Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jan 9;93(1):284–289. doi: 10.1073/pnas.93.1.284

Expression cloning and functional characterization of the kidney cortex high-affinity proton-coupled peptide transporter.

M Boll 1, M Herget 1, M Wagener 1, W M Weber 1, D Markovich 1, J Biber 1, W Clauss 1, H Murer 1, H Daniel 1
PMCID: PMC40223  PMID: 8552623

Abstract

The presence of a proton-coupled electrogenic high-affinity peptide transporter in the apical membrane of tubular cells has been demonstrated by microperfusion studies and by use of brush border membrane vesicles. The transporter mediates tubular uptake of filtered di- and tripeptides and aminocephalosporin antibiotics. We have used expression cloning in Xenopus laevis oocytes for identification and characterization of the renal high-affinity peptide transporter. Injection of poly(A)+ RNA isolated from rabbit kidney cortex into oocytes resulted in expression of a pH-dependent transport activity for the aminocephalosporin antibiotic cefadroxil. After size fractionation of poly(A)+ RNA the transport activity was identified in the 3.0- to 5.0-kb fractions, which were used for construction of a cDNA library. The library was screened for expression of cefadroxil transport after injection of complementary RNA synthesized in vitro from different pools of clones. A single clone (rPepT2) was isolated that stimulated cefadroxil uptake into oocytes approximately 70-fold at a pH of 6.0. Kinetic analysis of cefadroxil uptake expressed by the transporter's complementary RNA showed a single saturable high-affinity transport system shared by dipeptides, tripeptides, and selected amino-beta-lactam antibiotics. Electrophysiological studies established that the transport activity is electrogenic and affected by membrane potential. Sequencing of the cDNA predicts a protein of 729 amino acids with 12 membrane-spanning domains. Although there is a significant amino acid sequence identity (47%) to the recently cloned peptide transporters from rabbit and human small intestine, the renal transporter shows distinct structural and functional differences.

Full text

PDF
284

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barfuss D. W., Ganapathy V., Leibach F. H. Evidence for active dipeptide transport in isolated proximal straight tubules. Am J Physiol. 1988 Jul;255(1 Pt 2):F177–F181. doi: 10.1152/ajprenal.1988.255.1.F177. [DOI] [PubMed] [Google Scholar]
  2. Bertran J., Werner A., Stange G., Markovich D., Biber J., Testar X., Zorzano A., Palacin M., Murer H. Expression of Na(+)-independent amino acid transport in Xenopus laevis oocytes by injection of rabbit kidney cortex mRNA. Biochem J. 1992 Feb 1;281(Pt 3):717–723. doi: 10.1042/bj2810717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boll M., Daniel H. Target size analysis of the peptide/H(+)-symporter in kidney brush-border membranes. Biochim Biophys Acta. 1995 Feb 15;1233(2):145–152. doi: 10.1016/0005-2736(94)00245-k. [DOI] [PubMed] [Google Scholar]
  4. Boll M., Markovich D., Weber W. M., Korte H., Daniel H., Murer H. Expression cloning of a cDNA from rabbit small intestine related to proton-coupled transport of peptides, beta-lactam antibiotics and ACE-inhibitors. Pflugers Arch. 1994 Nov;429(1):146–149. doi: 10.1007/BF02584043. [DOI] [PubMed] [Google Scholar]
  5. Daniel H., Adibi S. A. Functional separation of dipeptide transport and hydrolysis in kidney brush border membrane vesicles. FASEB J. 1994 Jul;8(10):753–759. doi: 10.1096/fasebj.8.10.8050675. [DOI] [PubMed] [Google Scholar]
  6. Daniel H., Morse E. L., Adibi S. A. Determinants of substrate affinity for the oligopeptide/H+ symporter in the renal brush border membrane. J Biol Chem. 1992 May 15;267(14):9565–9573. [PubMed] [Google Scholar]
  7. Daniel H., Morse E. L., Adibi S. A. The high and low affinity transport systems for dipeptides in kidney brush border membrane respond differently to alterations in pH gradient and membrane potential. J Biol Chem. 1991 Oct 25;266(30):19917–19924. [PubMed] [Google Scholar]
  8. Fei Y. J., Kanai Y., Nussberger S., Ganapathy V., Leibach F. H., Romero M. F., Singh S. K., Boron W. F., Hediger M. A. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature. 1994 Apr 7;368(6471):563–566. doi: 10.1038/368563a0. [DOI] [PubMed] [Google Scholar]
  9. Hori R., Tomita Y., Katsura T., Yasuhara M., Inui K., Takano M. Transport of bestatin in rat renal brush-border membrane vesicles. Biochem Pharmacol. 1993 May 5;45(9):1763–1768. doi: 10.1016/0006-2952(93)90431-u. [DOI] [PubMed] [Google Scholar]
  10. Inui K., Okano T., Takano M., Saito H., Hori R. Carrier-mediated transport of cephalexin via the dipeptide transport system in rat renal brush-border membrane vesicles. Biochim Biophys Acta. 1984 Jan 25;769(2):449–454. doi: 10.1016/0005-2736(84)90329-8. [DOI] [PubMed] [Google Scholar]
  11. Liu W., Liang R., Ramamoorthy S., Fei Y. J., Ganapathy M. E., Hediger M. A., Ganapathy V., Leibach F. H. Molecular cloning of PEPT 2, a new member of the H+/peptide cotransporter family, from human kidney. Biochim Biophys Acta. 1995 May 4;1235(2):461–466. doi: 10.1016/0005-2736(95)80036-f. [DOI] [PubMed] [Google Scholar]
  12. Marger M. D., Saier M. H., Jr A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci. 1993 Jan;18(1):13–20. doi: 10.1016/0968-0004(93)90081-w. [DOI] [PubMed] [Google Scholar]
  13. Markovich D., Forgo J., Stange G., Biber J., Murer H. Expression cloning of rat renal Na+/SO4(2-) cotransport. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8073–8077. doi: 10.1073/pnas.90.17.8073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miyamoto Y., Coone J. L., Ganapathy V., Leibach F. H. Distribution and properties of the glycylsarcosine-transport system in rabbit renal proximal tubule. Studies with isolated brush-border-membrane vesicles. Biochem J. 1988 Jan 1;249(1):247–253. doi: 10.1042/bj2490247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miyamoto Y., Ganapathy V., Leibach F. H. Proton gradient-coupled uphill transport of glycylsarcosine in rabbit renal brush-border membrane vesicles. Biochem Biophys Res Commun. 1985 Nov 15;132(3):946–953. doi: 10.1016/0006-291x(85)91899-6. [DOI] [PubMed] [Google Scholar]
  16. Paulsen I. T., Skurray R. A. The POT family of transport proteins. Trends Biochem Sci. 1994 Oct;19(10):404–404. doi: 10.1016/0968-0004(94)90087-6. [DOI] [PubMed] [Google Scholar]
  17. Perry J. R., Basrai M. A., Steiner H. Y., Naider F., Becker J. M. Isolation and characterization of a Saccharomyces cerevisiae peptide transport gene. Mol Cell Biol. 1994 Jan;14(1):104–115. doi: 10.1128/mcb.14.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ries M., Wenzel U., Daniel H. Transport of cefadroxil in rat kidney brush-border membranes is mediated by two electrogenic H+-coupled systems. J Pharmacol Exp Ther. 1994 Dec;271(3):1327–1333. [PubMed] [Google Scholar]
  19. Silbernagl S., Ganapathy V., Leibach F. H. H+ gradient-driven dipeptide reabsorption in proximal tubule of rat kidney. Studies in vivo and in vitro. Am J Physiol. 1987 Sep;253(3 Pt 2):F448–F457. doi: 10.1152/ajprenal.1987.253.3.F448. [DOI] [PubMed] [Google Scholar]
  20. Steiner H. Y., Song W., Zhang L., Naider F., Becker J. M., Stacey G. An Arabidopsis peptide transporter is a member of a new class of membrane transport proteins. Plant Cell. 1994 Sep;6(9):1289–1299. doi: 10.1105/tpc.6.9.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tiruppathi C., Kulanthaivel P., Ganapathy V., Leibach F. H. Evidence for tripeptide/H+ co-transport in rabbit renal brush-border membrane vesicles. Biochem J. 1990 May 15;268(1):27–33. doi: 10.1042/bj2680027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weber W. M., Asher C., Garty H., Clauss W. Expression of amiloride-sensitive Na+ channels of hen lower intestine in Xenopus oocytes: electrophysiological studies on the dependence of varying NaCl intake. Biochim Biophys Acta. 1992 Nov 9;1111(2):159–164. doi: 10.1016/0005-2736(92)90306-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES