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Abstract

Intracellular protozoan parasites are causative agents of infectious diseases that constitute major health problems for
developing countries. Leishmania sp., Trypanosoma cruzi or Toxoplasma gondii are all obligate intracellular protozoan
parasites that reside and multiply within the host cells of mammals, including humans. Following up intracellular parasite
proliferation is therefore an essential and a quotidian task for many laboratories working on primary screening of new
natural and synthetic drugs, analyzing drug susceptibility or comparing virulence properties of natural and genetically
modified strains. Nevertheless, laborious manual microscopic counting of intracellular parasites is still the most commonly
used approach. Here, we present INsPECT (Intracellular ParasitE CounTer), an open-source and platform independent
software dedicated to automate infection level measurement based on fluorescent DNA staining. It offers the possibility to
choose between different types of analyses (fluorescent DNA acquisitions only or in combination with phase contrast image
set to further separate intra- from extracellular parasites), and software running modes (automatic or custom). A proof-of-
concept study with intracellular Leishmania infantum parasites stained with DAPI (49,6-diamidino-2-phenylindole) confirms a
good correspondence between digital results and the ‘‘gold standard’’ microscopic counting method with Giemsa.
Interestingly, this software is versatile enough to accurately detect intracellular T. gondii parasites on images acquired with
High Content Screening (HCS) systems. In conclusion, INsPECT software is proposed as a new fast and simple alternative to
the classical intracellular Leishmania quantification methods and can be adapted for mid to large-scale drug screening
against different intracellular parasites.
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Introduction

Intracellular protozoan parasites are responsible for worldwide

infectious diseases with a high impact in public health for

developing countries. Among them, Leishmania parasites are

causative agents of leishmaniasis, a worldwide endemic disease

with diverse clinical manifestations ranging from self-healing skin

ulcers to fatal outcome, depending on parasite species and host

immune status or genetics [1]. In mammals, Leishmania parasites

replicate as amastigotes within parasitophorous vacuoles (PVs) of

macrophages. Without a vaccine and taking into account the

limited number of existing drugs, the screening of new anti-

leishmanial compounds or characterization of new drug target

candidates is therefore a research priority. Drug resistance to

available treatments has also been well documented in certain

areas, and partially explained in natural or experimentally

resistant laboratory strains [2,3]. Parasites isolated from patients

refractory to treatment confirm the presence of circulating

resistant parasites [4] and imply a careful surveillance of parasite

drug susceptibility. All these research activities require the use of

common calibrated and reliable procedures to monitor parasite

proliferation inside host cell, maintaining physiological conditions

as much as possible [5]. The most popular method still consists of

manually counting intracellular parasites after Giemsa staining [6].

This direct counting approach is largely employed because

Giemsa stain is cheap and only requires basic equipment (i.e light

microscope). Microscopic counting is, however, a laborious task

merely providing a global estimation of the parasite burden that is

further highly prone to operator experience and subjectivity.

Numerous alternative indirect approaches have been proposed in

Leishmania [7–11]. Most are based on reporter genes assays that

increase screening capacities while limiting human intervention.

Indirect reporter assays, however, average the biological response

of thousands of cells without integrating critical factors such as the

percentage of infection and the discrimination between intra- and

extracellular parasites. Homogenous expression of reporter genes

over time and biological stages in Leishmania further require
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genomic integration [7,8]. These transformation and selection

steps can have a profound impact on the phenotypic traits of the

original parasite population. This is particularly relevant when

testing susceptibility of parasite strains isolated from drug

unresponding patients.

The development of image processing and analysis techniques

(together with the improvement of fluorescence microscopy

instrumentation) has recently emerged as a new powerful solution

for drug screening and susceptibility tests against intracellular

protozoan parasites. High Content Screening (HCS) systems have

been indeed successfully adapted to major intracellular protozoan

parasites and allow direct analysis of both parasite and host cell

responses to drug candidates [12–15]. However, considering the

cost of such equipment and the expertise required to manage HCS

instrumentation and analysis, those approaches will remain

restricted to few laboratories in the world.

Extracting and quantifying information from biological images

is a well-defined and common task in image processing. Some

open source solutions such as ImageJ software (http://rsb.info.nih.

gov/ij) are very helpful for biologists with more than 500 plugins

available. Nevertheless, mastering image processing concepts

require specific competences and, to our knowledge, no versatile

open-access solutions for biologists are available to automate

intracellular parasite quantification.

We present INsPECT (INtracellular ParasitE CounTer), the

first open-source Java based software that uses fluorescent DNA

staining and image processing framework to automate infection

level measurement. This can be done through a user-friendly

interface, where image files obtained from any fluorescent

microscope and magnification, can be processed individually or

as a batch, automatically or in a custom mode, without any

experience required on image analysis. The software runs either

with DNA fluorescent image files alone, or in combination with

the corresponding phase contrast or DIC (Differential Interference

Contrast) image set. Providing this complementary information

allows automatic cell boundaries detection and discrimination

between intra- and extracellular parasites without any additional

use of fluorescent cytoplasm/membrane marker. Output files

comprise annotated images and a report table with all information

needed for most of experimental infection studies in vitro: total

number of cells, total number of parasites, percentage of infected

cells, mean number of parasite/cell, parasitic index. Software

robustness was validated for the calculation of Ec50 toward

intramacrophagic L. infantum treated with pentavalent antimonials

(glucantime) as a proof-of-concept study. Alternative analyses

performed on T. gondii infected fibroblasts further confirm that

INsPECT software utilization may be enlarged to unrelated

intracellular parasites.

Methods

1. Image processing and software development
The image-processing pipeline for cell, parasite and cytoplasm

detection is illustrated in figure 1 and detailed below. Acquired

fluorescent images first need to be saved in tiff format, 8bit type

and inverted to obtain dark objects in white backgrounds. These

steps can be performed directly from the acquisition software, or

lately by different image analyzing softwares. A simple procedure

with ImageJ software is described in INsPECT user manual (File

S1).

1.1 Cell pipeline. Using Median Filter [16] raw input images

are smoothed to remove possible noises. Kernel size is chosen

small enough (15) to preserve cells’ edge data. The next step is

binary thresholding cells’ areas. Since input images of this step still

suffer from illumination inhomogeneity, the local mean adaptive

threshold [17] is an appropriate method. Furthermore, consider-

ing the fact that the bright spots in such images have similar

intensities and at the same time very different ones from cell

portions, as a model, we choose value 1.5 times global standard

deviation as a representative kernel window size. Under such

assumption, subimages are fed with enough foreground and

background pixels. For the illustrative figure, kernel size would be

134. The next step consists of filling small holes using binary fill

algorithm [18], and cell scraps are removed using the morpho-

logical closing [19] operator. The structuring element is chosen to

be a rectangular one with size 15 that is an approximation of area

size where high density parasites exist. To quantify cell nuclei

areas, a major issue is to detect overlapped nuclei and make

borders between them clear. For this purpose, euclidean distance

transform [20] is first applied to the last image. Then using the

state of the art segmentation and quantification method proposed

by Shahbazkia et. Al. [21], the result of pipeline is taken in which

overlapped nuclei cells are well discriminated and information

such as center coordinates, area and volume are extracted.

1.2 Parasite pipeline. Parasites nuclei are very small

particles frequently concentrated around nucleus of infected cells.

Their shape and size makes them very similar to random

generated noises through raw images. Considering that investi-

gating small details such as parasites in literature are seldom or not

precise enough, we propose a new method here, which thresholds

parasites with maximum accuracy and we called it Threshold for

images with Decreasing Probability Density Function. First, Black

Top Hat transform [22] is applied to extract tiny details.

Structuring Element size is chosen to be 2, which is in harmony

with small size of parasites we want to suppress. The outcome will

be a dark image with potential candidates of parasites as brighter

pixels. The resulting image will then be subtracted from the Cell

Pipeline result image to filter out bright pixels which belong to cell

areas. At this point, the algorithm should be able to distinguish

between weak and strong parasite candidates and consequently,

Author Summary

Research on intracellular parasites require using non-
invasive technologies to follow up parasite proliferation
inside their natural host cells by staying in the more
physiological conditions as possible. High Content Screen-
ing (HCS) technology has recently emerged as a powerful
image-based approach to screen new anti-parasitic com-
pounds or to test parasite susceptibility to existing drugs
in vitro. Nevertheless, such equipments will remain poorly
accessible for most of academic and clinical diagnostic
laboratories that mostly use more affordable, but labori-
ous, microscopic counting procedures. The current work
proposes new image-based, open-source software which
provides a fast and accurate solution for investigating
intracellular parasite quantification. Through an easy-to-
use interface, cells’ and parasites’ information are dug out
from DNA fluorescent images, and host cells’ boundaries
are extracted from corresponding phase contrast image
set. Parasites are then reassigned to their related cells and
intra/extracellular parasites are discriminated for each cell.
The software further automatically calculates all data
required for most of experimental infection studies.
INsPECT software is proposed as a free substitute or
complement to the available quantification methods for
measuring Leishmania infection level in vitro. It may be
enlarged, however, to different intracellular trypanosoma-
tids or unrelated parasites such as T. gondii.
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filter out random generated noises and keep real parasites alive. In

order to accomplish this task, we execute the following steps: (i)

Calculate the Global Mean Intensity (m) and Global Standard

Deviation (stDev) of the input image. (ii) Pixels of the original

image that have greyscale intensities equal to or below m+stDev

are set to background (BG) in result image and also labeled in

original image as BG. (iii) For pixels of the original image which

have greyscale intensities greater than m+stDev: if such pixels in

their 8-connected neighborhood have at least 8/2+1 = 5 BG

pixels, then set them to background. Otherwise set them to

foreground. This algorithm discriminates real parasites from

random noises not only using the intensity features of each pixel

but also by the organization of its neighbors. Brighter pixels with

maximum likelihood to be real parasites are extracted. Using

connected component labeling [23] algorithm we divide them to

connected components and then, using minimum parasite size and

Figure 1. INsPECT processing pipeline. Cell pipeline. Input image is smoothed using median filter of radius 15. Smoothed image is thresholded
using Mean Adaptive Threshold. Window size is assigned automatically and here it is 65. Holes are filled using Binary Fill Holes algorithm and cell
scraps are removed using Morphological Closing with structure element radius of 15. Image is transformed to Euclidean Distance domain.
Morphological Watershed based segmentation is used to separate overlapped cells and quantify final valid cells. Parasite Pipeline. Top Hat
transform is applied to input image to extract tiny details. Cell Pipeline resulted image is subtracted from the current image to filter out tiny pixels
belonging to cell portion. Proposed threshold is applied to filter out random noises and other by-products and keep candidates alive for real
parasites. Foreground pixels are grouped using Connected Component Labeling algorithm and using minimum and maximum valid sizes taken from
user, final valid parasites are extracted from images. Cytoplasm Pipeline. Using Dynamic Mean Filter raw, phase contrast or DIC image is smoothed.
Sobel Edge Detector operator is used to extract probable edge candidates for cytoplasm traces. Proposed Cytoplasm threshold is used to
discriminate weak from strong edge pixels and obtain probable cytoplasm pixel candidates. Morphological Closing with rectangular structure
element of size 15 is applied to fill the holes and Merge Cytoplasm binary regions. Binary Median Filter of radius 25 smoothes cytoplasm regions.
Processed Image. Cytoplasm pipeline result will be masked to input DAPI image and then cell and parasites are marked in the image using cell and
parasite pipeline results respectively.
doi:10.1371/journal.pntd.0002850.g001
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maximum parasite size, taken from user, final parasites are

extracted and recorded through the pipeline.

1.3 Cytoplasm pipeline. Cell edges including cytoplasm can

be easily visible from DIC and phase contrast images. We decided to

use these characteristics to design an algorithm which detects cells’

boundaries and discriminate intracellular from extracellular para-

sites. The Gaussian Noise [24] model is first assigned to raw input

DIC images and using dynamic mean filter [25], the degradation

process takes place to remove noises and smooth images to a certain

degree. Given that membrane edges do not have well defined

patterns and that illumination across the borders show high

variations, global and local intensity based thresholds are not able

to perform efficiently on such images. We therefore proposed our

method called Gradient Based Threshold method, which produces

a binary image with potential cytoplasm pixels as foreground and

the remainder pixels as background. To accomplish this task, we

first use Sobel Edge Detector [26], which extracts edges or

equivalently pixels which have noticeable illumination variation.

The algorithm uses a first estimation of binary threshold as an edge

pixel strength measure. It then goes through the image, pixel by

pixel. If a pixel or if at least one of its neighbor in a defined

neighborhood (8-connected for our problem) has intensity above the

intensity measure, then the algorithm marks the pixel as foreground,

otherwise it is marked as background. The intensity measure should

not be unrepresentative of the discrimination point and meanwhile

it should not overestimate or underestimate the strong pixels (or

foreground). Experiments showed that Global Mean Intensity value

is occasionally a good choice for this parameter since strong parts of

the edges usually have intensities above this value, weaker parts have

some neighbors above this value and weakest parts along with its

neighbors totally lie under this value. In order to complete the task

of extracting cytoplasm regions, Morphological Closing (with

rectangular structuring element of size 15) is used to fill and

merge structures of extracted cytoplasm, then, using Median

Filter [27] with a relatively big kernel size (25), small holes are

filled, small detected portions are discarded and the final result is

smoothed.

1.4 Output data. All analyses are regrouped into an output

folder that contains output annotated image(s) and a .CSV format

report with all calculated infection parameters including: (i) total

number of cells, (ii) total number of parasites, (iii) percentage of

infected cells, (iv) mean number of parasites by cell, (v) the parasitic

index (calculated as PI = percentage of infected cells x mean

number of parasites by cell). Cells that have at least one

intracellular parasite are considered as infected cells. To assign

each detected parasite to its relevant cell, the euclidean distance

between the center of that parasite to each cell is calculated and

the cell with minimum distance is chosen to be the pair cell for that

parasite. In the output image file, each parasite is therefore

assigned with the same number as its corresponding host cell. By

comparing each parasite’s center with borders of extracted

cytoplasmic regions, we then subdivide total parasites into intra-

and extracellular parasites.

1.5 Software homepage and download. INsPECT soft-

ware and the associated source code can be downloaded from the

IRD bioinformatics homepage: http://bioinfo.mpl.ird.fr/index.

php

2. Biological material and infection procedures
2.1 Glucantime action on THP-1 infected cells with L.

infantum parasites. L. infantum (MHOM/MA/67/ITMAP-

263) promastigote parasites were maintained at 26uC in SDM-79

medium [28] supplemented with 10% heat-inactivated fetal calf

serum (FCS) (Lonza). A human monocyte leukemia cell line (THP-

1) was cultured in RPMI 1640 medium (Lonza) supplemented

with 10% FCS, 2 mM glutamine, 100 IU penicillin ml-1 and

100 mg streptomycin ml-1, and incubated at 37uC with 5% CO2.

Parasite infection was performed according to the method adapted

from Da Luz et al. [29]. Briefly THP-1 cells in the log phase of

growth were differentiated in a 16-chamber slide (Labtek) at a

concentration of 5.104 cells/well by incubation for 1 day in RPMI

medium containing 20 ng of phorbol myristate acetate (PMA) per

ml. To optimize cell infection, five-day-old promastigote cultures

were transferred to acid Schneider’s medium (Lonza) (pH 5.4)

supplemented with 20% FCS, and incubated for 24 h at 26uC.

After one wash in RPMI, parasites were put in contact with

macrophages (10 parasites for 1 macrophage ratio) for 24 h. Non-

internalized parasites were removed by five washes with serum free

RPMI medium. Fresh complemented medium with different

amounts of glucantime (ranging from 0 to 100 mg/ml) is then

added for 4 subsequent days of incubation. Cells were then fixed

2 minutes in methanol and slides were stained for 20 minutes in

the dark with Giemsa (20% in H20) or DAPI nucleic acid stain

(300 nM in PBS). For DAPI, slides were washed twice with PBS,

mounted with Prolong (Molecular Probes) antifade reagent and

stored in the dark at 4uC. Images were captured on a Zeiss Axio

Imager AX10 microscope equipped for DAPI (405 nm) excitation

and 620, 640, 663 objectives. Ec50 was calculated using

Graphpad Prismv5 software (sigmoidal dose-response model with

a variable slope).

2.2 HFF fibroblasts infected by T. gondii. T. gondii

proliferation was analyzed as described hereafter. 5.104 YFP-

expressing RH parasites/well (48 well plate) were centrifuged on

confluent HFF monolayers for 30 sec at 1300 rpm and incubated

for 30 min in a water bath at 37uC for invasion. Wells were then

washed three times with PBS to eliminate extracellular parasites

and medium. After 24 h at 37uC in a humidified atmosphere

containing 5% CO2, cells were fixed in 2.5% formaldehyde

(methanol free)/PBS for 30 min at room temperature. Nuclei were

stained with Hoechst 33258 (2 mg/ml) for 20 min and then

washed three times 10 min with water. Image acquisition was

performed on Olympus Scan‘R microscope using Scan‘R

software and 620 objective.

Results

1. Software presentation
Screen shots of the INsPECT interface are shown in Figure 2,

all frames are designed in such a way that a non-experimented

user in image processing can easily work with them. A complete

explanation of the software utilization can be found in the

INsPECT user manual (File S1). The software comes with a basic

functional image viewer that helps to see particles in images easily

(Figure 2A). Software can run either in an automatic or in a

custom mode (Figure 2B). In the former case, parameters and

Figure 2. INsPECT presentation: Screen shots of the software interface and graphical abstract of possible analyzes. (A) Main
software’s frame to control flow of analyzes. Software comes with a basic functional image viewer. (B) Software can be used in automatic or custom
fashion. In the former case, all pipeline parameters and options are assigned automatically to image sets based on prior good experimental results
while in the latter case, user guides the program with his intended parameters and options. (C) Input/Output window to specify intended options to
save the results and reports. (D) Running log and progress bar sample. (E) Graphical abstract of the different type of analyses and the corresponding
output image and text results.
doi:10.1371/journal.pntd.0002850.g002
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options are set to some default values that are in agreement with

the nature of most input images; however, end users can also adapt

their intended parameters and options for cell, parasite and

cytoplasm pipelines manually (see details in user manual). Users

should then indicate input and output folders used for the rest of

the analysis, and the nature of the images to analyze (Figure 2C).

In the same window, users further specify which result files need to

be saved. A running log and progress bar is displayed during the

analysis (Figure 2D). Basically, the software takes images from the

input folder, applies proposed algorithmic pipeline to each image,

extracts needed information and finally saves the results in both

text and visual forms in the specified output folder. If DAPI and

phase contrast image pairs are available, the software extracts cell

outlines to distinguish intra from extracellular parasites (Figure 2E).

An example of the accuracy of the proposed cell edges detection

algorithm is illustrated in figure S1 for both phase contrast and DIC

microscopic images. Alternatively, when DIC images are not

available or of minor importance in final results, the software can

deal with DAPI images only (Figure 2E). The processing of each

image takes less than 30 seconds, without any need of user

interaction.

2. INsPECT software validation versus Giemsa stain:
Susceptibility of intramacrophagic L. infantum toward
glucantime

To validate the software accuracy in detecting intracellular

Leishmania parasites, we performed two parallel experiments with

L. infantum infected macrophage THP-1 cell line treated by

increasing concentration of glucantime (0-25-50-100 mg/ml), the

mainstay treatment for leishmaniasis. After infection, drug

incubation and cell fixation, one series was stained with Giemsa

for manual counting and the other with DAPI, both procedures

taking approximately similar time (30 minutes). In the manual

counting, 300 cells (100 for each triplicate) were counted under

light microscope for each drug concentration to determine the

parasitic burden (parasitic index), calculated as the percentage of

infected macrophages x the mean number of amastigotes per

macrophage (Table 1). In parallel, random DAPI images were

acquired with fluorescent microscope (406 objective) until

approximately 300 cells were reached by condition (corresponding

to 31 images and 1402 cells in total), together with their respective

phase contrast images for cytoplasm detection (File S2). A batch

analysis of all images was performed with INsPECT software

(automatic parameters) and was completed in less than 7 minutes

(Table 1). Direct comparison of output results shows that the

number of detected intracellular parasites, and the subsequent

calculated parasitic index (PI), is markedly higher with INsPECT

software than with Giemsa method (Figure 3A). Verification of the

INsPECT analyzed images in the output folder allows us to

confirm that the detected particles accurately correspond to true

parasites, excluding therefore an overestimation of the parasite

load by the software. Conversely, the human operator naturally

tends to select fields and cells offering the best visual resolution

with Giemsa, generally excluding highly infected cells in which

parasites cannot be well discriminated. The analysis of the ‘‘Cell

Parasites Report’’ generated by INsPECT software confirms that

highly infected cells are indeed frequently observed in untreated or

low glucantime treatment conditions, and that this category of cells

is mainly responsible for the differences observed between the two

methods (Figure S2).

Once normalized to the non-treated infected control however,

scaled PI values are very similar with calculated Ec50 of 73.97 mg/

ml (95% confidence interval [CI], 60.31 to 90.71) and 79.53 mg/
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Figure 3. Comparison of parasitic index values obtained for both INsPECT and Giemsa methods. (A) Histogram of parasitic index values
obtained in table 1. (B) Normalization of graphic in (A) representing the percent reduction of the total parasite burden compared to the non-treated
infected control.
doi:10.1371/journal.pntd.0002850.g003

Figure 4. INsPECT output image analysis of T. gondii infected HFF cells. Representative images of T. gondii infected cells with Hoechst stain
(left) and filter for YFP-expressing parasites detection (center). Analyze of the corresponding Hoechst images with INsPECT software (right), showing
annotated parasites and cells as green and blue dots respectively. A close-up of a selected area (blue square) is shown in the lowest panel.
doi:10.1371/journal.pntd.0002850.g004
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ml (95% confidence interval [CI], 54.7 to 115.6) for INsPECT and

Giemsa methods, respectively (Figure 3B).

3. INsPECT software validation toward intracellular T.
gondii parasite

To further validate software robustness against unrelated

intracellular parasite, we performed analyses on HFF fibroblasts

labeled with Hoechst fluorescent DNA stain and infected by

fluorescent YFP-expressing T. gondii RH parasites (File S3). All

input images were obtained from HCS system designed for fully

automated image acquisition and analysis (see details in Methods

section). The analysis of representative images was performed with

INsPECT software using only DNA fluorescent input images and

choosing automatic mode. The size and distribution of Toxoplasma

parasites strongly differ from that of L. infantum amastigotes, with

tachyzoites parasites being mostly grouped in small aggregates

inside cell cytoplasm. As shown in figure 4, comparison of visual

output annotated images to YFP labeled parasites confirms,

however, a good correspondence between the two methods.

Discussion

Monitoring intracellular parasite proliferation is an essential and

quotidian activity for many academic or clinical diagnostic

laboratories. The majority are still using manual microscopic

counting, an unpopular and time-consuming task, that is further

highly dependent on operator experience and objectivity thus

leading to strong inter-laboratory variability. These facts make

intracellular parasites counting a natural assignment for automa-

tion. In this study, we describe an innovative image analysis

software allowing automatic detection of intracellular parasites and

calculation of infection parameters such as the percentage of

infected cells, the mean number of parasites per cell or the

parasitic index. In a concept comparative study, we show that

INsPECT software performs the complete analyze of 1402

Leishmania infected cells in less than 7 minutes, while counting

the equivalent number of cells under microscope with Giemsa

staining can take hours of effective work. This timesaving is

furthermore directly proportional to the number of conditions/

replicates to analyze. Because images are stored annotated in the

output folder, users have the possibility to verify whether

recognition of parasites and cells is satisfying enough and can

optimize detection parameters accordingly (see user manual, file

S1).

The use of common and affordable fluorescent nucleic acid

stains such as DAPI or Hoechst present the advantages to display a

bright, homogenous and stable labeling of both intracellular

parasite and host cell DNA. Furthermore, they allow working

under physiological conditions with any wild-type parasite species,

including clinical isolates. Leishmania, like all members of the

kinetoplastid family, possess two large DNA containing organelles

(kinetoplast and nucleus). Kinetoplast is an A-T rich DNA

structure binding DAPI and Hoechst stains with more affinity

[13,30] and that consequently appears highly brighter than

parasite nucleic DNA. Since kinetoplasts occupy very tiny portions

of input images, and may be occasionally very similar to random

generated noises, the task of extracting them with existing

thresholding methods is complex because available methods often

work efficiently for the objects with quite noticeable size and shape

and investigable intensity functions. For that, we propose a new

method which thresholds parasites with maximum accuracy by

defining further discrimination steps than just the particle size.

DNA structures of all kinetoplastids (including T. cruzi and other

Leishmania species) appear very similar on images stained with

DAPI [13,14]. Accordingly, we expect INsPECT software to be as

effective with any other intracellular kinetoplastid parasite as with

L. infantum. Besides, we confirm that input images of T. gondii

intracellular parasites acquired with HCS instrumentation could

also be efficiently processed, even in automatic mode, proving

therefore that INsPECT software is versatile enough to work with

a variety of unrelated parasites and host cells.

Regarding host cell nuclei in DAPI images, illumination

variance was handled well by firstly, fitting appropriate noise

model which removes noise efficiently while preserving precious

cell portions’ edge data and secondly hiring adaptive threshold

with logical and automatic assignment of local window size.

Overlapping cells were also detected and separated using state of

the art quantification and segmentation approaches. Cytoplasm

boundaries of individual cells are visible structures in DIC or phase

contrast images and we used these properties to create a new

algorithm that automatically detects cell boundaries to discrimi-

nate intra- from extracellular parasites. This function allows

considering only intracellular parasites in final calculated infection

levels. This can be very useful in the case of Leishmania

promastigotes infection since we experimented that numerous

non-internalized parasites may stay attached to macrophages

membrane following initial contact, even after extensive washes.

Because their DNA will be as well labeled with DAPI stain, they

can therefore induce a bias if analyze is based only on DAPI

images. With Giemsa, these parasites are simply excluded from the

counting by the human operator. In the case of indirect reporter

gene assays using microplate readers however, these parasites can

be the source of a false positive signal.

In conclusion, we can state that INsPECT software accuracy and

effectiveness is at least as reliable as the existing global estimation

methods. Considering its flexibility, simplicity and the state of the art

perspectives introduced, it could compete with available commer-

cial and academic packages to become a new helpful tool for the

scientific community working with intracellular parasites.

Supporting Information

Figure S1 Example of cell edges detection accuracy using DIC

or phase contrast input images. THP-1 infected cells captured in

DIC (A) or phase contrast (B) microscopy (206). (C) and (D):

Overlaps of A and B input images with their respective INsPECT

output images. The software identifies the zone that is considered

extracellular areas with orange color.

(PDF)

Figure S2 (A) Scatter dot plot of the ‘‘cell parasites report’’

from INsPECT analysis representing all recorded cells and

their respective number of intracellular parasites for each

image (L1–L31). The dot line on the Y axis symbolizes an

arbitrary cut-off number of 20 from which enumeration of

intracellular parasites by manual counting is becoming challeng-

ing. (B) Mean number of parasite per cell obtained in each

condition with INsPECT, Giemsa or INsPECT after the exclusion

of highly infected cells bearing more than 20 intracellular parasites

(INsPECT ,20).

(PDF)

File S1 INsPECT software user manual.

(PDF)

File S2 Transformed DAPI and Phase contrast (PC) image set of

THP-1 macrophages infected by L. infantum parasites, and treated

with increasing concentrations of glucantime (0-25-50-100 mg/ml).

(ZIP)
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File S3 Representative images of HFF fibroblasts infected by T.

gondii each coming as a pair with Hoechst fluorescent cell DNA

stain (inverted) and the corresponding YFP-expressing RH

parasites.

(ZIP)

Acknowledgments

The authors are grateful to Denise Candeias for help revising the

manuscript. We thank the Montpellier RIO Imaging (MRI) platform and

Marc Lartaud for technical advice. We acknowledge the contribution of

SCIMI platform (Dr. Aldebert Delphine and Touquet Bastien) from the

research unit LAPM, UNR CNRS 5163 UJF, Grenoble, France for their

help in image acquisition with T. gondii.

Author Contributions

Conceived and designed the experiments: EY ADA BV HRS. Performed

the experiments: EY ADA DG CL HRS BV. Analyzed the data: EY HRS

BV. Wrote the paper: EY HRS BV.

References
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