 
are controversial reports about the transdifferentiation ca-
pacity of bone marrow cells, bone marrow-derived stem 
cells are considered important source for cell therapy for 
type 1 diabetes.

Adipose tissue-derived stem cells

  Adipose tissue-derived stem cells (ADSCs) are located 
within the stromal vascular fraction of adipose tissue. 
ADSCs can be isolated in high numbers from human adi-
pose tissue at low risk to the patient. The cells have the 
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potential to differentiate into adipogenic, osteogenic, chon-
drogenic, and myogenic cells when they are cultured in 
specific medium conditions. However, only a few studies 
have reported on the capability of ADSCs as a renewable 
source of insulin-producing cells (Fig. 1). It was reported 
that human ADSCs can differentiate into insulin-producing 
cells in vitro under specific medium conditions and that 
these cells express pancreatic developmental genes includ-
ing Isl-1, Ipf-1, and Ngn-3 as well as the islet hormone 
genes, glucagon and somatostatin (15), although studies 
on the function of these differentiated cells are lacking. 
A recent study differentiated human adipose-derived 
MSCs from donors into insulin-producing cells by cultur-
ing them for 3 days using the same protocol and then 
transfused these differentiated cells together with cultured 
bone marrow-derived hematopoietic stem cells into dia-
betic patients by intraportal infusion. The patients showed 
a 30 % to 50 % decreased in their insulin requirement 
with a 4-to 26-fold increase in serum C-peptide levels, sug-
gesting that transplantation of differentiated ADSCs may 
be an effective therapeutic method for treatment of dia-
betes (16).
  Using a 3-step differentiation protocol, Chandra et al. 
reported that murine ADSCs differentiated into functional 
islet-like cell aggregates (ICAs) (17). They utilized a 
10-day protocol in which mesodermic ADSCs were con-
verted to definitive endoderm, then to pancreatic endo-
derm, and then to pancreatic hormone-expressing ICAs. 
The differentiated ICAs expressed endocrine genes and se-
creted C-peptide after glucose challenge. Transplantation 
of the mature ICAs intraperitoneally to STZ-induced dia-
betic mice restored normoglycemia within 2 weeks. An in-
teresting study reported the successful differentiation of 
functional insulin-producing cells from stem cells of the 
human eyelid adipose tissue using a two-step culture con-
dition (18). Similar to other stem cells, Pdx-1-transduced 
ADSCs derived from human or murine tissue could differ-
entiate into insulin-expressing cells under specific culture 
conditions. (19). Thus, ADSCs have potential as a useful 
source for cell replacement therapy in diabetes.

Umbilical cord blood stem cells

 Umbilical cord blood (UCB)-derived MSCs may be an 
ideal source of stem cells that can be obtained without 
pain and risk of viral contamination to the donor. 
UCB-derived MSCs have multi-lineage differentiation ca-
pacity under specific manipulation of the culture con-
ditions, and several studies have shown that UCB stem 
cells can be differentiated into insulin-producing cells. 

UCB-derived embryonic stem cell-like cells which express 
stage-specific antigen 4 (SSEA4), octamer 4 (Oct4) could 
differentiate into insulin-producing islet-like cells. These 
islet-like cells expressed insulin and C-peptide protein 
(20). In addition, Denner et al. reported that human 
UCB-derived stem cells could become insulin-producing 
cells in vitro (21). Another study showed that the in-
sulin-producing cells differentiated from UCB-derived 
MSCs with extracellular matrix gel secreted insulin but 
are not responsive to glucose (22). Furthermore, Yoshida 
et al. proved the regenerative property and the differ-
entiation of UCB-derived cells to insulin-producing cells 
(23). When they transplanted UCB stem cells into im-
mune deficient NOD/scid mice by intravenous injection, 
they could detect human UCB-derived insulin-positive 
cells in the pancreas of the recipient. These results suggest 
that UCB stem cells can differentiate into insulin-producing 
cells both in vitro and in vivo.

Hepatic stem cells

  Adult stem/progenitor cells from liver tissue are good 
source for making insulin-producing cells, as liver and 
pancreas share common bipotential precursor cells within 
the embryonic endoderm. Many studies have demon-
strated that adult hepatocytes, human fetal liver cells, and 
hepatic stem cells can be differentiated into in-
sulin-producing cells by forced expression of beta cell 
transcription factors and/or manipulating the external 
microenvironment.
  Jin et al. recently reported that when immortalized liver 
epithelial progenitor cells, derived from regenerative liver, 
were stably transduced with Pdx-1, followed by treatment 
with various growth factors they differentiated into in-
sulin-expressing cells. These cells secreted insulin in re-
sponse to glucose, and transplantation of these cells ame-
liorated diabetes in STZ-induced diabetic scid mice (24). 
Ectopic expression of Pdx-1 in the liver of mice induced 
insulin expression and ameliorated STZ-induced diabetes 
(25). Expression of Pdx1-VP16, a constitutive active form 
of Pdx-1, in the liver together with NeuroD or Ngn-3, 
more efficiently induced the differentiation of hepatocytes 
into insulin-expressing cells (26).
  Rat hepatic oval stem cells, which can differentiate into 
hepatocytes and bile duct epithelium, differentiate into 
pancreatic endocrine cells when cultured in a high glucose 
environment, secrete insulin in response to glucose, and 
have the ability to reverse hyperglycemia in STZ-induced 
diabetic NOD/scid mice (27). Human fetal liver progeni-
tor cells expressing Pdx-1 can convert to insulin-express-
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ing cells (28).

Pancreatic stem/progenitors

  Numerous studies suggest the existence of stem/progen-
itor cells in adult pancreatic ducts. Islet cells are observed 
in close proximity to ducts in type 1 diabetic patients and 
partially pancreatectomized rodents (29, 30). It was found 
that islet-like aggregates are generated from mouse pan-
creatic ducts and ductal tissue-enriched human pancreatic 
islets, and these aggregates release insulin after glucose 
stimulation and express islet proteins (31, 32). Ectopic ex-
pression of Ngn-3 in pancreatic ductal cells converted 
them into insulin-producing cells, and treatment of hu-
man islets containing both ductal and acinar cells with a 
combination of epidermal growth factor and gastrin in-
duced neogenesis of islet beta cells from the ducts and in-
creased the functional beta cell mass (33).
  Hao et al. demonstrated that purified human non-endo-
crine pancreatic epithelial cells differentiated into endo-
crine cells when co-transplanted with human fetal pancre-
atic tissue under the kidney capsule of immunodeficient 
mice. Fetal cells seemed to provide factors that supported 
the survival and differentiation of the epithelial cells (34). 
A recent study demonstrated that progenitor cells express-
ing Ngn-3, which is hardly expressed in normal postnatal 
pancreatic tissues, exist in the ducts of the adult mouse 
pancreas. The study also found that isolated Ngn3-positive 
cells from the injured adult mouse pancreas differentiated 
into glucose-responsive insulin-producing beta cells (35). 
Another study also demonstrated that clonally identified 
cells from adult pancreatic islets and ductal populations 
have the ability to differentiate into cells with a beta cell 
function (36).
  Mesenchymal cells derived from human islet preparations 
have been proposed as islet precursor cells. Considerable 
evidence suggests that beta cells in the pancreatic islets can 
be dedifferentiated, expanded, and redifferentiated into beta 
cells by inducing the epithelial-mesenchymal transition 
process (37). However, recent studies from lineage analysis 
suggest that the putative mesenchymal islet precursors are 
not derived from beta cells (38, 39).
  In addition, amylase- and elastase-positive acinar cells 
can transdifferentiate into insulin-producing cells (40). An 
alpha cell line transfected with Pdx-1 could express in-
sulin when treated with betacellulin. These results suggest 
that stem/progenitor cells exist within the pancreas, and 
these cells might be the source of new islets. However, the 
identification of specific markers is definitely needed for 
isolation of these cell populations.

Conclusion and future perspectives

  Adult stem cells are the most important source for cell 
therapy of various disease models, as they are free from 
ethical problems and provide an unlimited resource. Many 
studies reported that insulin-producing cells can be gen-
erated from stem/progenitor cells present in bone marrow, 
adipose tissue, liver, intestine, spleen, salivary glands, neu-
ronal tissues, and umbilical cord blood. Despite the suc-
cess of the differentiation protocols as described in this 
review, none of the protocols are yet reproducible for the 
production of fully functional mature beta cells. Much re-
search for the development of more sophisticated differ-
entiation protocols is still required to apply these strat-
egies clinically, but the success of the generation of glu-
cose-responsive insulin-producing cells give hope for a 
treatment of diabetes by stem cell- based cell therapy in 
the future.
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