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Cell replacement therapy and gene transfer to the diseased or injured brain have provided the basis for the development 
of potentially powerful new therapeutic strategies for a broad spectrum of human neurological diseases including 
Parkinson disease, Huntington disease, amyotrophic lateral sclerosis (ALS), Alzheimer disease, multiple sclerosis (MS), 
stroke, spinal cord injury and brain cancer. In recent years, neurons and glial cells have successfully been generated 
from neural stem cells, and extensive efforts by investigators to develop neural stem cell-based transplantation therapies 
have been carried out. We review here notable experimental and pre-clinical studies we have previously conducted 
involving human neural stem cell-based cell- and gene-therapies for Parkinson disease, Huntington disease, ALS, stroke 
and brain cancer.
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Introduction

  Stem cells are the cells that have the ability to renew 
themselves continuously and possess pluripotent ability to 
differentiate into many cell types. Previously two types of 
mammalian pluripotent stem cells, embryonic stem cells 
(ESCs) and embryonic germ cells (EGCs), have been iden-
tified and these stem cells give rise to various organs and 
tissues (1, 2). Recently there has been an exciting develop-
ment in generation of a new class of pluripotent stem 
cells, induced pluripotent cells (iPS cells), from adult so-
matic cells such as skin fibroblasts by introduction of em-
bryogenesis-related genes (3-5). In addition to ESCs and 
iPS cells, tissue specific stem cells such as hematopoietic 
stem cells, bone marrow mesenchymal stem cells, adipose 
tissue-derived stem cells, amniotic fluid stem cells and 

neural stem cells (NSCs) could be isolated from various 
tissues. Existence of multipotent NSCs has been known 
in developing or adult rodent or human brain with proper-
ties of indefinite growth and multipotent potential to dif-
ferentiate into three major cell types of CNS, neurons, as-
trocytes and oligodendrocytes (6, 7). 
  Recently continuously dividing immortalized cell lines 
of NSC have been generated by introduction of oncogenes, 
and these cells have emerged as highly effective source for 
cell- and gene-therapy in animal models of neurological 
disorders. We have previously generated immortalized cell 
lines of human NSC by infecting fetal human brain cells 
grown in primary culture with a retroviral vector carrying 
v-myc oncogene and selecting continuously dividing NSC 
clones. Both in vivo and in vitro these cells were able to 
differentiate into neurons and glial cells and populate the 
developing or degenerating CNS (6, 7). Cell replacement 
and gene transfer to the diseased or injured brain using 
NSC have provided the basis for the development of po-
tentially powerful new therapeutic strategies for a broad 
spectrum of human neurological diseases including 
Parkinson disease (PD), Huntington disease (HD), Alzhei-
mer disease (AD), amyotrophic lateral sclerosis (ALS), 
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multiple sclerosis (MS), stroke, spinal cord injury (SCI) 
and brain cancer. In this review, I will focuses on the utili-
ty of stable immortal human NSCs developed in my 
University of British Columbia (UBC) laboratory as sub-
strates for structural and functional repair of the diseased 
or injured brain. 

Human neural stem cells

  Recently in our UBC laboratory, stable immortalized 
cell lines of human NSC have been generated by in-
troduction of myc oncogene. These immortalized NSC 
lines have advantageous characteristics for basic studies 
on neural development and cell replacement or gene ther-
apy studies (6, 7): (i) NSC cell line can be expanded to 
large numbers in culture in short time (24∼48-h doubling 
time), (ii) NSC cells are homogeneous since they were 
generated from a single clone, and (iii) stable expression 
of therapeutic genes can be achieved readily. Immortal-
ized NSCs have emerged as a highly effective source for 
genetic manipulation and gene transfer into the CNS ex 
vivo. Immortalized NSCs were genetically manipulated in 
vitro, survive, integrate into host tissues, and differentiate 
into both neurons and glial cells after transplantation into 
the intact or damaged brain (6-9).
  Primary cultures of fetal human telencephalon cells (at 
15 weeks gestation) were infected with a retroviral vector 
carrying v-myc oncogene, and continuously dividing NSC 
clones were selected. HB1.F3 (F3), one of the newly gen-
erated human NSCs, is a clonally isolated, multipotential 
human NSC line, with the ability to self-renew and differ-
entiate into cells of neuronal and glial lineages in vitro (7, 
10-12). The cloned F3 cells are tripolar or multipolar in 
morphology with 8μm in size. Cytogenetic analysis of F3 
human NSCs showed normal karyotype of human cells 
with a 46, XX without any chromosomal abnormality. 
RT-PCR study indicates that F3 human NSCs grown in 
serum containing medium (10% fatal bovine serum) ex-
press transcript for nestin, cell type-specific markers for 
NSCs and neural progenitor cells, and transcripts for 
NF-L, NF-M and NF-H, cell type-specific markers for 
neurons, transcript for GFAP, structural protein and a cell 
type-specific marker for astrocytes, and transcript for 
MBP, structural protein and a specific cell type specific 
marker for oligodendrocytes. These results indicate that 
F3 cells grown in serum containing medium undergo 
asymmetrical division by which one daughter cell remains 
as NSCs and continues cell division while another one un-
dergoes terminal differentiation into neurons or glial cells. 
Gene expression of neurotrophic factors in F3 NSCs as 

studied by RT-PCR indicates that the F3 NSCs express 
NGF, BDNF, NT-3, GDNF, CNTF, HGF, IGF-1, bFGF 
and VEGF. We also determined secretion of selected neu-
rotrophic factors, NGF and BDNF, in F3 NSCs by ELISA 
quantification and the results indicate that the F3 NSCs 
constitutively secrete NGF and BDNF as high as 100 
pg/106 cells/day and 300 pg/106 cells/day, respectively. An 
electrophysiological study has also demonstrated that F3 
NSCs generate inward currents of voltage-activated so-
dium channels, which indicates that the neuronally differ-
entiated F3 cells have electrophysiological characteristics 
of mature neurons (10).
  Immunochemical determination of cell type specific 
markers for CNS cell types was performed using anti-
bodies specific for neurons, astrocytes and oligodendro-
cytes. When F3 NSCs were grown in serum containing 
medium, there were more than 50% of total cells express-
ing neurofilament proteins (NF-L). In addition to neu-
rons, 2∼5% of F3 cells expressed GFAP, a cell type-spe-
cific marker for astrocytes, while much smaller number of 
galactocerebroside-positive cells, a surface antigen specific 
for oligodendrocytes, was found (＜1%). These results in-
dicate that F3 human NSCs are multipotent and capable 
of differentiation into neurons, astrocytes and oligoden-
drocytes under stable culture conditions. After brain trans-
plantation, F3 human NSCs provide clinical improvement 
in the animal models of neurological disorders including 
neurodegenerative diseases, stroke, brain cancer (see next 
sections), epilepsy (13) and lysosomal storage disease MPS 
VII (14).

Neurodegenerative diseases

  Cell replacement and gene transfer to the diseased or 
injured brain using NSCs have provided the basis for the 
development of potentially powerful new therapeutic strat-
egies for a broad spectrum of human neurodegenerative 
diseases including Parkinson disease (PD), Huntington 
disease (HD), Alzheimer disease (AD), amyotrophic later-
al sclerosis (ALS) and multiple sclerosis (MS). 
  Parkinson's disease (PD) is characterized by an ex-
tensive loss of dopamine neurons (DA) in the substantia 
nigra pars compacta and their terminals in the striatum 
(15, 16). Since late 1950s PD patients have been given 
L-dihydroxyphenyl alanine (L-DOPA), a precursor of dop-
amine, as an effective treatment for PD, but long-term ad-
ministration of L-DOPA consequently produces grave side 
effects (17, 18). Since late 1980s, transplantation of human 
fetal ventral mesencephalic tissues (6∼9 weeks gestation) 
into the patients’ brain striatum has been adopted as a 
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successful therapy for PD patients (19-21). However, this 
fetal human tissue transplantation has grave problems as-
sociated with ethical, religious and logistical questions of 
acquiring fetal tissues. In addition, recent reports have in-
dicated that the survival of transplanted fetal mesen-
cephalic cells in the patients' brain was very low and it 
was difficult to obtain enough fetal tissues needed for 
transplantation (22). To circumvent these difficulties, uti-
lization of neurons with DA phenotype generated from 
ESCs, MSCs or NSCs could serve as a practical and effec-
tive alternative for the fetal brain tissues for transplanta-
tion. 
  Recently we have transplanted immortalized human 
NSC cell line HB1.F3 (F3) in striatum of PD model rats, 
and induced functional improvement in rat model of PD 
following transplantation into the striatum. Intrastriatal 
transplantation of F3 human NSCs immediately after 
6-OHDA lesion in rats reduced parkinsonian motor symp-
toms and preserved TH nigral neurons and striatal fibers. 
At 1 month after transplantation, some grafted F3 cells 
expressed neuronal and synaptic markers, accompanied by 
enhanced neurogenesis in SVZ adjacent to the transplant 
site. Neuroprotective and anti-apoptotic effects of F3 hu-
man NSCs induced by secretion of neurotrophic factors 
(stem cell factor and BDNF) were demonstrated in vivo 
and in vitro models of PD (23). Previous studies have used 
ex vivo gene transfer approach to generate dopamine cells 
by transferring tyrosine hydroxylase (TH) gene, a rate-lim-
iting step enzyme in catecholamine biosynthesis process, 
into fibroblasts and then implant these cells into the brain 
of PD animal models (24, 25). However, fibroblasts ex-
pressing TH gene produced low level dopamine since 
these cells did not carry tetrahydrobiopterin (BH4), a co-
factor to support TH activity (26). Therefore, it is neces-
sary to transfer additionally of GTP cyclohydrolase I 
(GTPCH1) gene that is the rate-limiting enzyme in the 
BH4 biosynthetic pathway in addition to TH gene (27). F3 
immortalized human NSC line was transduced to carry 
TH gene and GTPCH-1 gene for production of L-DOPA 
and following transplantation of these cells in the brain 
of PD rat model, markedly enhanced L-DOPA production 
in vivo and long-term functional recovery were demon-
strated (28).
  These results indicate that utilization of neurons with 
dopamine phenotype generated from human NSCs for 
brain transplantation in PD patients could serve as a prac-
tical gene therapy approach for PD. 
  Huntington disease (HD) is an autosomal dominant 
neurodegenerative disorder characterized by involuntary 
choreiformic movements, cognitive impairment, and emo-

tional disturbances (29, 30). Despite identification of the 
HD gene and associated protein, the mechanisms involved 
in the pathogenesis of HD remain largely unknown and 
thus hamper effective therapeutic interventions. Trans-
plantation of fetal human brain tissue has reported im-
provements in motor and cognition performance in HD 
patients following fetal cell transplantation (31). An ideal 
source of cell transplantation in HD is human NSCs 
which could participate in normal CNS development and 
differentiate into regionally-appropriate cell types in re-
sponse to environmental factors. Rodents and primates 
with lesions of the striatum induced by excitotoxic kainic 
acid (KA), or quinolinic acid (QA) have been used to sim-
ulate HD in animals and to test efficacy of experimental 
therapeutics and neural transplantation (32). 
  Recently we have injected F3 human NSCs intra-
venously to counteract neural degeneration in QA-HD 
model and demonstrated functional recovery in grafted 
animals (33, 34). The systemic transplantation of NSCs 
via intravascular route is probably the least invasive meth-
od of cell administration (34). Neural transplantation into 
striatum requires an invasive surgical technique using a 
stereotaxic frame. Non-invasive transplantation via intra-
venous routes, if it may be effective in human, is much 
more attractive. 
  Systemic administration of 3-nitropropionic acid (3- 
NP), a mitochondrial toxin, in rodents leads to metabolic 
impairment and gradual neurodegeneration of the basal 
ganglia with behavioral deficits similar to those associated 
with HD (35). We have investigated the effectiveness of 
transplantation of human NSCs in adult rat striatum prior 
to striatal damage induced by the mitochondrial toxin 
3-NP (36). Animals receiving intrastriatal implantation of 
human NSCs one week prior to 3-NP treatments exhibited 
significantly improved motor performance and increased 
resistance to striatal neuron damage compared with con-
trol sham injections. In contrast, transplantation of human 
NSCs at 12 hr following 3-NP administration did not 
show any protective effects against 3-NP-induced behav-
ioral impairment and striatal neuronal damage (36). The 
neuroprotection shown by the proactive transplantation of 
human NSCs in the rat HD model is contributed by trans-
planted human NSCs' secretion of brain-derived neuro-
trophic factor (BDNF). Active production of BDNF by 
human NSCs in vivo and in vitro was firmly established 
by studies using RT-PCR, immunocytochemistry, dot-blot, 
and ELISA. Since genetic screening of HD gene and neu-
roimaging could determine the diagnosis in "predisposed" 
HD patients, the results of our study suggest that early 
intervention using brain transplantation with human 
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NSCs expressing neurotrophic factors should provide an 
effective stem cell-based therapy for "predisposed" HD 
patients. We have recently written an extensive review that 
focuses on the stem cell-based therapy for HD and inves-
tigators who wish to learn more about the subject are re-
ferred to the review article (37).
  Amyotrophic lateral sclerosis (ALS), known as Lou 
Gehric disease, is a relentlessly progressive, adult onset 
neurodegenerative disorder characterized by degeneration 
and loss of motor neurons in the cerebral cortex, brain 
stem and spinal cord, leading to muscle wasting and weak-
ness, and eventually to death within five years after the 
onset of its clinical symptoms (38, 39). To date there is 
no effective treatment for patients suffering from ALS. 
  Several recent studies have demonstrated that delivery 
of vascular endothelial cell growth factor (VEGF) sig-
nificantly delayed disease onset and prolonged the survival 
of ALS animal models (40, 41). VEGF is one of growth 
factors that can be used in combination with transplanted 
stem cells to improve therapeutic efficiency of cellular 
transplantation in ALS animals. VEGF is an angiogenetic 
growth factor acting as a potent mitogen and survival fac-
tor of endothelial cells, and also known for neurotrophic 
and neuroprotective effects against brain injury. Recently 
we have demonstrated that spinal intrathecal trans-
plantation of human NSCs over-expressing VEGF 
(F3.VEGF) in transgenic SOD1/G93A mouse model of 
ALS (42) significantly delayed disease onset for 7 days and 
prolonged the survival of animals for 15 days (43). Our 
results suggest that this treatment modality using human 
NSCs might be of value in the treatment of ALS patients 
without significant adverse effects. 

Stroke 

  Stroke represents the second highest among the causes 
of death in Asia including Korea, China and Japan. There 
are two major types pf stroke and they are ischemia and 
intracerebral hemorrhage (ICH). Ischemic stroke caused 
by abrupt and near-total interruption of cerebral blood 
flow, and ICH by breakdown of intracerebral blood ves-
sels, produces ischemic changes in the striatum and cor-
tex, leading to a long-term sensorimotor deficit (44). Since 
current medical therapy against stroke shows only limited 
effectiveness, an alternative approach is required, such as 
stem cell-based cell therapy (45). 
  We have previously demonstrated intravenously trans-
planted F3 human NSCs could selectively migrate into le-
sioned brain sites, differentiate into new neurons and glial 
cells, and improve the functional deficits in rat stroke 

models of focal ischemia (46, 47) and cerebral hemorrhage 
(48-50). NSCs can circumvent blood-brain barrier and mi-
grate to the specific pathologic areas of brain with 
home-in property. We introduced F3 immortalized human 
NSCs intravenously via tail vein, F3 NSCs migrated into 
the adult rat brain with focal cerebral ischemia or with 
cerebral hemorrhage, and induced marked improvement 
in sensorymotor functions. Transplanted F3 human NSCs 
migrated to the lesion sites, differentiated into neurons 
and astrocytes, and a large number of the grafted NSCs 
survived in the lesion sites for up to 12 weeks. Three-12 
weeks post-transplantation, functional improvement was 
observed in the transplanted animals on rotarod and limb 
placement tests (46-50). 
  Previous studies have reported that the combined ad-
ministration of NSCs and VEGF resulted in improved 
structural and functional outcome from cerebral ischemia. 
In our study, F3 human NSCs transduced with a retroviral 
vector encoding human VEGF were transplanted into cer-
ebral cortex overlying ICH lesion, and at 2∼8 weeks 
post-transplantation, there were improved survival of 
grafted NSCs, increased angiogenesis and behavioral re-
covery in mouse ICH model. ICH was induced in adult 
mice by unilateral injection of bacterial collagenase into 
striatum. F3.VEGF human NSCs produced an amount of 
VEGF four times higher than parental F3 cells in vitro, 
and induced behavioral improvement and 2∼3 fold in-
crease in cell survival at 2 weeks and 8 weeks post-trans-
plantation (50).
  In a recent study, F3 human NSCs were treated with 
an iron chelator (deferoxamine, DFX) to stabilize Hypo-
xia-indicible factor-1 (HIF-1) in NSCs and proactively 
transplanted into the rat brain 7 days prior to MCA occu-
lusion-induced ischemia (51). HIF-1 is known to inhibit 
cerebral ischemic lesion (52). In ischemia animals with 
DFX-treated NSCs, the infarct volume was reduced in-
dicating that proactively implanted HIF-1 stabilized hu-
man NSCs provide neuroprotection against ischemic in-
jury in animals (51).
  Intravenous transplantation of F3 human NSCs during 
the hyperactive stage of ICH (at 2 hr after ICH) induces 
anti-inflammatory and anti-apoptotic properties, reduced 
brain edema and reduction in expression of inflammatory 
cytokines in the brain and spleen. It is interesting to note 
that the spleen participates in cerebral inflammation dur-
ing the ICH bout as splenectomy reduced cerebral edema 
and inflammatory cell count. These results indicate that 
the early intravenous administration of F3 human NSCs 
provides anti-inflammatory functionality that promotes 
neuroprotection in ICH lesion, by blocking splenic in-
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flammatory responses (53).

Brain cancer

  Malignant brain cancer such as glioblastoma multi-
forme remains virtually untreatable and lethal (54). 
Similarly in childhood brain cancer, medulloblastoma is 
the most common and incurable (55). Multimodal treat-
ment including radical surgical resection followed by radi-
ation and chemotherapy, have substantially improved the 
survival rate in patients suffering from these brain can-
cers; however, it remains incurable in large proportion of 
patients (56). Therefore, there is substantial need for effec-
tive, low-toxicity therapies for patients with malignant 
brain cancers, and gene therapy approach targeting brain 
cancer should fulfill this requirement. 
  During the last 20 years gene therapy research has ad-
vanced greatly. According to a recent study, over 1340 
gene therapy clinical trials have been completed, or are 
ongoing worldwide in 28 countries, and more than 70% 
of these trials are in cancer gene therapy (57). In the brain 
cancer gene therapy, one of recent approaches is to use 
neural stem cells (NSCs) as a reliable delivery vehicle to 
target therapeutic gene products to primary and secondary 
invasive glioma, medulloblastoma, melanoma brain meta-
stases and neuroblastoma throughout the brain and ex-
tracerebral loci (58, 59). 
  Human NSCs possess an inherent tumor tropism that 
supports their use as a. In recent studies, we have utilized 
the F3 immortalized human NSC line that stably ex-
presses therapeutic genes designed to treat animal models 
of brain cancers via suicide gene therapy and im-
munotherapy approaches (60-69). 
  We have demonstrated that the human glioma cell lines 
produce HGF and VEGF, which act as potent chemo-
attractants for HB1.F3 human NSCs (60, 61, 66). These 
growth factors, HGF and VEGF, stimulate receptor ty-
rosine kinase signaling that leads to the activation of phos-
phoinositide 3-kinase (PI3K), which has been shown to be 
an important regulator of directed cell migration (61). 
Inhibition of the PI3K pathway significantly inhibited the 
chemotactic cell migration towards all growth factors test-
ed (HGF, VEGF and EGF), suggesting that the growth 
factors produced by brain tumors converge on the PI3K 
signaling pathway. 
  Suicide gene therapy for brain cancer is based on the 
conversion of non-toxic prodrugs into active anticancer 
agents via introduction of non-mammalian or mammalian 
enzymes. One of the earliest suicide gene/prodrug system 
is the herpes simplex virus thymidine kinase (HSVtk)/ 

Ganciclovir (GCV) system (70, 71). In addition to HSVtk/ 
GCV suicide gene/prodrug system, there have been several 
notable suicide enzyme-prodrug systems including cyto-
sine deaminase (CD)/5-fluorocytosine (5-FC) (72, 73), and 
carboxylesterase (CE)/CPT-11 (74). In the CD/5-FC sui-
cide gene system, CD deaminases the non-toxic pyr-
imidine 5-FC to the cytotoxic 5-fluorouracil (5-FU), and 
5-FU is then processed to intermetabolites that inhibit 
RNA processing and DNA synthesis in the cancer cells 
(72). 
  When F3 human NSC line carrying CD enzyme gene 
(F3.CD) was transplanted intracranially at distant sites 
from the tumor, the F3.CD NSCs migrate through normal 
tissue and selectively "home in" to the glioblastoma tumor 
mass and upon administration of prodrug 5-FC, 85∼95% 
reduction in tumor volume was demonstrated (Kim, 
Unpublished). 
  Nude mice bearing human medulloblastoma were in-
oculated with F3.CD human NSC cells at the sites distant 
from tumor mass, and followed by systemic 5-FC treat-
ment. Histological analyses showed that NSCs migrate to 
the tumor site leading to an 80% reduction of tumor vol-
ume (67). In metastatic leptomenigeal medulloblastoma 
lesions in spinal cord, F3.CD human NSCs were found 
to distribute diffusely to medulloblastoma tumor after in-
jection in the cisterna magna, and CD gene in NSCs effec-
tively catalyzed prodrug 5-FC into anticancer drung 5-FU 
and killed tumor cells by bystander effect (66).
  PEX is a naturally occurring fragment of human metal-
loproteinase-2, and acts as an inhibitor of glioma pro-
liferation, migration, angiogenesis and effectively inhibit 
tumor cell growth (75). In our study, F3 human NSCs car-
rying PEX gene, were found to "surround" the invading 
gliobalstoma tumor cells, "chasing down" infiltrating tu-
mor cells, and "attack and kill" tumor cells, causing a 90% 
reduction in tumor volume (68). 
  Patients diagnosed with metastatic cancer have almost 
uniformly poor prognoses. The treatments available for 
patients with metastatic cancer are usually not curative 
and have side effects that limit the therapy that can be 
given. The tumor-tropic property of NSCs could be uti-
lized to selectively deliver a therapeutic gene to metastatic 
solid tumors, and that expression of an appropriate trans-
gene at tumor loci might mediate cures of metastatic 
disease. In a recent study, F3 human NSCs transduced to 
express carbonyl esterase enzyme (CE) that efficiently ac-
tivates the anti-cancer prodrug CPT-11 were injected in-
travenously into mice bearing disseminated neuroblastoma 
tumors, and F3.CE NSCs migrated selectively to tumor 
sites, then treated systemically with CPT-11, and the effi-
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cacy of treatment monitored. Mice treated with the combi-
nation of F3 NSCs expressing the CPT-11-activating en-
zyme CE and prodrug CPT-11 produced tumor-free sur-
vival of 100% of the mice for more than 6 months (64, 
65). 
  Cancer cells are immunogenic in nature with can-
cer-specific antigens being intracellular molecules, thus 
T-cell mediated immunity is more obvious than B-cell 
mediated immunity (76). Thus genetic immunotherapy 
aims to boost T-cell mediated immune response against 
cancer cells. One major immunotherapeutic approach in-
volves the gene transfer of immune-stimulating cytokines 
including IL-4, IL-12, TRAIL and IFN-α/β. IFN-α/β 

has been known to have multiple antitumor effects includ-
ing direct inhibition of tumor cell proliferation through 
both cell cycle arrest and induction of apoptosis (77, 78) 
as well as indirect antitumor activity through immuno-
modulation (79) and inhibition of angiogenesis (78). In 
the past, clinical trials with IFN-α/β in tumor therapy 
did not achieve expected outcome because of its extremely 
short half-life upon administration and their systemic 
toxicity. Recently we have generated F3 human NSCs 
overexpressing human IFN-β (F3. IFN-β) by adenoviral 
transduction and then intravenously injected in SCID 
mice bearing metastatic neuroblastoma. F3 human NSCs 
expressing IFN-β displayed a high tropism for metastatic 
neuroblastoma in liver and kidney and targeted delivery 
of antitumor IFN-β, resulting in significant reduction in 
tumor growth (69). 
  Treatment for brain cancers involves surgical resection 
followed by chemotherapy and radiotherapy. Previously 
numerous gene therapy trials for brain cancers partic-
ularly for malignant glioblastoma have been conducted 
but the most of these trails achieved only limited success. 
Recently (December 5, 2007), NIH Recombianant cDNA 
Advisory Committee (NIH RAC) has approved an applica-
tion of the City of Hope Medical Center (Duarte, 
California outside of LA) to conduct a clinical trial in pa-
tients with recurrent high grade glioma using F3.CD im-
mortalized human NSCs that have been retrovirally trans-
duced to express CD therapeutic transgene (80); the hu-
man NSC cell line has been generated at my laboratory 
at the University of British Columbia, Vancouver, Canada. 
In animal models, the safety, feasibility, and efficacy of 
F3.CD human NSCs to track invasive tumor cells and dis-
tant micro-tumor foci and to deliver therapeutic gene 
products to tumor cells, have been demonstrated. Thus F3 
human NSCs could provide an effective anti-tumor re-
sponse overcoming obstacles facing current gene therapy 
strategies. In this pilot study with ten patients with re-

current glioma to determine the safety and feasibility of 
F3.CD immortalized human NSC line that expresses the 
suicide enzyme CD. Human NSCs injected in tumor re-
section sites will distribute throughout the primary tumor 
site and will co-localize with infiltrating tumor cells with-
in 5 days. An oral prodrug (5-FC), administered on the 
fifth day and continued for 7 days, will be converted to 
chemotherapeutic agent 5-FU by NSCs expressing CD, 
which will then be secreted at the tumor site to produce 
an anti-tumor effect (80). 
  The F3 human NSC line to be used in the glioblastoma 
clinical trial (F3.CD) at the City of Hope Medical Center 
(US) has been generated at my UBC laboratory (SUK), 
and is readily available for clinical trials in Korea. I am 
currently working continuously to prepare and carry out 
the clinical trial of NSC-based cancer gene therapy for 
glioblastoma multiforme in collaboration with clinicians 
in major medical centers in Seoul, Busan and Gwangju. 
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