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Abstract

Discoveries in fruit flies have greatly contributed to our understanding of neuroscience. The use of

an unparalleled wealth of tools, many of which originated between 1910–1960, has enabled

milestone discoveries in nervous system development and function. Such findings have triggered

and guided many research efforts in vertebrate neuroscience. After 100 years, fruit flies continue

to be the choice model system for many neuroscientists. The combinational use of powerful

research tools will ensure that this model organism will continue to lead to key discoveries that

will impact vertebrate neuroscience.

Introduction

It was almost 100 years ago that Thomas Hunt Morgan reported the identification of the

white gene in Drosophila melanogaster1. Hence, this is an appropriate time to reflect on the

past and present contributions of fruit fly research to the field of neuroscience. Genetic

approaches dominated the first 50 years of research in Drosophila (1910–1960), focusing on

dissecting the principles of inheritance2. During this time period important concepts and

tools were developed that allowed the study of many other biological processes between

1960–2010 (Timeline; Box 1). Indeed, investigators realized in the early fifties that genetic

approaches could be used to study problems other than heredity. The continuous

development of research tools between 1960–2010 has driven numerous new discoveries in

fruit flies. This article highlights the many aspects of nervous system development and

function that have been unraveled in fruit flies and how these studies have influenced

neuroscience research in vertebrate species.
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Box 1

Tools and principles developed between 1910–1960

The most important tools and methods developed in this period include the balancer

chromosomes178, 179. Balancer chromosomes allow investigators to maintain mutations

in heterozygous stocks, without having to genotype the animals for further breeding.

Hence, mutations in essential genes can easily be studied. Drosophila is still the only

multicellular organism in which more than 95% of the mutations in essential genes can

be maintained easily and effectively.

X-rays were found to be mutagenic and to induce chromosome rearrangements4

including deletions, duplications, and inversions. The ability to map these rearrangements

on salivary gland polytene chromosomes180 allowed geneticists to physically map genes.

Finally, the discovery of mitotic recombination181 laid the foundation to study the

function of essential genes in mosaic animals. Many of the methodologies and reagents

created between 1910–1960 have had a major influence on the approaches pursued since

the following decades and have led to the discovery of numerous mutations in loci that

are still being studied today.

Timeline.
Boxes with green borders indicate the development of important tools and methods;

boxes with purple borders indicate the discovery of genes involved in nervous system

development; boxes with blue borders indicate events related to genes involved in

behavior; and boxes with orange borders indicate events related to proteins that affect

nervous system function. For more details see Box 1.

DEVELOPMENT OF THE NERVOUS SYSTEM

A pathway to Notch

Mutations in Notch were first identified in 1915 and reported in 1916 (Ref. 3) as mutations

that result in the malformation of wings. It was Poulson who first documented the effects of

Notch on embryonic development. Loss of Notch causes a so-called ‘neurogenic’ phenotype,

characterized by presumptive hypoderm that differentiates into neuroblasts4, resulting in an

embryo with a hypertrophied CNS at the expense of ventral hypoderm. A systematic search

to identify other mutations with similar phenotypes led to the isolation of other key genes

that control epidermal versus neuronal fate including neuralized, Delta, mastermind, big

brain and Enhancer of split5. The cloning of Notch6 and its ligand Delta7 in the mid-

eighties, as well as the cloning of other key players, helped delineate what is currently

known as the Notch signaling pathway8, 9.
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Evidence that Notch is conserved in vertebrates resulted from the cloning of the human

NOTCH gene as the cause of a human leukemia10. In the 1990s it became apparent that the

other core components of the Notch pathway that had been identified in Drosophila are

conserved in vertebrates and that many have similar roles in vivo. All the Notch signaling

components identified in flies and mammals have been recently compared in detail11. The

Notch pathway has a seminal role in developmental neurobiology as it affects almost every

aspect of neurogenesis and differentiation of neurons in vertebrates, in the developing as

well as the adult brain, including neural stem cells12. However, the importance of Notch

signaling stretches far beyond specifying neuronal versus epidermal cells. Some of its

components, including neuralized, have now also been shown to have a role in learning and

memory formation in adult flies13. More importantly, Notch signaling affects neuronal stem-

cell specification, blood cell development, heart development, hematopoietic stem cell

differentiation, bone and skin development and numerous other tissues. Mutations in the

human NOTCH3 locus (there are four NOTCH loci in most vertebrates) cause a devastating

neurological disorder named CADASIL (cerebral autosomal dominant arteriopathy with

subcortical infarcts and leukoencephalopathy14). Finally, aberrant Notch signaling causes

several types of cancer11.

Homeotic genes and vertebrate nervous system segmentation

During the 1950s several scientists realized that existing spontaneous and X-ray induced

mutations, such as achaete15 and Ultrabithorax16, which adversely affect the development

of an organism can help unravel the principles of development and pattern formation. Lewis

focused on the bithorax complex of genes and the polycomb gene, which are crucial to

define the basic segmental identity of the larval and adult thorax and abdomen17. Sanchez-

Herrero et al.18 showed that the bithorax complex contained three genes: Ultrabithorax,

Abdominal-A and Abdominal-B. The work on the bithorax complex, as well as that on

another complex of homeotic genes, the antennapedia complex19, 20, led to the discovery

that both complexes contain genes encoding evolutionarily conserved homeobox-containing

proteins21 that are involved in DNA-binding and function as transcription factors.

Subsequently, the discovery of four large complexes of homeotic (Hox) genes in vertebrates,

with many properties similar to those of Drosophila Hox clusters22, and an important role in

patterning the hindbrain23, had a significant effect on vertebrate neurodevelopmental

biology. Furthermore, the Hox genes seem to be key for defining the specificity of motor

neuron–muscle connectivity24 and in the genetic program of neural crest migration25.

The proneural helix-loop-helix proteins

The achaete-scute complex26 contains a set of four genes (achaete, scute, lethal of scute and

asense) that had a seminal role in the discovery of the basic-helix-loop-helix (bHLH)

transcription factors. These proteins are typically expressed in neuronal precursors of the

central and peripheral nervous system (PNS) and are often required to allow ectodermal

cells to adopt a neural fate. Mutations in scute, which cause a loss of neurons and a loss of

bristles or adult sensory structures, were isolated and studied between 1918–1940 (Ref. 27).

However, in the late seventies, a key set of genetic and developmental observations

suggested that achaete and scute are involved in the initial decision to specify a sensory

organ, and not in the differentiation process itself28, 29. This analysis paved the way for the
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cloning30 and identification of proteins encoded by the achaete-scute complex. These turned

out to correspond to bHLH transcription factors that are expressed in specific domains of

ectodermal cells31 and are required to switch the fate of these cells to neuronal precursors of

the PNS — this requirement was also observed for other bHLH proteins such as Atonal32.

The homologues of these genes were then shown to have a key role in vertebrate

neurogenesis33, specification of vertebrate inner ear hair cells34, touch receptors35, 36 and

motorneurons37. In summary, the achaete-scute complex genes were the founders of an

important family of genes required in neural development across phyla38. Moreover, apart

from the discovery of the bHLH genes, numerous other key genes that affect the

development of the external and internal sensory organs in fruit flies have been identified,

including numb39, cut40, prospero41 and senseless42. Similarly, the vertebrate homologues

of these genes (like Numb and Gfi1) have been shown to affect vertebrate

neurogenesis43, 44, 45.

Neurogenesis, neuronal migration, and growth cone guidance

In the mid-seventies, the available genetic tools in Drosophila (Box 1) offered an

opportunity to address how embryonic pattern formation is controlled and to determine

which genes are involved46. By carrying out a systematic chemical mutagenesis screen47 on

the different fly chromosomes and analyzing the larval cuticular patterns, Nüsslein-Volhard

and Wieschaus identified 139 genes that affect the development of fly larvae48, 49. Although

these screens were not designed to identify genes that affect the development or function of

the nervous system, they identified many novel players that were later shown to be part of

conserved signaling pathways, including genes in the Hedgehog, Wingless, Decapentaplegic

or Tumor growth factor-β, and Notch pathways. These pathways are important in vertebrate

neurogenesis50, neuronal migration51, growth cone guidance52 and maintenance and

differentiation of neural stem cells53 (Table 1). These findings demonstrated the power of

forward genetic approaches in solving complex development questions.

Genetic screens in the early nineties also led to the identification of mutations that affect

growth cone guidance54, leading to the discovery of the roundabout or Robo pathway55.

This pathway controls the crossing of growth cones of pioneering neurons across the midline

of the nervous system in flies and mice. Similarly, another set of growth cone guidance

proteins that have a repulsive role, the semaphorins, were discovered simultaneously in

flies56 and chick, where the founding member was named collapsin57. As is the case for

many signaling pathways with pleiotropic roles, these signaling pathways do not only affect

growth cone guidance but also other processes such as vascular development and tumor

growth in vertebrates58.

THE MOLECULAR BASIS OF BEHAVIOR

The successful application of genetics to dissect the structure and function of prokaryotic

genes in the fifties and sixties prompted Benzer to venture into a new area. He reasoned that

as genetics could be used to dissect the principles of inheritance and development, a

systematic genetic analysis of fly behavior should yield genes that control neuronal function.

This simple but powerful idea, combined with an efficient protocol for chemical

mutagenesis47, initiated the field of behavioral neurogenetics.
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Circadian rhythms

Benzer ventured into this field in 1967 when he described a simple behavioral assay that is

still used today: the light countercurrent assay59, a quantitative method to fractionate

populations of flies according to their behavioral responses when exposed to light on

repeated trials. He then used ethyl methane sulfonate (EMS) to induce mutations and

screened for mutants with defective phototaxis. He isolated several X-chromosome

mutations and argued that similar screens and assays could identify mutants that are

impaired in gravity, odor or sound perception. This work convinced many of his students

and contemporaries that genetics could be used to tackle questions regarding the molecular

basis of behavior that were difficult, if not impossible, to address at the time.

In 1971, Benzer’s group published a seminal paper60 describing a forward genetic screen for

defects in the daily rhythm of eclosion and locomotor activity of adult flies. They found

three novel mutants affecting a single gene that they named period (per), which caused

faster, slower or complete absence of rhythms (arrhythmic). The identification of the per

gene took 13 years, largely because the work was published before recombinant DNA

technology was a viable research tool61, 62, 63, 64. Another 13 years passed before human and

mouse geneticists identified the corresponding homologues65. These studies, together with

other forward genetic screens in flies66 and mice67, 68 led to the isolation of the timeless and

clock genes respectively, laying the groundwork for unraveling the molecular mechanism of

the circadian network that is conserved from flies to humans. Thins work also led to the

discovery that mutations in these genes have a role in human disease. Indeed, familial

advanced sleep phase syndrome is caused by mutations in the period homologue 2 (PER2)

and casein kinase 1 delta (CSNK1D), two of the core clock genes in humans69.

On learning and memory

The development of an olfactory shock-avoidance learning assay in 1974 was another

important contribution from the Benzer laboratory70, resulting in the isolation of the first

learning mutant, dunce (dnc)71. Biochemical tests quickly provided compelling evidence

that dnc mutants were deficient for cAMP phosphodiesterase activity72, 73 and shortly after,

dnc was shown to encode this enzyme74. The role of cAMP in learning and memory was

further substantiated with the cloning of the mutant gene of another learning mutant,

rutabaga, which encodes an adenylate cyclase, an enzyme that produces cAMP75. This

work laid the foundation for the isolation of many genes that are involved in olfactory

learning in D. melanogaster and that affect cAMP levels in neurons76. A role for cAMP in

learning and memory was also documented in Aplysia californica in the early eighties77, 78.

This was later confirmed and expanded upon in vertebrates79. More recently fly biologists

have started to identify changes in calcium dynamics in the olfactory circuitry that

correspond well with the behavioral dynamics of olfactory memories80. This work is starting

to reveal the neuronal mechanisms underlying the storage of memories.
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PROTEINS THAT AFFECT THE FUNCTION OF THE NERVOUS SYSTEM

Tripping on TRP: the transient receptor potential channels

The screens performed by Benzer59 prompted others to look at EMS-induced mutant flies

that had impaired vision. An electrophysiological assay that had originally been developed

in other insects81 and that records the electrical potentials contributed by many different cell

types in the retina upon light stimulation (the electroretinogram (ERG)), allowed the

identification of numerous mutants with defects in their light responses82, 83. One of these

mutants caused flies to only exhibit a short transient membrane potential in the ERG upon a

flash of light. This mutant later became known as transient receptor potential or trp84.

In the early eighties, analysis of genes (and their products) that affect eye signal transduction

(rhodopsins, trp)85, pigmentation (rosy, white)86 and development (sevenless, rough and

many others)87 were greatly aided by the development of P-element-mediated

transformation by Spradling and Rubin88. Indeed, Montell et al.89 used this technique to

demonstrate that they had cloned the trp gene by rescuing the phenotype of mutants in vivo.

Subsequent sequencing of trp revealed that it encoded a light-inducible calcium channel

with six transmembrane domains expressed in photoreceptor cells90. The Montell laboratory

then cloned the first vertebrate TRP channel in 1995 (Ref. 91), thereby establishing the

presence of a large and interesting family of novel channels in vertebrates92.

TRP channels are expressed throughout the body and are activated and regulated by multiple

stimuli including mechanical stretch, heat, touch and environmental chemicals93. TRPs have

now been shown to mediate responses to nerve growth factor and pheromones, to affect

proprioceptors and touch receptors, to be required for hearing and olfaction in flies, to

transduce heat and pain perception, and to affect the transduction of other stimuli, such as

osmolarity. Furthermore, mutations in several members of TRP-related channel proteins are

responsible for neurodegenerative disorders: mutations in TRPML1 cause mucolipidosis

type IV disease94, whereas mutations in TRPV4 cause hereditary motor and sensory

neuropathy type IIC95, 96, 97.

Shaking it all: Shaker (Sh) and ether-a-go-go (eag)

Mutations in Sh cause flies to shake their legs when anesthetized with ether98. A detailed

electrophysiological characterization of these mutants was initiated in the seventies99, 100.

These studies showed that Sh mutations cause a prolonged release of neurotransmitters at the

larval neuromuscular junction (NMJs) because motor neurons fail to repolarize, suggesting a

defect in potassium channels100, 101, 102. This led to a race to clone and sequence the Sh

gene10, 104, 105, 106. The cloning of Sh as the first potassium channel allowed its biochemical

purification and molecular characterization. Subsequently, a family of at least four Sh-

related potassium channel genes (Sh, Shab, Shal and Shaw) was identified in D.

melanogaster and mammals107.

Another founding potassium channel member is encoded by the eag gene, which was also

identified on the basis of its leg-shaking phenotype98. In eag mutants, neurotransmitter

release is enhanced and more prolonged, and in the absence of nerve stimulation, there is a

high frequency of spontaneous release101, 108. eag and Sh double mutants display a
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synergistic interaction, suggesting that two different types of potassium channels are

involved in the repolarization of the nerve terminal102. Cloning and sequencing of eag109

verified this hypothesis, leading to the identification of another family of potassium

channels, the so named EAG, ERG (eag-related gene) and ELK (eag-like potassium)

channels110. The vertebrate homologue of ERG, HERG, was subsequently linked to a

neurological heart disease (LQT syndrome)111. Moreover, it was discovered that many

commonly used drugs like seldane and vicodin cause cardiac arrythmia by off-target effects

on HERG. Obviously, potassium channels have a central role in all neurons112 and have

been implicated in numerous human diseases113.

Synaptic transmission

The electrophysiological properties of the larval NMJ, a well-established model for studies

of synaptic transmission, were first characterized in detail by Jan and Jan. The large size and

accessibility of body wall muscles, make them most amenable to electrophysiological99, 114,

immunohistochemical115 and microscopical116, 117 studies. By being able to manipulate the

expression of genes pre- and postsynaptically, these technologies allow the dissection of

protein function at an unparalleled level in vivo. For example, the study of the role of

synaptotagmin at the fly NMJ was the first to provide compelling data in vivo that it

functions as a calcium sensor for fast synaptic transmission118. This was also one of the first

examples of using a reverse genetic approach to knockout a gene in Drosophila, as no P-

element insertion, X-ray or EMS mutants for synaptotagmin were available at the

time119, 120. Similarly, it was first discovered in fruit flies that dynamin, encoded by the fly

shibire gene121, 122, has a crucial role in endocytosis. Again, the NMJ synapses were

seminal in the in vivo dissection of the function of dynamin123, 124. The function of many

other proteins required for exo- and endocytosis have been characterized using the fly NMJ,

providing important information about the in vivo function of many important proteins

required for synaptic transmission in vertebrates125, 126, 127. Table 2 details most of the

presynaptic proteins that have been studied in fruit flies. Many of these studies were possible

because of the coordinated efforts of the Drosophila Gene Disruption Project, which created

a large collection of transposable elements that allowed the generation of mutations through

imprecise excision, and therefore permitted the detailed functional investigation of many

genes128.

ADVANTAGES OF STUDYING FRUIT FLIES

Drosophila offers many unique advantages that will ensure that it is a premier research

organism for many years to come. The sophisticated manipulations that can be carried out in

flies are unsurpassed in any other multicellular model organism129, 130. These manipulations

allow biologists to ask precise questions about behaviour, signalling processes, individual

cell behaviours, organ development and adult behaviour. Two experimental key features,

namely the successful and efficient removal or addition of single genes or gene products, are

important for any model organism to be successfully used in the laboratory. In Drosophila,

genes can be removed in a random fashion using chemical mutagenesis before screening for

specific phenotypes, as already documented47. Current tools allow very rapid mapping of

chemically-induced mutations that have robust phenotypes, permitting the isolation of null
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alleles, hypomorphs, hypermorphs, neomorphs and antimorphs as well as conditional alleles,

vastly expanding the ability to assess gene function. It is possible to perform a chemical

mutagenesis X-chromosome screen and map more than 50 genes in less than a year using

duplications and deletions (HJB unpublished data), demonstrating that gene mapping has

become almost trivial. Further improvements in speed and accessibility are expected from

recent developments related to whole genome sequencing methodologies131. These will

clearly have a major impact in the mapping of genes that control behaviour. In another

approach, one can remove 65% of the fly genes in a targeted fashion using imprecise

excisions of transposable elements128, 129. Alternatively, one can engineer mutations in the

locus of interest through selective removal or replacement of sequences, the so-called

targeted knockout technology developed originally by Golic and colleagues132. Yet another

approach is to use RNA interference to reduce the expression of any gene. This

methodology works well for some loci and less well for others, but it still offers many

possibilities133, 134. Finally, other methods have been engineered and adapted to flies

ensuring that Drosophila has the most complete arsenal of tools to knock out genes129.

Adding single genes or gene constructs in flies through P-element-mediated transformation

has been available since 1982 (Ref. 88). This methodology has been extremely important as

it allows the efficient transformation of flies with only a single copy of the DNA of interest

— unlike in many other model species — and has permitted some of the most sophisticated

manipulations in the animal world130. This transformation protocol has recently been

improved significantly using P[acman] technology, allowing small to very large pieces of

DNA to be inserted in specific docking sites spread throughout the genome135, 136. Efficient

transformation has allowed the development of the flippase (FLIP)–flippase recognition

target (FRT) recombination system137, 138 which enables the creation of mutant patches of

tissues or cells in an otherwise heterozygous background. It also allowed the development of

the UAS/Gal4 system, by which any gene can be expressed ectopically in almost any tissue

or cell139. Finally, it also led to the development of a high efficiency mitotic recombination

system that allows to knockout a gene in specific tissues, organs, cells or neurons and mark

the mutant cells140. Finally, P[acman] technology allows the tagging of most genes in vivo,

permitting sophisticated manipulations in a genomic context141.

In summary, these tools allow the dissection of the function of specific neurons at an

unparalleled level of resolution. In addition, current electrophysiological methods allow the

functional assessment of numerous different types of synapses including those at the NMJs

of fly embryos142, larvae and adults99, 143, as well as synapses of photoreceptors81 and the

giant fibre system144. In addition, several preparations have been developed to record

specifically from central neurons145, 146, 147, 148. Moreover, thousands of UAS/Gal4 lines

are now available149, which allow the modification of gene expression139, or to

functionally150, 151, 152, 153 or physically ablate most neuronal populations in the brain.

Finally, the availability of optogenetic tools154 allows to elicit innate behaviours under the

control of a light source. These and many other methods that are currently being developed

will ensure that the fruit fly stays at the forefront of neuroscience research for many years to

come.
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THE FUTURE OF RESEARCH IN THE FRUIT FLY

As outlined above, Drosophila has and will continue to contribute to many aspects of

neuroscience. Current and future research in many areas of fly neurobiology will pave the

way to new genes, new pathways and new approaches that will pioneer numerous fields of

neurobiology, including vertebrate neurobiology. Obviously, the fruit fly is not suited to

study vertebrate-specific issues, such as the development of specific brain structures,

regulation of neural crest migration, the function and properties of hippocampal neurons, or

to assess how the cerebellum controls motor outputs. However, the fly has the proven

potential to provide information about the fundamental features of nervous system

organization and function, how information is integrated and processed, how specific genes

can cause neurodegeneration, how different brain areas are wired together, and what gene

products and genetic cascades control behaviour. Below we list a small sample of recent

exciting discoveries to illustrate that research in flies is continuing to be highly influential in

neuroscience.

Flies, just like vertebrates, require sleep. Numerous aspects of the physiological properties

of sleep are shared between Drosophila spp. and humans155, 156, and studies on sleep in flies

are paving the way for a better understanding of sleep in vertebrates157. Recent genetic

screens identified genes that affect the sleep cycle of flies, including mutations in

sleepless158. Sleepless binds to Shaker, suggesting that it modulates Shaker activity by a

direct interaction. It seems conceivable that proteins similar to Sleepless, that contain a Ly-6

domain and a glycosylphosphatidylinositol anchor will control sleep in vertebrates159. The

sleep field is a nice example of how the mammalian community not only ‘accepts’

discoveries in D. melanogaster, but also of how investigators of mammalian systems have

turned to flies to advance their research. Indeed, the first genetic screen for sleep genes was

actually performed by a mammalian sleep laboratory in collaboration with the Ganetzky

laboratory160. Similarly, some well-established vertebrate neuroscience laboratories have

recently shifted their interest to solving important neuroscience questions in flies161, 162.

Another example of a recent contribution of research in flies relates to Parkinson’s disease, a

CNS disease that leads to an impairment of motor skills, speech and other functions. The

symptoms result from reduced activity of dopamine-secreting cells of the human substantia

nigra163. Mutations in a number of genes including α-synuclein164, parkin165 and PTEN-

induced putative kinase 1 (PINK1)166 cause Parkinson’s disease, but the mechanisms

underlying the disease remain unknown. Studies with mammalian cells have indicated

diverse pathogenic mechanisms and disease models, including protein misfolding, abnormal

protein accumulation and mitochondrial dysfunction. However, no clear picture has emerged

from these studies. The work on parkin and PINK1 mutations in D. melanogaster, however,

has provided compelling evidence that PINK1 and Parkin are components of a pathway that

is involved in regulating mitochondrial remodelling and that mitochondrial dysfunction is a

cause of Parkinson’s disease167, 168. These, and many other neurodegenerative diseases,

including ataxias caused by polyglutamine expansions169, 170, have and will continue to

benefit from research in flies171.
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Recently, many fly experts have focused their attention on dissecting the molecular and

cellular basis of behavior. These include phototaxis, chemotaxis172, aggression173, physical

response to mechanical stimuli174, escape behavior175 and sex176, 177. This focus is

illustrated by the concerted efforts of researchers at Janelia Farm, Ashburn, Virginia, USA,

who are trying to systematically dissect the origin of every fly neuron, identify different

types of adult neurons, the nature of every synapse and the function of different neuronal

populations. These studies will undoubtedly advance our understanding of how the nervous

system of the fruit fly works and provide us with very valuable paradigms to study

mammalian brain function.

As history tends to repeat itself, the main reason for predicting that studies in fruit flies will

continue to reveal key aspects of nervous system function is simple: the fly toolbox has an

unparalleled sophistication and precision that allows scientists to tackle almost any question

in biology and answer it in a timely fashion129. Moreover, this toolbox continues to expand

quickly133, 135, 141, 149, ensuring that D. melanogaster will remain a model organism of

choice for neuroscientists.
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