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Inflammation Based Regulation of Cancer Cachexia
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Cancer cachexia, consisting of significant skeletal muscle wasting independent of nutritional intake, is a major concern for patients
with solid tumors that affects surgical, therapeutic, and quality of life outcomes. This review summarizes the clinical implications,
background of inflammatory cytokines, and the origin and sources of procachectic factors including TNF-𝛼, IL-6, IL-1, INF-𝛾, and
PIF. Molecular mechanisms and pathways are described to elucidate the link between the immune response caused by the presence
of the tumor and the final result of skeletal muscle wasting.

1. Clinical Significance of Cancer Cachexia

Cachexia associated with cancer leading to skeletal muscle
wasting is a major cause of morbidity associated with numer-
ous types of cancer. Varying definitions have been proposed
to classify cachexia, but the central components include
ongoing loss of musclemass due to a negative protein balance
[1–3]. Greater than 50% of patients with cancer have cachexia
at the time of death, and more than 30% of patients die due
to cachexia [4]. This has been shown to become increasingly
worse as the cancer progresses, eventually reaching a limit
with low likelihood of reversal [5]. Emerging evidence shows
that skeletal muscle depletion in cancer patients is a powerful
predictor of a worse overall prognosis across varying cancer
etiologies [6–9].

Muscle atrophy/wasting, often used as a clinical marker
of cachexia, has been shown to affect outcomes in patients
undergoing surgery. The University of Michigan Analytical
Morphomics Group has published their findings on the
relationship between lean muscle mass and postoperative
mortality in patients undergoing any major elective surgery
(an increase in mortality by 45% for each 1000mm2 decrease
in lean core muscle area) [9] which they found to be more

predictive than chronological age [10]. This same pattern
held true for patients with adrenocortical carcinoma [11]
and melanoma [12]. The measurements for lean muscle mass
were determined by measuring the cross-sectional area and
Hounsfield units of the psoas muscle at the level of the fourth
lumbar vertebra and excluding fatty infiltration.

Patients with operable cancer are greatly impacted by the
presence of cachexia.Thismay be due to the fact that cachexia
indicates a more advanced stage of tumor [13] or simply
that the patient is overall frailer. In a study examining 557
patients undergoing pancreas resection for adenocarcinoma,
Peng et al. found that muscle wasting was an independent
factor associated with an increased risk of death at three
years (HR = 1.63; 𝑃 < 0.001) [14]. A similar finding was
noted for patients undergoing hepatectomy for hepatocellular
carcinoma (HR = 0.92; 𝑃 = 0.004) [15]. Decreased muscle
densitywas associatedwith an increased rate of complications
but not overall outcomes for colon cancer in another study
[16].

Not only are overall survival and surgical outcomes
affected by cachexia but also quality of life. Several studies
have shown that cachexia itself contributes to lower scores
more so than tumor location, duration, or stage [17, 18].
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Outward effects of cachexia include a decrease in physical
activity and the ability to perform activities of daily living,
which may play a role in a person’s psychological well-
being. These factors in turn lead to a lower performance
status, negatively impacting the ability and availability of
chemotherapeutic agents [18–22].

The theory of the origin of cancer cachexia is rooted in
systemic inflammation and not solely reduction of nutritional
intake [23], a reason why cachexia is now distinguished
from anorexia (see below). Several easily identifiable factors
have been studied in an attempt to quantify the degree of
inflammation and use that data to predict outcomes or guide
treatment. Elevated neutrophil : lymphocyte ratio (NLR) and
C-reactive protein have been associated with low skeletal
muscle mass [24] and early detection of cancer cachexia [25,
26]. NLR has been shown to predict outcomes in numerous
types of solid [27–32]. Another scoring system, the modified
Glasgow Prognostic Score, is based on C-reactive protein and
albumin levels [33].This has been shown to predict outcomes
in patients with biliary [34], colorectal [35], prostate [36], and
other tumors [37].

The effect of trying to reduce cachexia by avoiding bed
rest and stimulating muscle exercise has met with limited
results. A review by Stene and colleagues [38] summarized
results from several randomized controlled trials examining
cancer cachexia. They found that physical exercise may lead
to reduced fatigue, improved quality of life, and decreased
adverse effects, but further studies are needed to identify if
there is any survival advantage, particularly inmore advanced
cancer stages.

2. Background of Inflammatory Cytokines

The clinical significance of cancer cachexia has been realized
for some time. The imbalance between adequate caloric
intake and total body energy expenditure has been the subject
of research for several decades. Previous work has focused on
the role of cytokines such as tumor necrosis factor-𝛼 (TNF-
𝛼), interleukins 1 and 6 (IL-1, IL-6), and interferon gamma
(INF-𝛾).

A review article by Tisdale published in 1997 summarized
the current literature at that time [39]. Cancer cachexia
was noted to be different from simple starvation which
strives to conservemuscle mass. In cancer cachexia, however,
this conservation mechanism is missing, such that there
is equal loss of adipose and muscular tissue. This finding
highlights the fact that anorexia alone is not sufficient cause
for cachexia, and, in fact, does not always precede it [40], nor
is cachexia alleviated by the supplementation of intravenous
hyperalimentation [41].

Probably more influential in the development of cachexia
is the increase in energy expenditure due to an elevated
basal metabolic rate [39]. This is associated with an elevated
adrenergic state [42] and appears to be similar across tumor
types. Many solid tumors have also been shown to have sig-
nificantly elevated rates of carbohydrate metabolism [43, 44].
This increase in glucose utilization by the tumor translates

into a lower supply for the host tissue. The primary site of
lean body mass depletion is the skeletal muscle and this
is due to an increased rate of protein turnover without an
appropriately significant increase in protein synthesis [45].
The pathway regulating protein breakdown is the adenosine
triphosphate- (ATP-) ubiquitin-dependent pathway.This has
been shown to be upregulated in cancer cachexia [46] and the
ATP-ubiquitin-dependent pathway appears to play a major
role in cancer cachexia in weight loss up to 20% [47].

These responses are controlled, at least in part, by a variety
of cytokines. TNF-𝛼was initially thought to play a direct role
in cachexia by inhibiting lipoprotein lipase and enhancing
the protein degradation.Thedirect correlation betweenTNF-
𝛼 levels and the degree of cachexia has been more difficult
to prove, however [39]. Similarly, IL-1 has demonstrated
some role in the cachexia pathway, but a direct mechanism
for controlling tissue wasting has not been proven [39].
Increasing the levels of IL-6 has been shown to correlate with
development of cachexia in certain mouse models [48, 49].
Treatments designed to bind to IL-6 and inhibit its effect have
demonstrated improvement in cachexia [50, 51].These results
have also been demonstrated in human patients [52]. Studies
have shown INF-𝛾 to have similar properties to TNF-𝛼 in
reducing body fat, but without an effect on total body protein
[39]. Again, no associationwith the human clinical syndrome
of cancer cachexia has been clearly elucidated.

The ubiquitin pathway is also regulated by a high affinity
activin type 2 receptor (ActRIIB) [53]. Zhou et al. found
that blockade of this pathway could reverse muscle loss and
also led to prolonged survival in mice models of cancer
cachexia. Interestingly, this reversal was not accompanied
by a reduction in circulating levels of proinflammatory
cytokines [53].

In a review by Argiles and Lopez-Soriano, cytokines are
separated according to their function as either procachectic
factors or anticachectic factors in order to further define
their roles [54]. The procachectic factors include those
mentioned above, which act by promoting tissue wasting.
The anticachectic factors act in opposition by attempting to
stabilize this breakdown. These factors include IL-4, IL-10,
IL-12, IL-15, INF-𝛼, and insulin-like growth factor I (IGF-I).
These cytokines have been shown to ameliorate the effects
of the procachectic factors to varying degrees, mostly in
mouse models [54]. Clearly a balance must exist, and both
procachectic and anticachectic factors are targets for clinical
therapies.

3. Origins of Cachexia Mediators

Once the presence and function of cytokines in the patho-
genesis of cachexia has been established, the origin and
sources must be identified. Previous theories of the origin of
cytokines have included the tumor itself versus the native host
tissue [55].

Evidence for the release of cytokines from native host
tissue is found in the presence of a persistent inflammatory
response,mediated byThelper 1 (Th1) cells [55].Thepresence
of the tumor itself causes the body to produce an acute phase
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response [56]. A review by de Visser and Coussens described
how the body’s innate immune system involves an increase in
the local concentration ofmast cells andmacrophages leading
to angiogenesis and tumor growth [57]. Mouse models of
epithelial carcinogenesis have demonstrated that the absence
of mast cells or the inability to recruit additional immune
cells prohibits malignant transformation [58]. Macrophages
appear to be the source of some of the principal mediators
of cachexia, such as TNF-𝛼 or IL-1 [59]. Intriguingly, chronic
inflammation may be associated with compromised immune
function, such as an impaired T-cell response, via various
inflammatory proteins, including sIL-2R, VEGF, and IL-17
[60], thus creating an environment even more permissive to
tumor survival.

Certain myeloid immune suppressor cells have been
found to promote tumor angiogenesis by the production of
matrix metalloproteinase 9 (MMP-9) [61].These factors even
suggest that the presence of host immune cells is required for
promoting neoplastic events [57]. Tumor infiltrating inflam-
matory cells also regulate angiogenesis as well as producing
extracellular proteases that serve to remodel the extracellular
environment allowing tumor potentiation and possibly even
metastases [57, 62]. The authors make note that expression
of MMP-9 primarily derives from host immune cells such
as neutrophils, macrophages, and mast cells, as opposed to
tumor cells [62].

One study found that a population of myeloid-derived
suppressor cells grows dramatically within tumors, produc-
ing inappropriate quantities of inflammatory cytokines [63].
This increase was noted to be associated with cachexia.These
cells and others of the innate immune system respond to
tumors by producing TNF-𝛼, IL-1𝛽, IL-6, and INF-𝛾 in an
effort to stimulate the host’s immune response and overcome
any offending pathogens. As the cancer persists, however, the
ongoing high inflammatory state begins to have ill effects
towards the host, as well.

The specific role of IL-6 in cancer associated cachexia and
skeletal muscle wasting has been identified [64]. In a study
by White and colleagues, 𝐴𝑝𝑐Min /+ and wild type mice on
a C57Bl/6 background were used to examine the effect of
treatment with an IL-6 receptor antibody after the onset of
cachexia as well as the effects of exercise [65].They found that
mitochondrial biogenesis was disrupted early in the develop-
ment of cachexia, which could be rescued by administration
of an IL-6 receptor antibody as well as exercise.Which factors
downstream of IL-6mediate effects on cachexia are still being
elucidated but likely involve the transcription factor STAT3,
which we describe in more detail below.

Tumor specific factors include proteolysis inducing factor
(PIF) and lipidmobilizing factor (LMF), which serve to direct
breakdown proteins and fat [55]. Increased concentrations of
PIF have been identified in murine models consistent, and
almost exclusively, with cancer cachexia [66] likely through
the ATP-ubiquitin-dependent pathway [67]. In a study exam-
ining a human homologue of PIF, however, although elevated
levels were noted in the presence of tumor, this alone was not
enough to induce cachexia [68]. Another study found that

PIF was expressed in patients with gastrointestinal tumors
and that this expression correlated with weight loss [69].

The specific role of the tumor versus the host response
is not always clearly delineated. Procachexia cytokines might
be produced by the tumor as well as the host, whereas
PIF appears to be produced exclusively by tumors [70]. In
addition, PIF and TNF-𝛼 appear to induce muscle cachexia
through a similar pathway, by activating the nuclear factor
kappa B (NF-𝜅B) transcription factor [71, 72]. Activation
of this factor causes translocation to the nucleus where it
binds to specific promoter regions, regulating the expression
of proinflammatory cytokines [55] as well as the ubiquitin-
proteasome pathway. Another pathway responsive to inflam-
mation that was recently implemented in regulation of
the ubiquitin-proteasome system is the CCAAT/enhancer
binding protein beta (C/EBP𝛽) transcription factor whose
activation depends on p38 MAP kinase.

Although PIF appears to clearly contribute to skeletal
muscle loss in cancer cachexia, no other purely tumoral
factor appears to have the same potential [70]. Therefore, the
majority of mediators are due to the host’s systemic response.

Another pathway that may contribute to cancer cachexia
is autophagic degradation. The host’s natural autophagic-
lysosomal proteolysis may be altered in various pathologic
states. In a study byMizushima et al. autophagywas enhanced
in skeletal muscle during the first 24 hours of starvation
and sustained [73]. A direct link has also recently been
described in cancer cachexia models, which showed that
increased autophagic-lysosomal degradation is induced in
cancer associated muscle atrophy and likely involves separate
pathways from those involved in noncancer muscle wasting
[74]. The FoxO transcription factors have been shown to
function as strong transcriptional drivers of autophagic genes
in response to cachectic factors [75].

4. Genetic Response to Cytokine Stimulation:
STAT3 and Pax7

As described above, cytokines are important not only to
establish tumor-host interaction and deregulate inflamma-
tory response to tumor burden but also as mediators of mus-
cle wasting by directly targeting muscle tissue. To this regard,
cachexia appears to be a genetically regulated response,
dependent on a specific subset of genes, which control a
highly regulated process of muscle protein degradation [76].
Bonetto et al. described the process by which STAT3 is acti-
vated leading to an upregulation of the acute phase response
[77]. IL-6 binds to the IL-6 reception 𝛼-chain, which causes
dimerization and activation of associated Janus kinases. Two
pathways are then activated, the STAT3 and the mitogen-
activated protein kinase (MAPK/ERK) cascade. STAT3 then
causes further dimerization and nuclear translocation and
ultimately modulation of gene expression of the acute phase
response. In their study, Bonetto et al. implanted colon-26
adenocarcinoma cells into Balb/c or CD2F1 mice. Mice were
sacrificed after 19 and 24 days (10 and 15% weight loss, resp.)
reflecting moderate and severe cachexia. Significant STAT3
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activity was noted in gastrocnemius and quadriceps muscles.
Mice were then injected with a recombinant adenovirus
that constitutively expressed STAT3 and found significant
elevation of fibrinogen levels, indicating that IL-6 activation
of STAT3 is a potent stimulator of the acute phase response
that leads to significant cachexia. It is worth noting that the
authors found a low level of suppressor of cytokine signaling-
3 (SOCS3) in this tumor model, which normally serves to
inhibit STAT3 and self-regulate the duration of activation.
This could explain how cachexia continues to persist despite
clearly deleterious effects on the host.

STAT3 activation is not isolated to the IL-6 pathway,
however. PIF has also been shown to activate STAT3 in
hepatic cells, which also increases the production of proin-
flammatory cytokines leading to cachexia [78]. PIF has no
other known function other than muscle degradation, but
the authors theorize that its function could be critical during
embryogenesis. Expression peaks during skeletal muscle and
liver development in the developing fetus.

We and others have reported the observation of a massive
upregulation of the muscle stem cell specification gene Pax7
in experimental models of cancer cachexia [79, 80]. Penna
et al. inoculated Balb-c mice with colon-26 undifferentiated
carcinoma. One group of mice was then injected with the
MEK inhibitor PD98059. The mice were allowed free access
to food and were sacrificed after 13 days. Significant muscle
and body weight loss were observed, as was marked the
phosphorylation of ERK, a mitogen activated protein kinase.
Evidence for impaired myogenesis was noted in the tumor-
bearing mice as evidenced by increased levels of Pax7. The
degree of muscle wasting and Pax7 concentration were
ameliorated by the injection of the MEK inhibitor PD98059,
via inhibition of ERK.These findings supported the idea that
satellite cells accumulate in muscle due to overproduction or
impaired differentiation, leading to cachexia [79]. Similarly,
elevated levels of Pax7 were found in skeletal muscle samples
from patients with pancreatic cancer demonstrating cachexia
[80]. This overexpression was shown to cause significant
muscle atrophy due a block in the differentiation of muscle
progenitor cells responding to injury signals emanating from
the tumor. We found that the decreased levels of Pax7 could
reverse the effects and allowed progenitor cells to differentiate
and myofibers to be repaired [80]. Yet to be identified factors
present in the serum of tumor-bearing mice are responsible
for Pax7 upregulation and block of myogenic potential in
muscle stem cells, a capacity not fully recapitulated by admin-
istration of specific, albeit important, recombinant cytokines,
such as TNF-alpha [80]. This study not only pointed out
for the first time the involvement of muscle stem cells in
muscle wasting that does not merely consist of muscle fiber
atrophy but also demonstrated that circulating factors have
multiple targets in muscle and further extend their role in
muscle homeostasis. Intriguingly, NF-𝜅B was known for its
role in response to inflammatory cytokines inmany cell types
includingmuscle [81, 82] andwas previously demonstrated to
be sufficient to trigger muscle atrophy [83, 84].

5. Clinical Trials

Several trials have been performed to identify the physiologic
and clinical results of anticachexia treatment modalities in
patients with advanced cancer. MacCiò et al. treated patients
who had gynecological cancers with megestrol acetate plus
l-carnitine, a COX-2 inhibitor (celecoxib), and antioxidants
versus just megestrol acetate alone [85]. The combination
treatment resulted in improvements in lean body mass,
resting energy expenditure, fatigue, and quality of life. Proin-
flammatory cytokines and oxidative stress markers including
IL-6, TNF-𝛼, CRP, and reactive oxygen species (ROS) were
decreased in the combination arm but were unchanged in the
megestrol acetate alone arm.

A phase I/II study compared etanercept (an TNF-𝛼
blocker) with gemcitabine versus gemcitabine alone for
treatment of patients with advanced pancreatic cancer [86].
Some clinical benefit was identified and was associated with
IL-10 levels but did not show significant improvement in 6-
month progression free survival compared to gemcitabine
alone.

Similarly, a phase II trial compared the efficacy and
safety of celecoxib on cancer cachexia [87]. All patients
had advanced cancer of varying tumor sites. TNF-𝛼 levels
were shown to decrease in the majority, and patients had a
corresponding increase in lean body mass. However, changes
in IL-6 levels were not significantly different after treatment.

6. Conclusions

Cancer cachexia is a very prevalent and debilitating aspect
of solid tumors. In addition to predicting an overall worse
prognosis, cachexia significantly decreases a patient’s quality
of life. Surgical outcomes are worsened, chemotherapeutics
agents are limited, and daily activities are hindered.

The pathogenesis of cancer cachexia is highly dependent
on the patient’s immune response. Inflammatory cytokines,
procachectic factors, induce muscle degradation even in the
face of adequate nutrition. These cytokines are produced
by the host in response to the tumor, as well as from
tumor factors themselves. IL-6, TNF-𝛼, and PIF are major
contributors to the syndrome of muscle wasting.

The common pathway for muscle degradation involves
the ubiquitin-proteasome pathway. Upstream activation is
performed primarily through the NF-𝜅B and STAT3 path-
ways, making them targets for potential interventions.

More research is essential to further elucidate and halt the
dangerous progression of skeletal muscle breakdown in the
face of solid tumors.
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[87] G. Mantovani, A. MacCiò, C. Madeddu et al., “Phase II non-
randomized study of the efficacy and safety of COX-2 inhibitor
celecoxib onpatientswith cancer cachexia,” Journal ofMolecular
Medicine, vol. 88, no. 1, pp. 85–92, 2010.


