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The regeneration of damaged articular cartilage remains challenging due to its poor intrinsic capacity for repair. Tissue 
engineering of articular cartilage is believed to overcome the current limitations of surgical treatment by offering func-
tional regeneration in the defect region. Selection of proper cell sources and ECM-based scaffolds, and incorporation 
of growth factors or mechanical stimuli are of primary importance to successfully produce artificial cartilage for tissue 
repair. When designing materials for cartilage tissue engineering, biodegradability and biocompatibility are the key 
factors in selecting material candidates, for either synthetic or natural polymers. The unique environment of cartilage 
makes it suitable to use a hydrogel with high water content in the cross-linked or thermosensitive (injectable) form. 
Moreover, design of composite scaffolds from two polymers with complementary physicochemical and biological proper-
ties has been explored to provide residing chondrocytes with a combination of the merits that each component 
contributes.
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Introduction 

  The connective tissue comprising articular cartilage of 
the knee is highly specialized for reducing joint frictions 
at the interface of two long bones, and merely contains 
chondrocytes in an avascular structure (1). The re-
generation of damaged articular cartilage remains chal-
lenging due to its poor intrinsic capacity for repair. Thus, 
no surgical procedure has been able to reproduce the bio-
logical composition and biomechanical properties of the 
original cartilage (2). The use of specific treatment strat-
egies has been decided by the nature or size of lesions, 
and the preference of the operating surgeon (2). However, 
the advent of tissue engineering has provided the revolu-
tionary potential for treating cartilage-related diseases. It 

is believed that tissue engineering of articular cartilage 
will overcome the current limitations of surgical treatment 
by offering functional regeneration in the defect region. 
This technology involves ex vivo culturing of chondrocytes 
from autologous or allogeneic sources in extracellular ma-
trix (ECM)-based constructs and subsequent implantation 
into the cartilage defect. Although recent progress has 
been made to engineer artificial cartilage via tissue en-
gineering, the challenges remain significant. Selection of 
proper cell sources and ECM-based scaffolds, and in-
corporation of growth factors or mechanical stimuli are of 
primary importance to successfully produce artificial car-
tilage for tissue repair. In this portion of the review, suit-
able cell sources and ECM used in articular cartilage tis-
sue engineering will be introduced, and growth factors and 
mechanical stimuli as cues for inducing the differentiation 
to chondrocytes (Fig. 1) will be discussed. 

Factors affecting cellular behavior of 
chondrocytes 

  Successful repair of cartilage defects by tissue engineer-
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Fig. 1. Components required for chondrocyte tissue engineering (modified from (2)).

Fig. 2. MSC differentiation to chondrocytes and the related growth factors (modified from (3)). AP, alkaline phosphatase; CD-RAP, carti-
lage-derived retinoic acid-sensitive protein; Col, collagen; COMP, cartilage oligomeric protein; MMP, matrix metalloproteinase; VEGF, vas-
cular endothelial growth factor.

ing requires several factors including growth factors, cell 
sources, and mechanical stimuli other than scaffolds. 
These factors work together to generate artificially en-
gineered cartilage. The ultimate goal of cartilage tissue en-
gineering is to replace the cartilage defect with new tissue 
engineered from chondrocytes seeded into pre-formed 
scaffolds or hydrogels. Cell sources have been sought to 
provide functional characteristics of cartilage, and growth 
factors and mechanical stimuli were applied to guide the 
seeded cells for differentiation and maintenance of cho-
ndrocytes. Here, the representative factors affecting chon-

drogenic differentiation and maintenance are described. 

Growth factors 
  The proliferation and differentiation of both chon-
drocytes and MSC seeded in the appropriate scaffold are 
controlled primarily by nearby signally molecules such as 
hormones, cytokines, and growth factors which direct the 
specific signaling pathways and maintenance of the chon-
drocyte phenotype (2, 3). Several factors related to growth 
and differentiation of MSCs and chondrocytes for carti-
lage regeneration have been identified (Fig. 2). The suc-
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cessful regeneration of cartilage demands an improved un-
derstanding of the complex molecular events involved in 
the different pathways where each factors contribute. The 
key issue for chondrocyte tissue engineering is the spatio-
temporal control of growth factor delivery to exert the 
maximal effect on the seeded cells. In most cases, growth 
factors were encapsulated in microspheres or hydrogel to 
achieve the controlled release toward surrounding cells.
  Transforming growth factor-β (TGF-β) has been used 
most frequently to induce MSC differentiation to chon-
drocytes, promote cell proliferation, and inhibit the activ-
ity of matrix matelloproteinases (MMP). In an in vitro 
study with TGF-β3 and MSC, TGF-β3 entrapped in gel-
atin microspheres were centrifuged with MSCs to form a 
pellet, and the viability and cartilage matrix production 
were evaluated with biochemical analysis, immunohisto-
chemistry, and Western blot after four weeks of culture 
(4). The results showed higher DNA content and faster 
proliferation in pellets containing MSCs and TGF-β
3-loaded microspheres. Heparin or sulfated polysaccharide 
can act as a platform to bind to and release growth factors 
like TGF-β3 (5). Rabbit MSCs were immobilized with 
heparin-bound TGF-β3 in a thermo-responsive p 
(NIPAAm-co-AAc) composite hydrogel for neo-cartilage 
formation (6). The data revealed that heparin-bound TGF-
β3 facilitates the chondrogenic differentiation of rabbit 
MSCs. Furthermore, co-delivery of TGF-β3 and HA with 
MSCs synergistically enhanced the differentiation in the 
thermo-responsive p(NIPAAm-co-AAc) hydrogel after sub-
cutaneous implantation in nude mice (7). 
  Bone morphogenetic proteins (BMPs) also belong to the 
TGF-β family. The BMP family consists of 20 subtypes, 
which have essential roles in chondrogenesis and 
osteogenesis. It is known that BMP-2 can stimulate the 
chondrogenic differentiation of MSCs and ESCs, and en-
hance the secretion of chondrocyte-specific markers, such 
as collagen type II and aggrecan (3). BMP can be delivered 
to MSCs or chondrocytes residing inside scaffolds in the 
form of peptide, protein, or plasmid. In a study in which 
BMP-2 and BMP-4 were transfected to a mouse mesen-
chymal stem cell line, C3H10T1/2, for differentiation into 
chondrocytes, culturing of the BMP-4-transfected cells in 
an alginate scaffold resulted in up-regulation of collagen 
type II and other hyaline cartilage proteins, suggesting 
differentiation into chondrocytes via a chondroprogeni-
tor-like cells (8). As shown in Fig. 2, it is believed that 
sequential delivery of multiple growth factors enhanced 
cartilage tissue formation (9). However, the local concen-
tration of each growth factor should be controlled tightly 
to minimize the side effects caused by over dose. After re-

peated injection of BMP-2 and TGF-β1 in a murine knee 
joint, fibrosis and osteophytosis were observed in the joint 
space (10). 

Cell sources
  Although several different sources have been sought for 
cartilage tissue engineering, chondrocytes, isolated from 
hyaline cartilage, are regarded as popular cells of choice. 
Chondrocytes, present predominantly in cartilage are the 
cells responsible for the production of ECM, such as colla-
gens and proteoglycans, which supports and strengthens 
cartilage physically. Although chondrocytes are a popular 
source for cartilage tissue engineering, they suffer from 
several drawbacks such as instability in monolayer culture, 
additional surgery to procure and expand them, and lim-
ited potential for intrinsic repair. In contrast, adult mes-
enchymal stem cells are a reliable alternative cell source. 
Therefore, control in differentiation from MSCs to chon-
drocytes may be the key factor to produce high quality 
cartilages (Fig. 2). Although multiple cell sources are 
available, adult MSCs are highly preferred for cartilage 
tissue engineering due to the report that bone marrow-de-
rived mesenchymal stem cells (BM-MSC) are capable of 
osteogenesis (11). Recently, adult adipose-derived stem 
cells (ASCs) were suggested as another cell source for car-
tilage repair, because of ease of isolation and multiple dif-
ferentiation potentials. Chondrogenic differentiation was 
examined with subcutaneous implantation of an ASC- 
loaded PLGA scaffold in nude mice after in vitro culture 
in the presence of TGF-β1 for three weeks (12). Chondro-
cyte-specific markers, such as collagen type II and type 
Χ, cartilage oligomeric matrix protein (COMP), and ag-
grecan, were highly expressed even during in vitro culture, 
and ASC-seeded scaffolds exhibited a stable chondrogenic 
phenotype in a heterotopic model of cartilage transplan-
tation.

Mechanical stimuli
  Cell growth and ECM production can be enhanced with 
the use of bioreactors by creating a dynamically controlled 
environment, which promotes an active mass transfer of 
nutrients and waste between the inside and outside of the 
scaffolds. Dynamic culture also facilitates uniform dis-
tribution of seeded cells throughout the scaffold. Most 
seeded cells would be placed near the scaffold surface and 
provides the mechanical stimulation required for chon-
drocyte growth and differentiation (13). Articular cartilage 
is regularly subjected to various mechanical stimuli in-
cluding hydrostatic pressure, compressive force, and shear 
strain. The composition and three-dimensional complex 
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organization of ECM secreted from chondrocytes in artic-
ular cartilage are primarily responsible for its bio-
mechanical and physical properties, supporting tissue ho-
meostasis and remodeling. Generally, proliferation and bi-
osynthesis in chondrocytes take place in response to ex-
ternal mechanical stimuli, and articular chondrocytes lo-
cated at different depths from the tissue surface behave 
differently, responding to in vitro oscillatory tensile load-
ing and tensile loading. This dynamic loading potently 
stimulates chondrocytes located at the superficial zone of 
artificial cartilage (14). However, chondrocytes at the deep 
zone remain unaffected by tensile loading with respect to 
the overall biosynthesis rate. It is thought that cartilage 
engineered with successful biochemical and mechanical 
properties could be created by loading scaffold under the 
mechanical stress similar to that of natural conditions. 
Intermittent hydrodynamic pressure applied to chondro-
cytes significantly enhanced collagen production, while 
preventing a significant decrease in total GAG levels, 
which is observed with control treatment (15). Further-
more, exposure of the chondrocytes to combined dynamic 
compression and shear strain for a week increased both 
collagen and proteoglycan synthesis up to approximately 
80% more than that of the static control (16). Interestin-
gly, IL-1-induced matrix degradation was inhibited in ar-
ticular cartilage under mechanical loading of 0.5 MPa 
stress (17). It was reported that dynamic loading on cul-
tured hydrogels enhanced anabolic and catabolic activities, 
but continuous loading inhibited catabolic activity (18, 19). 
Mechanical stimuli also exert great influence on the differ-
entiation of MSCs, resulting in enhanced secretion of pro-
teoglycan and collagen content, up-regulation of carti-
lage-specific markers (e.g. aggrecan, Sox-9, and collagen 
type II), and greater compressive strength (20). Crosslin-
king density in a PEG hydrogel influenced ECM pro-
duction under both static and dynamic conditions (21). 
Indeed, based on the previous reports, it is suggested that 
mechanical stimuli are essential factors for maintaining 
cartilage integrity (22). 

ECM-based scaffolds

  ECM scaffolds should ideally furnish chondrocytes with 
the optimal physical conditions mimicking the natural 
ECM microenvironment of cartilages. Construction of 
these scaffolds involves fabrication of a three-dimentional 
network of ECM similar to that of the original structure, 
and provision for structural support and internal space for 
the residing cells to adhere, proliferate, and differentiate. 
Therefore, general requirements of three-dimensional 

ECM scaffolds includes high porosity, controlled degrada-
tion, mechanical stiffness and strength, and biocom-
patibility, and They also should exhibit adequate surface 
properties for proper tissue formation of chondrocytes 
(23). Higher porosity allows for the migration and pro-
liferation of adhering cells, and the exchange of nutrients 
and waste products. Controlled biodegradability also is 
important so as not to hinder the formation of newly re-
generating tissue within the scaffold. Biocompatibility 
may facilitate cellular attachment and differentiation. 
  In most cases, biodegradable polymers including syn-
thetic or natural polymers have been used in cartilage tis-
sue engineering. These polymers are formed usually in 
sponges, hydrogels, or nanofibers. Recently, composite 
scaffolds composed of mixture of different polymers were 
designed to provide chondrocytes residing in the matrix 
with the combination of merits that each component 
contributes.
  Natural materials have been preferred because of their 
intrinsic advantages of biocompatibility and biodegrad-
ability over synthetic materials and because they have 
demonstrated an improved capacity for cell attachment. 
They can be divided in two groups: protein-based scaffolds 
(e.g. collagen, fibrin and silk) and carbohydrate-based 
scaffolds (e.g. hyaluronan, alginate, agarose, and chitosan). 
 Collagen is a natural component of cartilage and is 
known to play an important role in cellular adhesion and 
differentiation through specific interaction between li-
gands on collagen chain and adhering cells (2). Therefore, 
it is widely used for engineering artificial tissue in a broad 
spectrum of organs. Type II collagen also plays an essen-
tial role in the maintenance of chondrocyte function. 
Bovine BMSCs seeded on type II collagen represent the 
most prominent phenotype of chondrocyte differentiation 
with the addition of transforming growth factor (TGF)-β
1 in a time dependent manner (24). It was also found that 
chondrogenic differentiation only was detected in three-di-
mensional hydrogels, not in monolayer cultures. 
  Hyaluronan is a primary physiological component of 
ECMs in articular cartilage, which can be chondrogenic 
to mesenchymal stem cells. In the transplantation study 
with autologous BMSCs embedded in the hyaluronic acid 
sponge, BMSC-loaded scaffold were implanted in full- 
thickness osteochondral defects of the rabbit knee (25). 
Histological findings revealed that newly formed cartilage 
tissue at the implantation site were very similar to the sur-
rounding normal tissue, which is much better than that 
of the untreated group. It is usually chemically modified 
for easy fabrication into solid scaffolds because of its high-
ly hydroscopic nature (26). The common form of the mod-
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ification is the esterification of a carboxylic acid present 
at the C6 position of hyaluronic acid. The benzyl ester of 
hyaluronic acid has been commercialized as Hayff-11 and 
tested clinically. 
  Alginate is an anionic polysaccharide which forms a hy-
drogel instantly in the presence of divalent cations such 
as calcium ion. Alginate beads encapsulating cells are 
commonly produced when cells dispersed in alginate sol-
ution are dropped into a calcium chloride solution. In an 
in vitro study using rabbit BMSCs, it was reported that 
alginate and agarose gels containing BMSCs induced the 
greatest increase in the expression of cartilage-specific 
markers such as aggrecan and type II collagen, in compar-
ison to type I collagen gels (27). Furthermore, when rabbit 
BMSCs encapsulated in alginate beads were deployed in 
cartilage defects of rabbit, the beads remained satisfac-
torily within the defect regions, which were progressively 
replaced by the regenerating tissue. Histological findings 
showed that viable chondrogenic cells were filled in the 
defects. In a clinical study on 17 patients enrolled with 
the inclusion criteria of isolated lesion of the femoral con-
dyle (grades III and IV), significant improvement was ob-
served in patients with lesions larger than 3 cm2 when au-
tologous chondrocytes were isolated and suspended in an 
alginate-agarose mixture solution and subsequently im-
planted in lesions of patients (28). However, alginate gel 
suffers from instability in physiological solution due to a 
loss in mechanical strength and intergrity induced by the 
replacement of divalent calcium ions with monovalent so-
dium or potassium ions.
  Synthetic materials including poly(lactic acid) (PLA), 
poly(glycolic acid) (PGA) and their copolymer, poly(lactic 
acid-co-glycolic acid) (PLGA) have been tested for carti-
lage tissue engineering potential since the American Food 
and Drug Administration approved its use in the human 
body. They are thought to have advantages including their 
ease in molding and the ability to design their degradation 
rate to match tissue growth into the scaffold. However, 
these synthetic materials are not as preferred for cartilage 
tissue engineering as materials of natural origin, because 
the acidic byproducts generated during the degradation 
process cause an inflammation reaction, giant cell re-
action, and acute chondrocyte death due to the abrupt 
drop in pH in the local microenvironment inside the en-
gineered cartilage. The closed cartilage environment de-
ters the rapid clearance of acidic byproducts from the de-
grading synthetic scaffolds, eventually inducing un-
desirable side reactions in cartilage. Another disadvantage 
of these materials is their poor cell attachment. 
Commonly, these materials were modified to possess an 

anchorage site for cell adhesion or mixed with other natu-
rally-derived materials (29).
  Recently, hydrogel-based scaffolds have gained greater 
attention for cartilage tissue engineering applications be-
cause of their similarity to the natural cartilage environ-
ment. Hydrogels contain high water content similar to 
that of natural cartilage, which serves as a suitable envi-
ronment for chondrocytes. These materials are composed 
of synthetic or natural-based hydrophilic biomaterials 
cross-linked by physical, ionic, or chemical interactions. 
They also can be injected transcutaneously into the defect 
region of the joint, which avoids the invasive surgery re-
quired for the implantation of a prefabricated scaffold. 
PEG is a popular biocompatible hydrophilic polymer ap-
proved by FDA, and it has been extensively explored for 
formulating hydrogels to encapsulate bioactive drugs or 
cells. It is thought that crosslinked PEG hydrogel may 
provide a better environment for culturing chondrocytes 
in terms of high water content and mechanical strength, 
because chondrocytes are surrounded by hydrophilic ECM 
components in high abundance. When BMSC and embry-
onic stem cell-derived cells (ESC) were encapsulated in 
this hydrogel with a mechanical stimulus, gene expression 
of cartilage-related markers such as Sox-9, type II colla-
gen, and aggrecan, was noticed (20). However, it was de-
termined that highly crosslinked PEG hydrogel might hin-
der proliferation and proteoglycan synthesis of encapsu-
lated chondrocytes (21, 30). As the seeded cells grow and 
form new tissue inside the hydrogel, the scaffold should 
degrade accordingly. 
  In situ injectable hydrogel systems have generated in-
creased interest for cartilage repair applications (31). They 
can be injected with encapsulated cells and/or bioactive 
materials of interest into the cartilage defect in a minimally 
invasive manner and easily fill the three-dimensional shape 
of the defect for facilitated integration with the additional 
mechanical property of temperature-dependent sol-gel tran-
sition. Poly (N-isopropylacrylamide) (PNIPAAm) exhibits 
reversible phase separation with a lower critical solution 
temperature (LCST) of approximately 32ºC. Thus, chon-
drocytes cells can be dispersed in PNIPAAm solution at 
room temperature (RT) lower than LCST and injected in-
to the cartilage defect for in situ gelation. 
  A few specific characteristics of single ECM component 
might be insufficient to create the optimal environment 
to mimic the natural proliferation and differentiation of 
chondrocytes in cartilage. Therefore, in most cases a com-
bination of multiple components to address various fea-
tures required for culturing chondrocytes is desired. Most 
synthetic material-based scaffolds suffer from poor an-
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chorage of chondrocytes or stem cells, and incorporation 
of natural ECMs including collagen, fibrin and hyaluronic 
acid in synthetic scaffolds for cell attachment has been a 
popular approach studied extensively. Synthetic materials 
provide relatively high mechanical strength with a tunable 
degradation rate, whereas their hydrophobicity and lack 
of cellular anchorage site are drawbacks for their applica-
tion in tissue engineering. Conversely, naturally-derived 
ECM polymers support excellent cellular adhesion and 
growth due to their specific cell interaction peptides and 
hydrophilicity, even though their weak mechanical proper-
ties make it difficult to use them in load-bearing region 
such as cartilage. Thus, these characteristics of naturally 
or synthetically originated materials drive us to attempt 
a combination of the two materials in order to afford high-
er mechanical strength, tunable degradation, and cellular 
attachment (32). Another purpose of hybrid scaffolds is to 
incorporate thermally or chemically responsive compo-
nents in natural or synthetic material-based scaffolds to 
increase the bioavailability of seeded cells while minimiz-
ing their leakage out of the scaffolds. Fibrin possesses 
chemically active gelling property, which typically occurs 
during blood coagulation in addition to the advantages de-
scribed previously. Several studies investigating fibrin- 
based hybrid scaffold demonstrated its potential for the 
promotion of homogeneous cell distribution and cartilagi-
nous tissue formation (33-35). PNIPAAm was also used 
for this purpose, and it possessed the merit of a synthetic 
thermoresponsive polymer for tissue engineering with ver-
satile manipulation of its chemical structure and molec-
ular weight as well as easy conjugation with other com-
ponents. 

Conclusion

  Great scientific advances have been achieved for carti-
lage tissue engineering in the last two decades. Rational 
design of the scaffolds having greater biological affinity to 
host cartilage environment as well as sophisticated manip-
ulation of diverse cell sources including stem cells would 
bring us the exciting prospect for the realization of clin-
ically usable, engineered cartilage.
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