
Slow Noise in the Period of a Biological Oscillator
Underlies Gradual Trends and Abrupt Transitions in
Phasic Relationships in Hybrid Neural Networks
Umeshkanta S. Thounaojam1., Jianxia Cui2,3., Sharon E. Norman3, Robert J. Butera3,4,

Carmen C. Canavier1,5*

1 Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center New Orleans, Louisiana, United States of America, 2 BioCircuits Institute,

University of California, San Diego, La Jolla, California, United States of America, 3 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta,

Georgia, United States of America, 4 Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta Georgia, United States of

America, 5 Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America

Abstract

In order to study the ability of coupled neural oscillators to synchronize in the presence of intrinsic as opposed to synaptic
noise, we constructed hybrid circuits consisting of one biological and one computational model neuron with reciprocal
synaptic inhibition using the dynamic clamp. Uncoupled, both neurons fired periodic trains of action potentials. Most
coupled circuits exhibited qualitative changes between one-to-one phase-locking with fairly constant phasic relationships
and phase slipping with a constant progression in the phasic relationships across cycles. The phase resetting curve (PRC)
and intrinsic periods were measured for both neurons, and used to construct a map of the firing intervals for both the
coupled and externally forced (PRC measurement) conditions. For the coupled network, a stable fixed point of the map
predicted phase locking, and its absence produced phase slipping. Repetitive application of the map was used to calibrate
different noise models to simultaneously fit the noise level in the measurement of the PRC and the dynamics of the hybrid
circuit experiments. Only a noise model that added history-dependent variability to the intrinsic period could fit both data
sets with the same parameter values, as well as capture bifurcations in the fixed points of the map that cause switching
between slipping and locking. We conclude that the biological neurons in our study have slowly-fluctuating stochastic
dynamics that confer history dependence on the period. Theoretical results to date on the behavior of ensembles of noisy
biological oscillators may require re-evaluation to account for transitions induced by slow noise dynamics.
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Introduction

Synchronized neural firing is a characteristic activity pattern of

neural systems. Synchronized neural activity in cortical circuits [1]

is thought to underlie many aspects of cognition [2,3], including

recognition [4], recall [5], perception [6,7], and attention [8].

Phase-locked neural activity is also an essential component of

central pattern generators (CPGs) located in the spinal cords of

vertebrates and the ganglia of invertebrates [9,10]. Inhibition plays

a central role in oscillatory synchrony, and in this study we focus

on reciprocal inhibitory coupling.

A major contribution of this paper is a distinct notion of noise in

coupled oscillatory neurons, which we explore by comparing three

models of noise intrinsic to the neurons (see Methods). The

dominant source of noise in neurons is thought to be synaptic [11].

This thinking is shaped by studies of cortical circuits, in which

neurons in a high conductance state that receive a stochastic

barrage of fast and balanced excitatory and inhibitory input show

fast fluctuations in membrane potential [12]. An early attempt to

quantify the effect of noise on neural activity [13] examined the

case of a perfect integrator with additive white noise. The output

of the integrator is interpreted as the membrane potential. In the

absence of noise, a baseline current produces a regular oscillator

with constant angular velocity that is reset each time it reaches

threshold. The noise takes the form of Gaussian current noise

added to the baseline current. When this noise is integrated, it is

analogous to a trajectory produced by Brownian motion, and

produces a one-dimensional random walk in the membrane

potential superimposed on the steady upward trend caused by the

constant baseline current. In this model, membrane potential is

proportional to the phase of the oscillation, so a random walk in

the phase occurs. The time scale of this noise is fast, due to its

theoretically flat spectrum which includes very high frequency

components. The current noise has no history-dependence since

the value at each time point is random and independent of all

previous values. However, the membrane potential does have a
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memory, because at each time step, the value is a perturbed

version of the value at the previous time step. The second moment,

or variance, of the displacement of the membrane potential from

its original value is proportional to the product of the diffusion

constant and the time step. The mean squared displacement

therefore grows as the square root of the size of the time step [14].

The memory of noise on the previous cycle is wiped out when the

membrane potential and the phase are reset when the spike

threshold is reached. Based on this model, a common way to add

noise to phase models of neurons is simply to add Gaussian noise

to the phase [15,16], which is one of the noise models that we use

in this study.

Real neurons have complex nonlinear intrinsic currents, and

thus may not linearly integrate their extrinsic inputs. We modeled

the intrinsic period as stochastic due to random fluctuations in

factors that influence the period. If these factors have little history

dependence, for example, variability in the number of ions passing

through an open channel at any given time, then successive

interspike intervals are uncorrelated and may appear to be drawn

from a Gaussian distribution [13,17,18]. Gaussian noise added to

the period is the second model used in this study. If the period of

one cycle depends on the previous cycle because the stochastic

fluctuations occur in history-dependent processes, then a different

model must be used [19]. History dependent noise may arise from

slowly changing levels of stochastic fluctuations in the numbers of

open channels for adaptation currents [20] or levels of second

messengers, channel phosphorylation, insertion and deletion of

channels into the membrane, and other unknown factors. Instead

of drawing the period from a distribution, the period itself can be

made to undergo Brownian motion under the assumption that the

period is equally likely to be perturbed in either direction at a

given instant, and that the displacement is therefore proportional

to the square root of the time step. Finally, if we assume that the

mean of the noise reverts to zero, we obtain an Ornstein-

Uhlenbeck [21] process added to a constant period, which is the

third and final noise model used in this study. This latter model is

novel, although it shares some elements with the model of

Schwalger et al. [20], and constitutes a different noise model that

may complement the fast noise in some circumstances. We

postulate that the period of biological oscillatory neurons varies

randomly but with history dependence. The direct effect on

network activity of slow stochastic dynamics that cause history

dependence in the period of component oscillators has not been

previously investigated. This slow form of intrinsic noise may have

implications for synchronization and phase locking in neural

circuits.

In this study, we construct hybrid neural circuits consisting of

one biological and one computationally modeled neuron. These

coupled pairs exhibit different patterns of activity, which we refer

to as motifs, during coupling. Understanding how and why

synchronization and phase locking occur in populations of neurons

is critical to understanding how neural circuits function. Phase-

locking implies a constant phase relationship between neural

oscillators; synchrony is a special case of phase-locking in which

spikes occur in different neurons at about the same time. Another

observed motif is phase slipping. In this motif, the spiking activity

of the faster cell ‘‘laps’’ the slower one and the timing relationships

are different in every cycle. Our analysis of these dynamics utilizes

the phase resetting curve (PRC) measured from both biological

and model neurons in response to the same stimulus pulses that the

neurons receive in the circuit; an action potential in the

presynaptic neuron triggers a predetermined conductance wave-

form in the postsynaptic neuron both in the hybrid network and in

the protocol for measuring the PRC. The PRC describes how a

neuron’s period is shortened or lengthened depending upon at

what point in the cycle a perturbation was received [22,23]. This

PRC is a useful tool for predicting synchronization and phase

locking in neural systems under the assumption that the phase

resetting due to an input is complete by the time the neuron

receiving the input spikes next or by the time it receives another

input, whichever occurs first. The PRC for biological neurons as

well as the hybrid circuit activity is measured in the presence of

ubiquitous biological noise. The impact of noise on PRC-based

predictions is an open question.

The overall aim of this work was to assess why different

dynamical motifs, such as phase locking and phase slipping, were

observed in hybrid circuits and to explain how random transitions

between these motifs occurred. Using PRC-based maps, we were

able to predict phase locking and synchronization in two-neuron

networks and describe the activity motifs observed in these circuits.

By comparing the performance of three noise models in

simulations of hybrid circuit activity, we were able to show that

noise contributes to variability within and switching between

different motifs, and that history-dependent noise in the period

was necessary to mimic motif variability and transitions seen in

experiments.

Materials and Methods

Aplysia californica preparation
Aplysia californica were acquired from the Miami National

Resource for Aplysia (Miami, FL) and kept in saltwater tanks at

room temperature for 1–2 weeks until used. Animals were

anesthetized using a solution of 71.2 g MgCl2 in 1 L 1X artificial

sea water (1X ASW). 1X ASW was comprised of (in mM) 460

NaCl, 10 KCl, 11 CaCl2, 30 MgCl2, 25 MgSO4, and 10 HEPES

(pH 7.6) [24]. The abdominal ganglion was dissected out of the

animal and pinned in a Sylgard-lined (Dow Corning) dish filled

with dissection solution (30% 1X MgCl2 solution and 70% ASW

solution) for desheathing. The ganglion was desheathed under a

dissection microscope. The dish solution was then replaced with a

high-Mg2+ low Ca 2+ recording solution, which contained (in mM)

330 NaCl, 10 KCl, 90 MgCl2, 20 MgSO4, 2 CaCl2, and 10

HEPES, pH 7.6 [25]. Electrodes consisted of pulled (Sutter P-97

puller) glass pipettes containing 3 M potassium acetate and silver

wire chlorided in bleach.

Regularly spiking neurons in the lower left quadrant of the

Aplysia were used as the biological neurons in the hybrid circuits.

An Axoclamp 2B amplifier with Clampex 8.2 software (Molecular

Devices) was used to supply stimulus currents and record

Author Summary

Many biological phenomena exhibit synchronized oscilla-
tions in the presence of noise and heterogeneity. These
include brain rhythms that underlie cognition and spinal
rhythms that underlie rhythmic motor activity like breath-
ing and locomotion. A two oscillator system was
constructed in which most of the circuit was implemented
in a computer model, and was therefore completely
known and under the control of the investigators. The one
biological component was an oscillator in which an
apparently novel manifestation of biological noise was
identified, dynamical noise in the period of the oscillator
itself. This study quantifies how much noise and hetero-
geneity this simple two oscillator system can tolerate
before desynchronizing. More complicated systems of
oscillators may follow similar principles.
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membrane potential. A Digidata 1322A Digitizer (Molecular

Devices) was used to sample electrophysiological data at 10 kHz.

Model neurons
Wang-Buzsaki (WB) model neurons were used in the hybrid

circuit experiments. The equations and parameters for the WB

model neuron were the same as in [26] except that the leak

reversal potential EL was set to -60.0 mV and the applied current

Iapp was controlled to match the 1–5 Hz spiking frequency of the

Aplysia spiking neuron. This modified WB model matches both

the spike dynamics and PRC shape of experimentally measured

neurons [27,28]. Iapp for the model neuron was chosen such that

the spiking frequency was similar to that of the biological neuron.

Synaptic conductance values for the model neuron were selected

to increase the likelihood of 1:1 phase locking in hybrid circuits.

The differential equations for the state variables of the WB model

and the two virtual synapses were updated in real time. The

voltage measured in the biological neuron was used to determine

the time course of the conductance for the synapse onto the model

neuron and the driving force for the synaptic current of the

synapse onto the biological neuron.

Dynamic clamp
Dynamic clamp is a real-time computational and experimental

technique used to add data-driven simulated ion channel

conductances to biological neurons [29–31]. For these experi-

ments, we used the Model Reference Current Injection (MRCI)

[32] system to construct hybrid circuits and measure phase

resetting curves. The dynamic clamp system operated at a

frequency of 10 kHz, which corresponds to a closed-loop sampling

and computation period of 100 ms. Reciprocal inhibitory synapses

were used in hybrid circuits, and inhibitory perturbations were

used to measure phase resetting curves. The alpha-shaped

conductance waveform was calculated using the following

equations: dy/dt = 2y/t +itrig; da/dt = 2a/t + y; Isyn = gsyn

a(V- Esyn) e/t. V corresponds to the membrane potential of the

postsynaptic cell, Esyn was set to 270 mV, and t and gsyn were

varied as in Table 1. The value of itrig was zero except when an

input was triggered, either because the presynaptic cell spiked in

the hybrid circuit or a perturbation was needed to measure a point

on the PRC, then itrig was set to amplitude 1 for 1 ms. The e/t
term normalizes the maximum amplitude of the conductance

waveform to gsyn.

Phase resetting curves
PRCs were measured using the dynamic clamp to apply

inhibitory inputs at various times during the neuron’s interspike

interval (ISI). Perturbations were separated by at least 10 cycles to

allow ISIs to return to pre-perturbation magnitudes. The stimulus

interval ts corresponds to the time interval between the previous

spike in the neuron receiving the input and the start of the applied

perturbation. This interval was normalized by unperturbed period

P0, which was the average of the five ISIs prior to the perturbation,

to obtain the phase h = ts/P0. Phase reset (Figure 1B) was

calculated as the perturbed period P1 minus the unperturbed

period P0, normalized by the unperturbed period P0 (see

Figure 1A). Neuronal spikes were detected using a 240 mV

threshold. Biological PRCs were fit using 3rd or 4th order

polynomials to minimize least squared error and promote

randomly-distributed residuals. Noiseless model neuron PRCs

were spline fit. This fit was necessary in order to use the PRCs as

functions in the network simulations described below.

An alternative way to present the information from a PRC is in

the stimulus interval – recovery interval (ts-tr) plane (Figure 1C).

Stimulus interval refers to the time interval between when the

neuron last spiked and when a perturbation arrived. The recovery

interval tr refers to the interval between the time of application of

the perturbation and the time of the next spike in the perturbed

neuron. This description preserves time information, unlike the

PRC whose quantities are unitless. Very strong perturbations

result in more pronounced curves on the ts-tr plane, whereas less

strong perturbations manifest in the ts-tr plane as nearly straight

lines. As seen in Figure 1B and C, a PRC with peak magnitude of

around 0.05 (black curve), looks somewhat like a straight line on

the ts-tr plane. This apparent flattening occurs because the PRC

plot is scaled to the maximum PRC amplitude, whereas the scale

of the ts-tr plot is determined by the maximum period of the

oscillation.

Hybrid circuits
Hybrid circuits of one biological neuron and one model neuron

were constructed using the dynamic clamp; 13 distinct biological

neurons were used to construct the 35 hybrid circuits presented

here. No noise was added to the circuit, all noise was intrinsic to

the biological neuron. A single biological neuron was used for

multiple hybrid circuits, with different conductance and time

constant values, for as long as the experiment remained viable. All

synapses were inhibitory because the reversal potential for both

synapses (Esyn) was set to 270 mV. In nearly all cases, PRCs of the

biological neurons were measured with conductance parameters

gsyn and t that were used for the coupling experiments. In a limited

number of cases, coupling experiments were performed with a

weaker conductance than the one at which the corresponding

PRC was measured. In such cases, the PRC was linearly scaled to

calculate the curves that describe the network interactions. We

previously showed that for conductance below a certain threshold,

PRC shape is preserved and scales linearly with amplitude [33].

Our goal was to choose coupling values that resulted in 1:1

synchrony; however, because the PRC measured before the

experiment constrains the coupling parameters used in the

experiment, but the biological neuron activity can change over

time, in practice a range of effective couplings were obtained.

Dynamical motifs were defined as characteristically different

episodes of network activity. Network phase Qnet was defined as

the position of the spike in the biological neuron within the cycle in

the model neuron that contains the spike. Network phase was

calculated as tsM/(tsM + trM), where tsM is the time interval

between a spike in the model neuron and the following spike in the

biological neuron (which perturbs the model neuron), and trM is

the time interval between the spike in the biological neuron and

the next spike in the model neuron. The first 10 network phases

were discarded to eliminate transient effects. Network phase that

remained within 60.1 units of the network phase for 20 or more

cycles was defined as phase-locked (Figure 2A). Activity in which

the network phase transitioned through consecutive increasing or

decreasing phases, which often resulted in one neuron spiking

twice during the ISI of the other neuron, was defined as phase

slipping (Figure 2B). Episodes that did not meet either criterion

were categorized as other. See Text S1 for more detailed

information on the algorithm used for automated characterization.

In some cases, coupling was turned on and off during an

experiment; this was done to determine the robustness of the

hybrid circuit activity.

To measure the consistency of phase locking, we used circular

statistics to find the R2 metric, often referred to as the vector

strength, for each experiment [34]. In circular statistics, values are

represented by a unit vector and an angle. The average vector

captures the mean angle Qave of all the data and the magnitude R,

Slow Noise in the Period of a Neural Oscillator
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which is a measure of the tightness of the locking [35]. In our case,

the average network phase is Qave for the phase of the firing of the

model neuron within the cycle of the biological neuron, and the

magnitude R corresponds to how consistent the network phase is

during an experiment. The strength of phase locking is represent-

ed by the length of the vector, R, where R2 = X2+Y2. As in [34],

Qave and R2 are calculated using

Qave~
1

2
z

1

2p
atan2(Y ,X ); X~

1

N

XN

n~1

cos
2p:tsM,n

Pn

� �
;

Y~
1

N

XN

n~1

sin
2p:tsM,n

Pn

� �

where atan2 is the two argument arctan function that returns a

value between –p and p, Pn is the network period measured in

cycle n, N is the number of network periods, and tsM,n is the nth

stimulus time for neuron M, the model cell. Note that the signs of

X and Y must be considered in the two argument version of arctan

to put Qave in the appropriate quadrant. In [34], an R2 threshold

of 0.7 is used to distinguish strongly phase-locked systems, which

have R2 near 1, from those with weaker locking. Higher R2

magnitudes indicate that a system does not deviate much from the

phase-locked angle and has a dominant phase-locked mode, while

lower R2 magnitudes indicate more variability in network phase.

R2 calculations and PRC fits were performed in MATLAB (The

MathWorks).

Network simulations and noise models
Each hybrid circuit experiment was simulated using PRC-based

maps. In these simulations, the phase variable evolves at a rate

determined by the intrinsic frequency, with instantaneous phase

resetting applied at the time of input from the other neuron

according to the measured PRCs. A key assumption is that the

shape of the PRC does not change with the relatively small

changes in the period of the oscillator. Simulated PRCs were

constructed to mimic the shape and magnitude of biological and

model neurons used during experiments. Network simulations

were performed in C. Conceptually, our noiseless map [36,37] is a

modified Winfree [22] phase model in which the intrinsic phase hi

ranges from 0 to 1, and is reset from 1 to 0 when a spike occurs

dhi

dt
~gizfi(hi)d(hj{1) ð1Þ

where gi is the angular velocity in neuron i, hj is the phase in

presynaptic neuron j and fi(hi) is the phase resetting due to each

spike in presynaptic neuron j. We do not integrate Equation 1,

instead we assume the phase changes at a constant velocity

between inputs, and jumps instantaneously when an input is

received. The result is a coupled nonlinear map, which was used to

simulate both the PRC experiments and the hybrid circuit

experiments and implemented as follows. The map requires the

PRC and the initial value of the intrinsic period for each neuron,

and the initial values of the phase of each neuron. The phases are

only updated at the times associated with each episode of neural

firing, so the first step after initialization is to determine which

neuron(s) will fire next. This is accomplished by finding the

shortest recovery interval (tri = Pi(1- hi)), where Pi is the current

estimate of intrinsic period of the ith neuron, based on the noise

models given in the main text, and hi is its phase. At the next firing

time, the phase of the firing neuron is reset to zero. The recovery

interval in the next neuron (j) to fire is also the stimulus interval
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Figure 1. Phase resetting curve measurement and interval mapping. (A) Illustration of how inhibitory perturbations are applied at various
intervals after the reference spike, using a trace from the biological neuron as measured in experiment 19. (B) Phase resetting curves are plotted as
stimulus phase ts/P0 vs phase reset (P1-P0)/P0 for different inhibitory synaptic conductance strengths (mS/cm2) given in the inset to panel C. The blue
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(tsi) for the nonfiring neuron (i). The phase of neuron i is

calculated as hi = tsi/Pi and the phase is decremented by the

resetting fi(hi) calculated at that phase when a spike occurs in the

presynaptic neuron j. The next event is again determined by

finding the shortest recovery interval (trj = Pj(1- hj)) until the next

spike. We added noise to Eq. 1 model in three ways, which renders

it a Langevin equation in phase.

i) Gaussian noise added directly to the PRC. We added

Gaussian noise to the fitted PRC of the biological neuron by

updating its phase by fB(hB) +sX where X is a normally

distributed random variable N(0,1) and s is the standard

deviation. When noise is added to the PRC, the maximum

effective standard deviation of the intrinsic period change is given

by seff = m s/(1+fB,min(hB)), where m is the average period

measured prior to turning on the coupling and fB,min(hB) is the

minimum phase resetting for the biological neuron PRC (see Text

S1 for details). Therefore the phase resetting in Eq. 1 has both a

deterministic component and a stochastic component with no

history dependence in this scheme.

ii) Gaussian noise added directly to the mean intrinsic

period. We added Gaussian noise to the intrinsic period of the

biological neuron on each cycle so that trB = (PB+ sPBX)(1- hB)

and hB = tsB/(PB+s PBX). The effective standard deviation of the

period itself is given by seff = m s. Since gi in Eq. 1 is the inverse

of the period (PB+s PBX), gB is a random process with no history

dependence in this scheme.

iii) Ornstein-Uhlenbeck process in the period. Instead of

considering the intrinsic period as a constant, the period of the

biological neuron was allowed to vary as an Ornstein-Uhlenbeck

process [21] in which the fast random perturbations to the period

can accumulate over a slow time scale that pulls the period back to

the mean. This causes gB in Eq. 1 to be a random process with

history dependence in this scheme. The history dependence is the

critical distinction.

PB½kz1�~PB½k�z
(t½kz1�{t½k�)(m{PB½k�)

t

zsX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t½kz1�{t½k�

p ð2Þ

where the index k denotes each successive sampling time t[k],

PB[k] is the estimate of the intrinsic period at that time, X is a

Gaussian random variable N(0,1), m is the average period

trace is a PRC measured in the model neuron from experiment 19, using the dynamic clamp operating at 10 kHz with gsyn = 0.3 mS/cm2. The
estimated PRCs for gsyn = 0.15 and 0.45 mS/cm2 were approximated by scaling the measured PRC. (C) Information from the PRC can be plotted instead
as recovery interval (tr) vs. stimulus interval (ts). Notice that PRCs with substantial curvature can appear relatively flat in the ts-tr plane.
doi:10.1371/journal.pcbi.1003622.g001

Figure 2. Schematic illustration of phase-locking and slipping motifs in two-neuron networks. The top traces show the membrane
potential traces of two coupled model neurons, whereas the bottom trace shows the network phase for every spike in the red neuron relative to the
spikes in the blue neuron that bracket it. Vertical dashed lines show the point within the cycle of the blue neuron at which a spike in the red neuron
occurs. (A) One neuron spikes consistently at the same point within the interspike interval of the other neuron. Phase-locking occurs and coupled
neurons have a consistent, stable phase relationship. (B) One neuron spikes faster than the other neuron and in this case, phase slipping occurs. The
spike in the red trace occurs at progressively earlier points during the interspike interval between the blue spikes until a blue interspike interval
actually contains two red spikes.
doi:10.1371/journal.pcbi.1003622.g002
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measured prior to turning on the coupling, s is the standard

deviation, and t is the time constant for mean reversion. The

phase is calculated as hB = tsB/PB[k] and the recovery interval as

trB = PB[k](1- hB). In this case, the effective standard deviation of

the period over a long period of time is given by seff ~s
ffiffiffiffiffiffiffi
t=2

p
[38]. An alternate way to interpret the above equation is to define

a slow noise variable y[k] = PB[k] – m that is added to the mean

period to produce the history dependent variability in the period.

A new estimate of the instantaneous limit cycle velocity (1/
PB[k+1]) is sampled whenever a neuron spikes or an input is

received, and is assumed to be constant over the interval between

samples t[k+1]-t[k]. There are three possible cases in which this

occurs:

a) We know t[k+1]-t[k] because it is equal to the stimulus

interval ts, which is the interval between the last spike and the

arrival of an input. This case can occur either in the

simulations of PRC measurement or the simulation of the

hybrid circuit.

b) We do not know t[k+1]-t[k] because it is equal to the

recovery interval tr, which is the interval between the arrival

of an input and the next spike, and is also the quantity we are

trying to predict. The deterministic value of tr was used as an

approximation, and calculated directly from ts using the

previous estimate (PB[n]) before the pull towards the mean

or the random diffusion component was applied.

c) We do not know t[k+1]-t[k] because it is equal to PB[k+1],

which is the very quantity we want to estimate. This situation

only occurs when there is no input during a cycle, as when we

simulate the five unperturbed cycles that are interspersed

between each PRC measurement. The previous value PB[k]
is used as an estimate for t[k+1]-t[k].

The critical difference between the first two noise models and

the third one is that the first two simply involve jittering the

resetting or the period, whereas in the third model, the jitter

accumulates from cycle to cycle and is pulled back to the mean on

a slow time scale. The last two noise models require the

assumption that the shape of the PRC does not change

significantly as the period is varied over the range covered by

the experiment. All noise models required the computation of the

mean period m, which was set to the average of 5 unperturbed

cycles preceding each experiment (PRC or coupled circuit) in

order to match the experimental protocol. For the OU simula-

tions, PB[k] was also initialized with this value.

In order to obtain s for the case of Gaussian noise added to the

PRC or mean period, the PRC was simulated by adding noise to

the map. Five unperturbed cycles were allowed to elapse between

each perturbation, and the average of those noisy observed periods

was used to calculate the phase from the stimulus interval at about

twenty evenly spaced intervals, as was done for the experiments.

The parameter s was adjusted until the squared error (SE) of the

noisy simulated PRC with respect to the smooth polynomial fit was

approximately equal to that of the experimental data. The

Ornstein-Uhlenbeck model required an extra parameter and an

iterative procedure. After s was set using the PRC protocol,

hybrid circuit simulations were performed for 10 random seeds for

the same duration of coupling as observed in each experiment.

The initial value of t was set to 1000 times the value of the period

of biological neuron given in Table 1. A bifurcation was defined as

a transition between phase locking and phase slipping, and the

value of t was adjusted until the range of number of bifurcations

observed in the simulations bracketed the value observed

experimentally. Then the procedure was repeated until both

criteria were satisfied. Parameters for the three noise models for

each experiment, the range of bifurcations, and the SE ratio for

simulations to experiments are given in Table 2.

Results

Coupled neurons show well-defined dynamical motifs in
phase relationships

To construct hybrid circuits, one biological neuron from the

abdominal ganglion of Aplysia californica was reciprocally coupled

to one Wang-Buzsaki (WB) [26] conductance-based model neuron

using the dynamic clamp [29,30]. The dynamic clamp measures the

potential in the biological neuron, integrates the differential

equations for the WB model and the two virtual synapses, and

injects synaptic current into the biological neuron. The WB model

was used because it produces phase resetting curves (PRCs) that are

comprised of only delays in response to an inhibitory input

(Figure 1B), and because the WB PRCs resemble those measured

in Aplysia neurons [27,28]. Parameters for the hybrid circuits and

maximum phase resetting values for the biological and model

neurons are shown in Table 1. Notice that the maximum phase

resetting is different between the biological and model neurons; this

discrepancy creates a heterogeneous system. The average interspike

interval of the biological neuron during coupling, which corre-

sponds to the network period if the system is phase-locked, is

different than the uncoupled biological neuron period; this provides

evidence that the motifs observed in our hybrid networks result from

mutual coupling effects, and do not reflect entrainment of the model

neuron by the biological neuron.

All 35 hybrid circuits showed episodes of phase locking, phase

slipping, or both (see Figure 2). In Figure 3, the horizontal axis

represents time and each experiment is represented on one row.

The experiments are ranked vertically in order of R2, a metric of

the consistency of phase locking during coupling. Coupled neurons

with high R2 values remain phase-locked for the entire experiment

duration. As R2 decreases, more episodes of phase slipping and

undefined activity occur in the hybrid circuit. Note that an

experiment with motif changes can nonetheless have a higher R2

value than one that is always phase-locked, particularly when the

network phase in the first case has less variability than the network

phase values in the second case. Well-defined network motifs

occurred in every experiment.

Dynamical motifs can be described using iterated pulse-
coupled maps derived from PRCs

When two neurons are coupled, the dynamics of the resulting

network can be predicted by plotting the PRC data of each neuron

in the ts-tr plane. As stated in the Methods, the stimulus interval ts
is the interval between the previous spike and an input from the

other neuron, whereas the recovery interval tr is the interval

between the arrival of an input and the next spike. We refer to

these curves in the ts-tr plane as interaction curves. In contrast to

the weak coupling approach [39,40] using the infinitesimal PRC

(iPRC), we do not ignore the effects of phase resetting on the

network period nor do we require the relative phase of the neurons

to change slowly compared to their absolute phases, however we

do require that the coupling be pulsatile, meaning that the effects

of an input die out quickly, before the next event occurs. In the

coupled system, the stimulus interval for one neuron equals the

recovery interval for the other neuron (Figure 4A) and vice versa.

In a one-to-one periodic phase-locked mode, the intervals do not

change from cycle to cycle, indicated by the index ‘ in Figure 4B1.

For each neuron, a pair of stimulus and recovery intervals

correspond to each phase at which an input is received (Figure 4A).
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In Figure 4B2, the stimulus interval for one neuron (magenta,

model neuron) is plotted on the x-axis and the corresponding

recovery interval is plotted on the y-axis, whereas the stimulus

interval for the other neuron (black, biological neuron) is plotted

on the y-axis and recovery interval on the x-axis. Therefore the

two pairs of stimulus and recovery intervals (in two different

neurons) that must be equal in a phase-locked mode are plotted on

the same axes. The intersections of these curves then correspond

to any possible periodic phase-locked modes of the two neuron

network, as well as to fixed points of the ts-tr map in Figure 4C

that is described below.

The information in the ts-tr interaction curves is not restricted

to the location of the fixed points, but also provides the transient

dynamics that may lead to a phase-locked mode or persist

indefinitely in the absence of such a mode. The stimulus interval in

one neuron determines the recovery interval in that same neuron;

this leads to a map (Figure 4C1) with the following dynamics. The

index n indicates successive cycles in the model neuron. The

movement of the operating point from the black to the magenta

curve is constrained to be horizontal because the recovery interval

in the biological neuron determines the next stimulus interval in

the model neuron (trB[n] = trM[n]). Similarly, the movement of

the operating point from the magenta to the black curve is

constrained to be vertical because the recovery interval in the

model neuron determines the next stimulus interval in the

biological neuron (trM[n] = trB[n+1]). For a stable fixed point

that attracts nearby trajectories, the magenta curve with the

coordinates listed in the order (trM,tsM) curve must have a steeper

slope ([41], see also derivation in Text S1) than the black curve in

which the coordinates are listed in the opposite order (tsB,trB),

otherwise the point is unstable and repels trajectories. The white

circle in Figure 4C2 (and B2) repels trajectories and therefore

denotes an unstable fixed point, whereas the red circle in

Figure 4B2 is stable because nearby trajectories would be attracted

rather than repelled.

Figure 5 shows an example of stationary phase locking that

occurs when there is a stable fixed point on the PRC-based map.

The ts-tr interaction curves in Figure 5A were generated with the

period observed in the biological neuron just prior to coupling,

and intersect at two fixed points, one unstable (white) and one

Figure 3. Schematic representation of network activity observed for 35 different hybrid circuits. Each experiment is represented by a
color-coded band, indicating episodes of phase-locking (red), phase slipping (blue), no coupling (gray), initial transients or missing data (white) or
unclassified (green). Red segments containing an asterisk were phase-locked with zero phase difference. Experiments were ordered with the lowest
R2 statistic (black diamonds) during coupled episodes at the bottom. Data from experiment 32 (double asterisk) indicates that only the first 350
seconds of the record were shown, but the phase-locked pattern continued. The single asterisk within red segments corresponding to experiments
13, 18, 20 and 30 are episodes of near synchrony.
doi:10.1371/journal.pcbi.1003622.g003
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stable (red). The latter corresponds to the phase locking observed

in both experiments and simulations. The insets reflect that a

change in the intrinsic period of the biological neuron results in a

shift of the ts-tr interaction curve for the biological neuron. As the

neuron period gets longer, the curve shifts upward and rightward

along the x-y diagonal (see left inset), and as the period gets

shorter, the curve shifts inward toward the ts-tr origin (see right

inset). The network phase remains relatively constant for the entire

duration of coupling in this experiment (Figure 5B1), resulting in a

histogram of the network phases with a distinct peak. In

simulation, we can produce a similar time series of network

phases and histogram in the presence of the three types of noise

(Figure 5B2-B4), although only the OU noise produces a

sufficiently broad peak. Figure 5C explains why the phase locking

is robust to noise. The red curve shows the location of the stable

fixed point in terms of tsB (and trM) as a function of the period of

the biological neurons shown on the y-axis. The initial value of

period (used as m in the noise models) is shown by the lowermost

dashed horizontal line labeled m. The initial value of tsB at the

fixed point is about 600 ms as shown in Figure 5A. If the period of

Figure 4. Predicting network activity using the PRC-based maps. (A) The stimulus and recovery intervals measured for the PRC can be used
to predict the activity observed when the neurons are coupled; a spike in one neuron corresponds to an inhibitory input to the other neuron. (B1) In
steady locked modes, the values of the intervals are fixed and the recovery interval in one neuron is equal to the stimulus interval in the other. (B2)
Fixed points, or intersections of the curves on the ts-tr plane, can be used to predict steady one to one phase-locked modes. (C1) The recovery
interval in one neuron is the next stimulus interval in the other neuron. The stimulus interval predicts the next recovery interval in the same neuron
based on the PRC. (C2) Movement from curve to curve in the ts-tr plane corresponds to changes in network phase and sometimes in spiking order.
doi:10.1371/journal.pcbi.1003622.g004
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the biological neuron decreases, the curves no longer intersect below

a period of about 740 ms and a tsB of about 755 ms (rightmost

vertical dashed line labeled C2) corresponding to the situation in the

inset at right. Similarly, if the period of the biological neuron

increases, the curves no longer intersect above a period of about

875 ms, and a tsB of about 430 ms (leftmost vertical dashed line

labeled C1) corresponding to the situation in the inset at left. The

ts-tr interaction curves are a snapshot of the constraints on the

trajectories based on the current value of the period of the biological

neuron. The variability in all three models constrains the 95%

confidence interval of the intrinsic period (m62seff) to lie well within

the range of periods that supports phase locking, and therefore

constrains the variability in the network phase observed in

Figure 5B2-4, and presumably in Figure 5B1 as well.

Figure 5. Scenario of robust phase-locking. Representative example of stationary phase-locking from experiment 34 (Table 1). (A) The
interaction curves (obtained with mean period m= 806.3 ms measured prior to the onset of coupling) intersect twice producing one stable (red) and
one unstable fixed point (white). B. Histograms of network phase shown at right. (B1) Experimentally observed network phase, which is equal to tsM/
PM, where tsM and PM are the stimulus and period of the model neuron. The phase remains locked (red circles) during the whole course of the
experiment. (B2) Simulated network phase with Ornstein-Uhlenbeck period noise (s= 0.1047 and t= 80630). (B3) Simulated network phase with
Gaussian noise (s= 0.00532). (B4) Simulated network phase with Gaussian noise added to the PRC (s= 0.00379). (C) Range of periods of the biological
neuron in which the ts-tr curves have a stable intersection (red dots). For all the three forms of noise, (m62seff) remains inside in the region where the
stable fixed point exists. Insets in A show how the stable intersection is lost at the dashed lines corresponsing to C1 (left inset) and C2 (right inset).
doi:10.1371/journal.pcbi.1003622.g005
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Figure 6. Phase slipping without ‘‘preferred’’ phase. (A) Representative example of phase slipping from experiment 5 (Table 1). (A1) The
interaction curves do not intersect, and there is no fixed point in the system. The dashed blue lines show the sequence of intervals during the phase
slips. Brown curve is the two pulse PRC explained in B. (A2) Experimentally observed network phase showing multiple slips in blue, resulting in a
broad distribution of network phases in the histogram on the right that nonetheless has a clear peak. (A3) Simulated times series of network phases
and histogram using the noisy map based on the interaction curves in B1, with Ornstein-Uhlenbeck noise (s= 0.04225 and t= 76790). The peak in the
histogram corresponds to the closest point of approach of the curves. (B) Schematic illustrating how one neuron spikes again before recovery interval
in partner ends. (B1) Hypothetical interaction curves show an example of a trB[n] value that is larger than any value of tsM[n], so the X on a dashed
black line indicates a recovery interval that was too long to be physically realized. (B2) The spike pattern corresponding to B1 contains two successive
spikes in the model neuron with no intervening spike in the biological neuron. (B3) The recovery interval tr*B[n] is obtained from tsB[n] by accounting
for the two consecutive spikes in the partner using the brown interaction curve instead of the black one. The sequence of intervals shown on the
map corresponds exactly to the firing pattern in B2. (B4) In order to determine tr*B[n], two inputs separated by the intrinsic period in the partner are
applied.
doi:10.1371/journal.pcbi.1003622.g006
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The PRC-based map helps illustrate what happens during

phase slipping. Figure 6A1 shows the ts-tr interaction curves using

the period observed in the biological neuron just prior to coupling,

with a trajectory around the PRC-based map indicated by dashed

blue lines with arrows indicating direction. Every time one neuron

spikes, a vertical or horizontal ‘‘step’’ is taken between the two

curves. The trajectory spends more time near the point of closest

approach between the two curves because it takes smaller steps in

that region. Here, the ghost of a fixed point that exists at a slightly

different set of parameters (at which the curves do intersect) has a

significant impact on the dynamics [42,43]. Figure 6A2 shows the

sequence of network phases observed during the long episode of

slipping in experiment 5, and the histogram at right shows a broad

peak in the network phases. The peak and distribution of the

histogram of the network phases produced by a map based on the

PRC with OU noise in the period and shown in Figure 6A3 was in

reasonable agreement with the experimental data in Figure 6A2.

The peak of the histogram is due to the tendency to stick near a

phase corresponding to the point of closest approach of the curves

in Figure 6A1.

Each phase slip in the network activity is associated with a

trajectory that dropped down from the upper left edge of the map

and was reinjected at the lower right edge (Figure 6A1). Figure 6B

displays the mechanism for dropping off the map at the upper left

and returning at the lower left. This occurs when the next recovery

interval in one neuron (the biological neuron in Figure 6B1) is so

long that the other neuron (the model neuron in Figure 6B2) spikes

twice during one biological neuron period. We defined a recovery

interval tr* (see two pulse PRC protocol in Figure 6B4) that gives

the interval to the next spike after two inputs separated by the

intrinsic frequency of the partner neuron are received (brown

curve in Figure 6B3). Therefore the trajectory is reinjected at the

lower right when it falls off the upper left, and vice versa. The

recovery interval tr* was not measured, but instead was calculated

from the previously collected phase resetting data by assuming that

the second input was received at a phase determined not only by

the elapsed time but by taking into account the phase resetting

from the first pulse. The only way to transition between the ends of

the map is for one neuron to spike twice in a row, and the modified

map can handle any firing pattern in which any single neuron does

not spike more than twice in a row. Across a phase slip transition,

there is a change [44] in leader-follower pattern of the neurons. It

is important to note that there exists a similar analogy of ghost

attractor and cycle slipping in return map of Poincare phase map

of neural oscillators [45].

The dynamics of motifs are variable, and switching
between motifs is possible

Phase locking and phase slipping do not always persist

throughout an experiment; as seen in Figure 3, motifs can vary

over time. Of the 35 hybrid experiments presented here, 12

experiments represent the case where the system is phase-locked

(Figure 3, experiment 16 and experiments 24–35). In the

remaining 23 cases, the coupled neurons transition between phase

locking, phase slipping, and undefined phase relationships

(Figure 3, experiments 1–15 and experiments 17–23). It is likely

these transitions are due to fluctuations in the intrinsic spiking

frequency of the biological neuron. As illustrated in Figure 5A,

shifts in the ts-tr interaction curves due to drift in the period of the

biological neuron can move, create, or eliminate the fixed points of

the system.

Figure 7A1 shows experimentally observed phase-locked

activity with a single slip. One simulated coupling experiment

(Figure 7A2) with the Ornstein-Uhlenbeck noise process mimics

the single slip from phase-locked activity observed in the

experiment. However, the simulations are sensitive to initial

conditions, and using a different random seed for the noise

produces a different pattern of transitions (Figure 7A3). The ts-tr
interaction curves coupled with the effective standard deviation of

the period for the various noise processes, can explain why the

OU process, but not the other noise models, was able to mimic

the transition to slipping activity. The red curve in Figure 7B2

again shows how the location of the stable fixed point in terms of

tsB (and trM) change and disappear as the period is increased or

decreased. The initial value of period (used as m in the noise

models) is shown by the lowermost dashed horizontal line in

Figure 7B2, and was used to generate the ts-tr interaction curves

shown in Figure 7B1 that have two intersections, including a

stable fixed point that predicts the initially observed phase

locking. However, if the period of the biological neuron increases

from the initial value of 839 ms above 845 ms, the stable

intersection is lost, resulting in the ts-tr interaction curve shown

in Figure 7B3 that produces phase slipping. The shaded regions

in Figure 7B2 show that the OU noise model produces a larger

standard deviation of the period, such that the 95% confidence

interval of the intrinsic period (m62seff) includes periods that

correspond to phase slipping (crosshatched region). On the other

hand, the 95% confidence intervals for the other two models lie

well within the region of periods corresponding to phase locking,

so slipping was never observed for any random seed in

simulations of this particular experiment using those noise

models. Figure 8 gives an example in which the same experiment

(number 19) illustrated in Figure 7 was simulated with Gaussian

noise added to the phase resetting. In this case, as in the case in

which Gaussian noise is added to the period, there is no

dependence of the noise in one cycle on that in the previous

cycle. Figure 8A illustrates a typical fit to the network dynamics

with low (panel A1) and high (panel A2) noise levels. The high

noise levels are able to capture the network dynamics, but the low

noise level fails. Conversely, Figure 8B shows that the low noise

level (panel B1) faithfully captures the low variability in the PRC

as measured, but the high noise level greatly overestimates the

variability. Figure S1 shows that the simulations of this

experiment with Gaussian noise added to the period fails in

exactly the same way.

Robustness to shifts in period on the PRC-based map

translates to robustness of phase-locked network activity. This

robustness to period changes is represented by the shape and

proximity of curves on the ts-tr plane. The network phase of a

system with one curvy ts-tr neuron representation and one

straight ts-tr neuron representation is more likely to stay phase-

locked than a system where both neuron representations are very

straight; this robustness also depends on the position of one curve

with respect to the other, since intersections near the edges of ts-
tr curves will be susceptible to noise-induced bifurcations.

Figure 1 showed that increasing the coupling strength increases

the curvature of the interaction curves for the models (and

experiments, not shown) used in this study. In Figure 9, the

coupling between neurons was turned off between panels, and a

snapshot of the ts-tr interaction curves (top row) was generated

for each coupled episode; the black curve representing the

biological neuron was shifted according to the average period

measured during the previous uncoupled episode. Figure 9A

shows a network with stable phase locking; a change in biological

neuron period did not disrupt the motif. Figure 9B shows a case

where network activity transitions from locked to slipping, due to

the decreasing biological neuron period and the resulting loss of

the stable fixed point.
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Figure 7. Representative example of nonstationary activity corresponding to nonrobust locking and drift-induced bifurcations. (A1)
Observed network phase shows phase-locking (red) with a single phase slipping episode (blue) from experiment 19. (A2) Simulation of the network
phase with Ornstein-Uhlenbeck (OU) noise (s= 0.0453 and t= 83882) showing a transition from phase locking to phase-slipping and vice-versa. (A3)
For the case of OU noise, the simulated network phase shows sensitivity to different initial random seeds, and it can produce qualitatively different
results. (B1) The ts-tr curves using the period of the biological neuron at the start of the experiment have one unstable (white dot) and one stable (red
dot) intersection, corresponding to the phase-locked mode observed at the beginning of experiments and simulations. (B2) The two horizontal
dashed lines give the range of the period of biological neuron where a stable fixed point exists. The 95% confidence region of the period (m62seff)
contains values outside the phase locking regime (crosshatched region of yellow rectangle only for the Ornstein-Uhlenbeck noise model). In this
region, intersection of the ts-tr curves are lost. (B3) As the biological neuron period drifts, the interaction curve for the biological neuron moves
relative to that for the model neuron, with a value of 838.8 ms in B1 compared to 850.7 ms in B3. Slips are caused when the two fixed points in B1
collide, leaving no intersection as in B3. The two fixed points may re-emerge resulting in renewed locking.
doi:10.1371/journal.pcbi.1003622.g007
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Motif variability can be described by a model that
accounts for slow noise in the intrinsic variability of the
oscillations

One advantage of using a hybrid circuit model is that only the

biological neuron contributes noise to the system. We simulated

two coupled neurons using iterated maps derived from the PRCs

measured from the biological and model neurons during

experiments. The model neuron was noiseless and had a constant

intrinsic period. Three types of noise models were used in only the

simulated biological neuron to consider different types of

biological variability. Gaussian noise added to the simulated

biological PRC mimics the approach in [15,34] and describes

uncertainty in the PRC itself. Gaussian noise added to the

simulated biological neuron period represents uncertainty in the

measurement of spikes as well as intrinsic variability in the timing

of neuronal spikes. Modeling the period of the biological neuron as

an OU process captures intrinsic variability in spike timing in the

biological neuron and measurement errors, as well as slow, long-

term trends in the intrinsic period.

Figure 10 shows the performance of the three noise models on

three metrics: transitions between motifs (Figure 10A), the fraction

of time spent phase-locked (Figure 10B), and the circular statistic

R2 (Figure 10C). Experiments 24–35 spent 100% of the time

phase-locked (see Figure 3 and Table 1) with no transitions,

therefore their R2 is quite high. The vast majority of the time that

the circuit was not phase-locked was spent slipping, so the

performance on the metric of fraction of time spent slipping was

similar and is not shown. The metrics are presented in terms of the

range of values obtained for ten different simulations for each

noise model for each experiment. In each of the ten simulations,

the noise model was initialized with a different seed, and the pulse

coupled network simulator was run for the same length of elapsed

time as the original experiment. The parameters of the noise

models for each experiment are given in Table 2. Since some

simulations were quite sensitive to initial conditions, the best

possible match would be that the values of the metrics obtained in

the ten simulations bracket the value actually observed in the

experiment. The OU model was calibrated to fit the bifurcation

Figure 8. Gaussian noise added to PRC cannot mimic both the hybrid circuit data and the noise level in the PRC with the same
parameter value. A. Simulation of hybrid network for Experiment 19 illustrated in Figure 7A1. (A1) Low noise case does not capture network
dynamics. (A2) High noise case better reproduces network dynamics. (B). Comparison of experimental (red dots) and representative simulated (blue
dots) PRC measurements. The experimentally measured PRC from the biological cell in experiment 19 is fitted with a 3rd degree polynomial (black
curve). (B1) The low noise case captures the variability in the PRC quite well. (B2) The high noise case vastly overestimates variability in PRC. For low
noise s= 0.0014 and for high noise s= 0.0344.
doi:10.1371/journal.pcbi.1003622.g008
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data in Figure 10A, and all experimental data points (black dots)

are bracketed by the range of simulation results (yellow bars) for

that model. Note that the fits given for the OU model in Table 2

are not unique (see Supplementary Figure S2), however, two

consistent trends emerged. Decreasing the time constant t for

mean reversion somewhat reduced the PRC noise and the

numbers of bifurcations introduced by increasing the noise

intensity s, and the variability between runs was greater for

larger mean reversion time constants. The other models did a poor

job of capturing the bifurcations, or transitions between motifs. In

general, the transitions identified in those models were sticky

regimes (meaning they exhibited a ‘‘preferred’’ phase) during

phase slipping that the algorithm identified as phase locking

episodes (see Supplementary Figure S3), and they failed to capture

many transitions, such as the one illustrated in Figure 8 (see also

Supplementary Figure S1). Most black data points that represent a

nonzero number of bifurcations were not bracketed by the

simulations for the two Gaussian models because they failed to

exhibit history dependence of the period (see Supplementary

Figure S4). Although the OU model was not calibrated to capture

the fraction of time spent phase-locked data and R2, the OU

model clearly outperformed the other models on these metrics as

well. The Gaussian noise models had less effective variability in

network activity than the OU model, so the OU model was better

able to capture fraction of time spent phase-locked. In contrast, the

Gaussian noise models had a tendency to produce simulations that

were always phase-locked, or to a lesser degree that were always

slipping. The OU models usually bracketed the data points for the

R2 metric, but the other models in general did not.

Discussion

Dynamics in hybrid coupled networks are captured in
PRC-based maps

We have shown here that multiple types of network activity

occur in hybrid circuits of one biological and one computational

neuron. We used PRC-based maps to explain activity observed in

hybrid circuits of one biological and one computational model

neuron. These maps are based on interaction curves that give a

snapshot in time of the dynamics expected, assuming that the

intrinsic periods of the neurons remain relatively constant during

the time window in question. The fixed points, or equilibria, of the

PRC-based maps presented here are given by the intersections of

the ts-tr interaction curves for the two neurons, and correspond to

Figure 9. Prediction of the robustness of network activity to period noise. Coupling between the neurons was turned off between panels,
the period of the isolated biological neuron was re-measured, and the prediction of network activity was adjusted based on the newly measured
period by shifting the black curve representing the PRC information for the biological neuron. (A) Activity from experiment 32 was predicted to be
robust to period noise. The prediction does not change much between A1, based on the period of 396.3 ms before the first coupling episode, and
A2, based on the period of 425.56 ms before the last coupling episode. The observed activity in A3 (first episode) and A4 (last episode) is consistently
phase-locked with no bifurcations. (B) Activity from experiment 22 is not predicted to be robust to period noise, with the interaction curves shown in
B1and B2 reflecting the average periods in the biological neuron of 440.2 and 405 ms prior to the first and last coupled episodes respectively. In B1,
the red dot predicts stable locking at a nonzero phase as observed in the first episode in B3. The period shift in the biological neuron causes all
intersections to disappear in B2, resulting in the phase slipping in the last episode (B4).
doi:10.1371/journal.pcbi.1003622.g009
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one-to-one phase-locked modes in the circuit. However, pertur-

bations from these fixed points are inevitable in a noisy system,

and the nonequilibrium dynamics of the map as trajectories flow

between the interaction curves gives the system dynamics for

perturbations away from fixed points, and also in the complete

absence of fixed points. The two most common dynamical motifs,

phase slipping and phase locking, can occur under variable

circumstances. The existence of a stable fixed point predicts phase

locking, and the absence of a stable fixed point predicts continuous

phase slipping. However, the interaction curves themselves can

change over time because they are based on the intrinsic period of

the component neurons. As the period of the biological neuron

slows down, the PRC-based interaction curve for that neuron

moves outward; as it speeds up, the curve moves in toward the

origin. This motion can change where the curves intersect,

effectively changing where the fixed points are located. This can

result in a shift of the network phase if the system remains phase-

locked, or a transition to phase slipping if the stable fixed point is

lost.

The nature of noise in neural circuits
The synaptic component of the noise is thought to be dominant

compared to intrinsic noise sources, and noise is often modeled as

a high conductance state [12] in which both the inhibitory and

excitatory conductances are Ornstein-Uhlenbeck processes. Noise

in neural systems [11] is also often modeled as a random walk in

the membrane potential due to excitatory and inhibitory synaptic

currents whose interevent times are generated by a Poisson

process; the membrane potential is continuously pulled back

toward the resting potential with a characteristic time constant.

This approach may be appropriate for normally quiescent

neurons, but additional considerations may apply for oscillatory

neurons. An oscillatory neuron is not merely pulled towards a

resting potential, but instead has a characteristic cycle period

determined by the inverse of the gi term in Eq. 1. Under our

interpretation, intrinsic membrane noise in an oscillator can be

modeled as perturbing the intrinsic cycle period, or 1/gi. The

stochastic form of equation 1 is referred to as a Langevin phase

equation; to our knowledge we are the first to model the cycle

period itself as an Ornstein-Uhlenbeck random process.

Here, we show that normally distributed noise added to cause

jitter in either the PRC or the period was insufficient to capture

the dynamics of the observed switches between motifs. Instead,

history-dependence (see Supplementary Figure S4), presumably

mediated by stochastic processes with slow dynamics that allowed

the fast jitter to accumulate over time, was required in our

simulations in order to replicate our experimental observations of

hybrid circuit dynamics. The period of the biological neuron was

modeled as an Ornstein-Uhlenbeck (OU) process with the mean

reversion modeled as being on the order of 10–1000 cycle periods.

The mean reversion was included because it is quite likely that

period of biological oscillators is homeostatically regulated within a

physiologically relevant range, but this term was not crucial (see

Supplementary Figure S4) or particularly well-characterized in our

data. Support for treating the period as a random process is

provided by observations of slow fluctuations in oscillatory period

when neurons that are nonoscillatory in a slice preparation, such

as stellate cells in entorhinal cortex and CA1 hippocampal OLM

cells, are made to oscillate using current injection [16], and by the

successful use of an OU model to characterize the variability in

period in CA1 pyramidal neurons under similar conditions [46].

There is strong support for the idea that neuronal circuits possess

both intrinsic and synaptic mechanisms that operate over hours to

days to maintain firing around a homeostatic stable point [47].

However, these studies were not focused on the homeostatic

regulation of the intrinsic firing rate of oscillating neurons on a

time scale of tens of seconds to minutes as we suggest here. The

underlying biophysical mechanisms that could produce an OU

process in period (or alternatively in frequency) in physiological

neural oscillators are not clear. However, Schwalger [20] and

Fisch et al. [48] have shown that stochastic slow ionic currents may

be well-represented by OU noise in neurons.

Typically noise in the Langevin equation for phase is formulated

as an additive term to the frequency [49,50] or to the phase

resetting [15,16,34,51,52] or both [53]. Another method is to

convolve the noise with the infinitesimal phase resetting curve

(iPRC) and then add to the phase [54] or frequency [55]. It is

unlikely any of these methods could capture the transitions

between modes observed in our experiments because they lack the

crucial history dependence of the period from one cycle to the

next. If the period of oscillatory neurons in general can be modeled

as a history-dependent and likely mean-reverting random process,

theoretical results to date on the behavior of ensembles of noisy

biological oscillators may require re-evaluation and modification.

Interestingly, theta oscillations in the local field potential of the

hippocampus and prefrontal cortex also show a pattern of small

frequency fluctuations over time, referred to as the microstructure
of the theta rhythm [56], so the concept of the period as a random

process may be extendable to network oscillations as well.

Robustness in noisy circuits
The predictions of phase locking under weak coupling

assumptions [39,40] are independent of coupling strength (as long

as it is weak) for noisy identical oscillators, but clearly a minimum

coupling strength is required to overcome ubiquitous biological

noise. Effects of heterogeneity in period have usually been studied

[26,57,58] assuming that the intrinsic period for each neuron is

relatively constant. We examined the consequences of fluctuations

in the period of neuronal oscillators in the absence of additional

synaptic input using the dynamic clamp. In our hybrid circuit

experiments, the biological synaptic inputs were silenced using

high Mg2+, low Ca 2+ solution [25]; we found that the assumption

of a slow variation in the period of the oscillatory biological

neurons, even in the absence of synaptic input, produces the best

fit to our data. We show explicitly the relationship between the

level of variability and the tendency to remain phase-locked, as

well as the effect of coupling strength on stabilizing phase locking.

In our hybrid circuits, the robustness of network phase locking was

Figure 10. Performance metrics for noise models. The metrics are (A) Bifurcation, or the number of transitions between phase-locked and
phase-slipping states, observed in each hybrid experiment; (B) Fraction of time in each experiment spent in a phase-locked state; and (C) the R2

metric for each experiment. In each panel, the y axis indicates an experiment number. For each experiment, the black dot represents the metric for
that experiment, and the yellow bar represents the range of results for 10 simulations of each of the three noise models using 10 random seeds.
Ideally, the bar (range of simulation results) should enclose the dot. The Ornstein-Uhlenbeck noise model in A1 brackets the experimental data in all
cases, whereas Gaussian noise added to the period in A2 and PRC in A3 fail to bracket the observed bifurcation in most cases. (B) The Gaussian noise
models in B2 and B3 had less effective variability than the OU model in B1, so the OU model was better able to capture fraction of time spent phase-
locked. In contrast, the Gaussian noise models had a tendency to produce simulations that were always phase-locked, or to a lesser degree that were
always slipping. (C) The OU model in C1 usually bracketed the data points for the R2 metric, but the other models (C2 and C3) in general did not.
doi:10.1371/journal.pcbi.1003622.g010
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related to the degree of curvature of the two interaction curves that

generate the PRC-based map, as well as the amount of spatial

separation between the two curves. The degree of heterogeneity in

frequency largely determines the spatial separation, or difference

in the x and y axis crossing points of the interaction curves. The

interaction curves in Figures 5A and 7B1 have similar separation

on the x and y axes, but the greater curvature of the magenta

curves in Fig 5A clearly means that greater separation can be

tolerated before the intersections between the interaction curves

are lost. Curvature is enhanced by strengthening the synaptic

coupling, and spatial separation increases with increasing hetero-

geneity in the intrinsic spiking frequencies. These two factors

determine the amount of effective variability that can be tolerated

without disrupting the locking (see Figure 5 and 7). Other

investigators [16] have responded to the variability in period by

utilizing a controller to stabilize the intrinsic period in order to test

the predictions of weak coupling, which presumes that the coupled

period is equal or very nearly equal to the intrinsic period. The

direct effect of slow trends in the period of component neural

oscillators on network activity has not been previously investigated.

This slow form of intrinsic noise may have important implications

for synchronization in neuronal networks.

Generalization to larger networks
These results are mainly of interest for their implications for

larger networks, such as central pattern generating networks and

hippocampal and cortical networks that subserve cognitive

functions. There are two immediately apparent ways to generalize

these results to larger networks. One is to generalize [36,59,60]

from two neurons to two subpopulations of neurons in which the

neurons in each subpopulation are different from those in the

other subpopulation, but relatively homogeneous within a

population. Homogeneity in frequency might be enforced by

electrical coupling within but not between subpopulations for

example. Another method is to directly scale up to larger

networks; in this case our contribution is to suggest that slow

intrinsic noise in the period that has not previously been

considered may play a role in the collective dynamics of networks

of coupled oscillators.

Supporting Information

Figure S1 Gaussian noise added to the period cannot
mimic both the hybrid circuit data and the noise level in
the PRC with the same parameter value. A. Network phase

data replotted from Figure 7A for experiment 19. B. Time course

of the unobservable intrinsic period of the biological neuron

during simulations of this experiment for s= 0.00213 (blue trace)

and s= 0.03 (red trace). The center dashed line shows the initial

(and mean period) whereas the solid horizontal lines indicate the

values of the period between which an intersection exists in the

ts-tr curves (see Figure 7b). The blue trace with low noise

obscures the dashed line for mean period. C. Simulation of

hybrid network for low noise (C1) and high noise (C2) case. D.

Comparison of experimental (red dots) and representative

simulated (blue dots) PRC measurements with low noise (D1)

and high noise (D2).

(PDF)

Figure S2 A parameter regime spanning a wide range of
t but a narrow range of s fits both the PRC and hybrid
circuit data for the OU model. The parameter grid was

sampled at the red dots, and the parenthetical expressions indicate

the squared error ratio for the simulated to experimental PRCs as

well as the range of bifurcations that were observed in ten random

simulations of the hybrid circuit. The blue ellipses indicate the

parameter space where the ratio is near 1 and the bifurcation

range includes zero, since these experiments were always phase

locked. (A) Experiment 25, (B) Experiment 27, (C) Experiment 28,

(D) Experiment 34.

(PDF)

Figure S3 Added Gaussian noise only picks up easily
accessible, and sometimes questionable, bifurcations.
A. Network phase of hybrid circuit for Experiment 14 with phase

slipping (blue dots) punctuated by ‘‘sticky’’ phase locking (red dots).

B. Simulations confirm brief episodes identified as phase locked. C.

Interaction (ts-tr) curves just miss intersecting, so a small amount of

change in the biological period can cause an intersection (and phase

locking) to occur. D. Time course of the unobservable intrinsic

period of the biological neuron during simulations of this

experiment (blue trace). The top dashed line shows the initial (and

mean period) whereas the solid horizontal lines indicate the values

of the period between which an intersection exists in the ts-tr curves.

(PDF)

Figure S4 History dependence of the period without
mean reversion is sufficient to mimic both the hybrid
circuit data and the noise level in the PRC with the same
parameter value. A. Network phase data replotted from Fig. 8A

for experiment 19. B. Time course of the unobservable intrinsic

period of the biological neuron during simulations of this

experiment for s= 0.0123 (magenta trace), s= 0.0453 (blue trace)

and s= 0.3453 (red trace). The simulations used Eq. 2 without the

term containing t, so t was effectively set to infinity.The center

dashed line shows the initial period (but not the mean in this case),

whereas the solid horizontal lines indicate the values of the period

between which an intersection exists in the ts-tr curves (see

Figure 7b). C. Autocorrelation values for the same three s values

as in B. D. Simulation of hybrid network for low noise (D1),

medium noise (D2) and high noise (D3) case. E. Comparison of

experimental (red dots) and representative simulated (blue dots)

PRC measurements with low noise (E1) and medium noise (E2)

and high noise (E3).

(PDF)

Text S1 This supplementary material contains 1) a
detailed explanation of the criteria for identifying phase
slipping and phase-locked episodes, 2) a derivation of
stability for the PRC-based map, and 3) a derivation of
effective standard deviation of the period for noise added
to the PRC.
(PDF)
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