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Abstract

Background—In non-experimental comparative effectiveness research using healthcare 

databases, outcome measurements must be validated to evaluate and potentially adjust for 

misclassification bias. We aimed to validate claims-based myocardial infarction algorithms in a 

Medicaid population using an HIV clinical cohort as the gold standard.

Methods—Medicaid administrative data were obtained for the years 2002–2008 and linked to 

the UNC CFAR HIV Clinical Cohort based on social security number, first name and last name 

and myocardial infarction were adjudicated. Sensitivity, specificity, positive predictive value, and 

negative predictive value were calculated.

Results—There were 1,063 individuals included. Over a median observed time of 2.5 years, 17 

had a myocardial infarction. Specificity ranged from 0.979–0.993 with the highest specificity 

obtained using criteria with the ICD-9 code in the primary and secondary position and a length of 

stay ≥ 3 days. Sensitivity of myocardial infarction ascertainment varied from 0.588–0.824 

depending on algorithm. Conclusion: Specificities of varying claims-based myocardial infarction 

ascertainment criteria are high but small changes impact positive predictive value in a cohort with 

low incidence. Sensitivities vary based on ascertainment criteria. Type of algorithm used should 

be prioritized based on study question and maximization of specific validation parameters that will 

minimize bias while also considering precision.
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Introduction

Large health care databases are useful for conducting non-experimental comparative 

effectiveness research. While not perfect, the population is often closer to ideal than ad hoc 

studies because it is less selected, information on drug exposure in these sources is good for 

prescription drugs in the outpatient setting, the data is generally available, and their large 

sample size provides an opportunity to examine rare outcomes.1 As these data are collected 

primarily for administrative purposes and not for research, however, outcome measurements 

should be validated to quantify or minimize bias due to misclassification.

Measures of accuracy, sensitivity, specificity, positive predictive value (PPV) and negative 

predictive value (NPV) are used to quantify misclassification. Sensitivity and specificity 

generally assess outcome and exposure misclassification while PPV and NPV are most often 

used for population selection. There is a tradeoff between maximizing sensitivity versus 

specificity in comparative effectiveness and safety studies and choice of measure should be 

based on the overarching study question.2 In studies estimating relative effects, specificity is 

the most important outcome misclassification measure because a perfect specificity will lead 

to unbiased relative risk estimates even if sensitivity is low. 3 A high sensitivity allows for 

identification of most events and reduces bias of effect measures on the absolute scale (risk 

difference [RD] or number needed to treat).4 Many validation studies start with a large 

administrative healthcare database where algorithms to define events are validated against a 

gold standard (e.g., medical records). These studies are only able to calculate PPVs and not 

sensitivity and specificity as they do not have access to the gold standard population without 

the event (true negatives).

Observational clinical cohort studies have contributed substantially to our understanding of 

the effectiveness of different antiretroviral treatments for HIV clinical management.5–10 

Similarities and differences between clinical cohort studies and other more traditional 

observational studies (e.g. interval cohorts) have been discussed elsewhere.11 Briefly, 

participants in clinical cohort studies are enrolled as they seek or receive care and the 

medical record is the source for information collected on the participants. Despite their use 

to examine the effect of treatments in a real world setting, these studies may not reach 

adequate person-time of follow-up required to study rare events.

The accuracy of myocardial infarction (MI) ascertainment in administrative healthcare data 

has been assessed; however, most studies only present PPV due to the lack of true negatives 

needed to estimate sensitivity and specificity. 12–17 Further, some validation studies used 

algorithms to identify MI events that may now be outdated due to changes in patient 

treatment as well as healthcare service and reimbursement.15–17 For example, many current 

MI ascertainment algorithms contain a length of stay criteria ≥ 3 days. Analyses of hospital 

discharge records from Minnesota and New England suggest that the median length of stay 

for patients hospitalized with MI is decreasing.18,19 These observations justify a periodic 

reassessment and validation of MI algorithms used for outcome ascertainment as changes 

occur in systems for diagnostic coding, healthcare practices and reimbursement 

policies. 20,21
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By linking clinical cohort data to administrative healthcare data, it is possible to validate 

algorithms defining health outcomes of interest. In this study, we used the UNC HIV CFAR 

Clinical Cohort (UCHCC) study and the North Carolina (NC) Medicaid administrative data, 

to validate different claims-based definitions of MI within an HIV-infected population.

Methods

Study Population

We used the UCHCC and NC Medicaid administrative data for this validation study. The 

UCHCC is a dynamic clinical cohort study initiated in 2000 and includes all HIV-infected 

patients that are ≥18 years of age unless they are unable or unwilling to provide written 

informed consent in English or Spanish. The cohort includes data from different sources 

including existing hospital electronic databases, medical chart abstractions, in-person 

interviews, and data from federal agencies including mortality information. UCHCC 

participants are not seen at exact regular intervals, but rather as indicated by clinical care.

The Medicaid program is a joint state and federally funded program providing healthcare 

benefits to individuals of low income. Individuals qualify based on age, disability, income 

and financial resources.22 The Medicaid data contains health care service reimbursement 

information including doctor visits, hospital care, outpatient visits, treatments, emergency 

use, prescription medications, and diagnoses, procedures and provider information. These 

data also include reimbursement information for Medicaid patients also enrolled in Medicare 

(dually eligible beneficiaries). We included all HIV-infected NC Medicaid beneficiaries and 

those dually eligible beneficiaries ≥ 18 years of age with Medicaid enrollment between 

January 1, 2002 and December 31, 2008. HIV patients were identified in the Medicaid 

administrative data using the following definition: an ICD-9 code of 042 in any position or a 

prescription of any of the 27 FDA approved antiretrovirals between 2002 and 2008. 

Antiretrovirals were identified in the administrative data through National Drug Codes 

(NDC). Patients enrolled both in the UCHCC and Medicaid at any point between 2002 and 

2008 formed the validation sample. For these patients we merged the UCHCC and the 

Medicaid administrative data based on social security number, first and last name.

Validation study mechanics

We synchronized periods of continuous Medicaid eligibility with the UCHCC and included 

all patients in both Medicaid and UCHCC between 2002 and 2008 with at least 30 days of 

observation time in both data sources. Patients contributed observed time from the last of (i) 

January 1, 2002, (ii) entry into the UCHCC or (iii) start of Medicaid enrollment. Patients’ 

time was included until the first of (i) December 31, 2008, (ii) 12 months following the last 

documented CD4 count or HIV RNA measurement in the UCHCC, or (iii) more than 30 

days without Medicaid enrollment. If a patient was lost to HIV care in the UCHCC (i.e. 

more than 12 months without a documented CD4 count or HIV RNA measurement) or lost 

Medicaid coverage for more than 30 days but then reinitiated HIV care or Medicaid 

enrollment, this time at risk was not considered in these analyses. Among patients who died, 

observed time was stopped on the date of death.
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Event definitions

We included all patients that had either a definite or probable MI as defined in the UCHCC 

and Medicaid data sources during the study period. In an initial validation analysis, we 

included the first MI event documented in either the UCHCC or Medicaid occurring during 

the observed period and did not impose any restriction on dates of events when assessing 

validation parameters. In a secondary analysis, we accounted for multiple MI events per 

patient, timing of the event, and length of observed time in each source by creating 

standardized time increments (3,6,12,24 months) within the previously defined observed 

period. In order to maintain synchronicity between data sources and to account for differing 

lengths of follow-up time, if the observed period ended in the middle of the defined 

increment, that observation was not included in the analysis. Time increments were 

determined based on length of continuous follow-up often required for comparative 

effectiveness studies. Due to sample size constraints, we did not consider time increments > 

24 months.

Myocardial Infarction definition—UNC CFAR HIV Clinical Cohort (Gold Standard)

Myocardial infarction events were initially identified in the UCHCC through medical chart 

abstraction and adjudicated by health care personnel. The MI event definition expands upon 

the World Health Organization definition and includes serum markers, ECGs and chest pain 

criteria. 23,24

Myocardial Infarction definition—Medicaid Administrative Claims

As we were interested in validation of incident MI events and most new MI events present 

to the hospital versus an outpatient setting, we used inpatient claims. The administrative data 

included claims for patients enrolled in Medicaid as well as those who were dually eligible 

for Medicaid and Medicare. Our initial MI event definition included a diagnosis code 

(ICD-9-CM) of 410 in the 1st or 2nd position and a length of stay ≥ 3 days as has been used 

in previous validation studies. 15–17 We then used varying algorithms to identify MI events 

to determine the algorithm that would best identify MI events in this population. The 12 

algorithms considered included varying: (i) ICD-9 code 410.xx in 1st or 2nd position, versus 

any position; (ii) length of stay as any number of day, ≥ 1 day, and ≥ 3 days; and (iii) 

inclusion of diagnosis related group (DRG) codes 121, 122 and 123.

Statistical Analysis

We examined basic baseline demographic and clinical characteristics of the NC Medicaid 

population, the UCHCC and the validation sample for the enrollees identified with a MI in 

the gold standard. We then cross-tabulated MI events identified in both cohorts based on the 

definitions outlined above to estimate sensitivity (proportion of true MI events identified in 

Medicaid among all gold standard defined MI events), specificity (proportion of true non-

events identified in Medicaid among all gold standard defined non- events), PPV (proportion 

of true MI events identified in Medicaid among all MI events identified in Medicaid) and 

NPV (proportion of true non-events identified in Medicaid among all non-events identified 

in Medicaid). Exact binomial 95% confidence intervals (CI) quantified the precision around 

each validation measure.25 For our secondary analysis, intercept only generalized estimating 
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equation models with a binomial distribution, independent correlation structure and logit 

link estimated sensitivity and specificity. These characteristics were calculated for the 3, 6, 

12 and 24 month time increments.

Finally, we explored the impact of outcome misclassification on relative risk and absolute 

risk estimates in a hypothetical population of 1,100 individuals, a baseline probability of 

exposure of 0.09 and a risk of MI of 0.1 in the exposed and 0.08 in the unexposed to a 

hypothetical risk factor (true Risk Ratio [RR]: 1.25, true Risk Difference [RD]: 0.02). We 

used sensitivities and specificities estimated from our validation study to calculate the 

expected percent bias in the estimated RR and RD under different definitions of MI 

assuming no misclassification of exposure and non-differential outcome misclassification. 

We used the following equations to calculate the observed RR and RD:

where

a=sensitivity*proportion exposed*risk in exposed + (1-specificity)*proportion 

exposed*(1-risk in exposed)

b=(1-sensitivity)*proportion exposed*risk in exposed + specificity*proportion 

exposed*(1-risk in exposed)

c=sensitivity*(1-proportion exposed)*incidence in the unexposed + (1-specificity)*(1- 

proportion exposed)*(1-risk in unexposed)

d=(1-sensitivity)*(1-proportion exposed)*incidence in the unexposed + specificity*(1-

proportion exposed)*(1-risk in unexposed)

We quantified the percent bias for both the RR and RD using the following equation:

All analyses were conducted using SAS version 9.2 or Intercooled Stata11. The study was 

approved by the [REDACTED FOR BLINDING] on the Protection of the Rights of Human 

Subjects.

Results

Between 2002 and 2008 there were 1,134,986 NC Medicaid beneficiaries ≥ 18 years of age 

of whom 13,006 patients were HIV-infected based on an ICD-9 or antiretroviral use criteria. 

Of 2,340 HIV-infected patients in the UCHCC who received care between 2002 and 2008, 

1,204 patients were also Medicaid beneficiaries. There were 141 UCHCC and Medicaid 

beneficiaries that were not included as they either did not have sufficient follow-up time in 

either data source or the period of Medicaid eligibility did not overlap with follow-up time 

in the UCHCC, leaving 1,063 patients included in the validation sample. (Figure 1) The 

median length of observed time for the validation population was 2.5 years (Interquartile 
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Range: 0.9, 4.7; Full range: 0.2, 7.0). The distribution of most demographic and clinical 

characteristics of the overall Medicaid population, UCHCC and validation sample were 

similar. (Table 1) The overall Medicaid population and validation sample had a greater 

proportion of black, women and younger patients when compared to the UCHCC while the 

validation sample had a larger proportion of intravenous drug users. Clinically, patients 

included in the validation sample had similar log HIV RNA and CD4 cell counts at entry 

into care at UNC. In the validation sample, 17 patients had a MI event that occurred during 

their observation period and there were 19 total MI events.

The validation test characteristics comparing MI events in the UCHCC with those identified 

in the Medicaid data using varying algorithms are displayed in table 2. The current most 

frequent algorithm used to identify MI events in administrative data, ICD-9 code in the 1st or 

2nd position and a length of stay ≥ 3 days, resulted in a calculated sensitivity of 0.588 (95% 

CI: 0.329, 0.816) and a specificity of 0.994 (95% CI: 0.988, 0.998). Removing the length of 

stay criteria increased sensitivity to 0.647 (95% CI: 0.383, 0.857) and decreased specificity 

to 0.988 (95% CI: 0.980, 0.994). The position of the diagnosis code also influenced 

validation parameters. Allowing the ICD 9-code 410 to be present in any of the nine ICD-9 

code positions while keeping the ≥ 3 day length of stay requirement increased the sensitivity 

of MI identification to 0.765 (95% CI: 0.501, 0.932). Removing the position and length of 

stay requirement resulted in the highest sensitivity and lowest specificity of event 

ascertainment (Sensitivity=0.823 [95% CI: 0.566, 0.962]; Specificity=0.982 [95% CI: 0.972, 

0.999]). Overall PPVs were low for all of the algorithms explored (Range: 0.438–0.625) 

while NPVs remained consistently high (0.993–0.997). The addition of DRG codes 121, 

122, 123 did not appreciably change validation parameters (data not shown).

We also examined the effect of length of observation, timing of events as well as multiple 

MI events per patient. For this analysis we used the most commonly used MI ascertainment 

criteria in the literature (ICD-9 code in 1st or 2nd position and a length of stay ≥ 3 days). 

Since we required the entire length of time for each time increment, the number of unique 

patients included decreased as increments increased from 3 to 24 months (1,007 patients to 

598 patients respectively). When allowing for a 24 month increment of observed time, 

sensitivity and specificity measurements were similar to those in the first validation analysis 

(Sensitivity=0.538 [95% CI: 0.268, 0.788]; Specificity=0.998 [95% CI: 0.993, 0.999]). 

Sensitivity was lowest when allowing for only a three month period of eligibility for the 

event to occur in both data sources (0.444 [95% CI: 0.250, 0.658]), and increased for the 6 

and 12 month incremental periods (0.516 [95% CI: 0.314, 0.713] and 0.600 [95% CI: 0.338, 

0.815] respectively). (Figure 2) A similar relationship between length of observed time and 

sensitivity and specificity was observed for the other MI algorithms. For all algorithms, the 

maximum sensitivity was observed when the standardized 12 month time increment was 

used (data not shown).

Table 3 displays the effect of outcome misclassification in a hypothetical population using 

sensitivity and specificity measures from the following algorithms: 1) ICD-9 code 410 in the 

1st or 2nd position and length of stay ≥ 3 days 2) ICD-9 code 410 in 1st or 2nd position and a 

length of stay ≥ 1 day and 3) ICD-9 code 410 in any position and any length of stay. Given a 

population of 1,100 individuals, a baseline probability of exposure to a hypothetical risk 
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factor of 0.09 and a risk of MI of 0.1 in the exposed and 0.08 in the unexposed (true RR: 

1.25, true RD: 0.02); a sensitivity of 0.588 and a specificity of 0.994 will result in an 

observed RR of 1.21 and an observed RD of 0.015. A sensitivity of 0.824 and a specificity 

of 0.982 would result in a RR of 1.10 and a RD of 0.009. An assessment of bias reveals that 

the percent bias is highest for both relative and absolute measures when specificity is the 

lowest.

Discussion

We examined sensitivity, specificity, PPV and NPV of various algorithms to identify MI 

events among HIV-infected individuals enrolled in the NC Medicaid program relying on 

events adjudicated in the UCHCC as the gold standard. We found that using our best 

algorithm for relative effect measures, we achieved a specificity of 0.994 translating to a 

bias of around 11% based on plausible parameter values for a study of antiretrovirals on risk 

of MI using administrative healthcare data. In general specificity measures using all 

ascertainment algorithms were high (0.982–0.994), however, even small deviations in 

specificity increased bias of effect measures.

Compared to other studies, the sensitivity of a commonly used algorithm to identify MIs 

(ICD-9 code 410 in the 1st or 2nd position and length of stay ≥ 3 days), was low in our study 

(0.59). Other studies reported sensitivities ranging from 0.65–0.83.13,26 The observed 

sensitivities may be explained by our study population and ICD-9 code position. HIV 

patients are often admitted to the hospital for HIV-related and general medical comorbidities 

and an MI event occurring during a hospital stay may not get coded in the 1st or 2nd ICD-9 

code position. Therefore, an expansion of the criteria to include all ICD-9 code positions 

would increase the sensitivity of the ascertainment criteria as we observed. Rosamond et al. 

noted that sensitivities of ICD-9 code 410 also have declined over time; in part due to 

changes in diagnostic practices and the use of differing algorithms for defining MI in the 

gold standard. 27

We investigated other diagnoses in the Medicaid data or the UCHCC for patients that 

remained misclassified despite the use of the most sensitive or most specific algorithms 

(three false negatives and six false positives respectively). Using the most sensitive 

algorithm, three patients had a MI in the gold standard. Two of these patients had ICD-9 

codes for non-MI, cardiovascular related conditions, on or around the diagnosis date 

identified by the gold standard (unspecified chest pain and precordial pain; coronary 

atherosclerosis of native coronary artery). The third patient did not have any ICD-9 codes 

related to cardiovascular disease conditions coded on or around the date of diagnosis in the 

UCHCC. Using the most specific algorithm, there were six patients with a claim for a MI in 

the administrative data that did not have an MI in the UCHCC. Five out of six of these 

patients did have other, non-MI, cardiovascular related conditions in the UCHCC. The sixth 

patient did not have any cardiovascular conditions noted but did have a history of drug 

abuse.

We also addressed the impact of varying lengths of observed time, timing of events, and 

multiple MI events on ascertainment criteria performance. Sensitivity was lowest for the 
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shortest time increment indicating that dates recorded for events in the Medicaid data were 

not the same as dates recorded in the UCHCC. Sensitivities for the 6 and 12 month intervals 

were similar to those calculated in the first validation study. The decrease in sensitivity for 

the 24 month time frame was likely due to the reduction in number of patients with at least 

24 months of observed time for analysis. These results suggest that a requirement for a full 

12 months of eligibility in Medicaid may maximize the sensitivity of claims-based MI 

identification algorithm.

Positive predictive values calculated using the differing MI ascertainment algorithms in our 

study were substantially lower than values obtained from previous studies (0.93–

0.97). 12,15–17 These results are likely due to the low prevalence of MI in this population. 

However, while PPV is an important measure for some research questions, this measure has 

less importance in the context of comparative effectiveness research. Nevertheless, the low 

PPVs suggest that the administrative healthcare data used here may not be ideal for the 

selection of a study cohort.

Chubak et al. and Setoguchi et al. explored bias related to outcome misclassification in a 

hypothetical population (Chubak) and a Medicare population (Setoguchi). 28,29 Their results 

quantified outcome misclassification bias on a relative scale, but did not address 

misclassification bias on an absolute scale. Often absolute measures, like the RD, are used in 

comparative safety and effectiveness studies; therefore addressing the impact of less than 

perfect specificity and sensitivity on both types of effect measures is warranted. In our 

hypothetical example, as expected, deviations from perfect specificity led to biased results 

on the relative scale while increases in sensitivity decreased bias on the absolute scale. 

However, both sensitivity and specificity influenced absolute measures. While a perfect 

specificity decreases the bias of relative effect measures, the reduction of the number of 

cases identified may decrease precision around estimates substantially. Therefore, the choice 

of ascertainment algorithm used should be prioritized based on the study question, using the 

specific validation parameter that will minimize bias while maximizing precision. For this 

HIV Medicaid population, it may be important to use an algorithm that expands the ICD-9 

code position requirement to maximize sensitivity with minimal decreases in specificity.

Our study has limitations. The number of events obtained for validation was low which 

influenced the precision around our measurements. Further, we intentionally conducted this 

study in a Medicaid HIV population limiting the generalizability of these algorithms to other 

populations or data sources. Despite these limitations, our study has important implications. 

Since this population includes patients seeking care throughout the state of NC, we will be 

able to examine the effects of antiretrovirals on MI in a more generalized population. Each 

ascertainment algorithm had relatively high specificity and can be used to conduct 

comparative effectiveness studies examining the relationship between antiretroviral use and 

MI outcomes in the NC Medicaid population. Finally, the measures of validity reported here 

may be used by other researchers to assess the role of outcome misclassification in studies 

using administrative healthcare databases.

Brouwer et al. Page 8

Med Care. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

The authors would like to thank Drs. Charles Poole, Michelle Jonsson Funk, and William Miller for their assistance 
with the preparation of this manuscript.

Grant Support: This project was supported in part by grants M01RR00046 and UL1RR025747 from the National 
Center of Research Resources, National Institutes of Health and the BIRCWH grant (#K12 DA035150) from 
OWHR, NIDA and the NIH. The project was also supported by National Institutes of Health grants P30 AI590410 
and R01 AG023178 as well as the Agency for Healthcare Research and Quality grant R01 HS018731

References

1. Sturmer T, Jonsson Funk M, Poole C, Brookhart MA. Nonexperimental comparative effectiveness 
research using linked healthcare databases. Epidemiology. May; 2011 22(3):298–301. [PubMed: 
21464649] 

2. Kleinbaum, D.; Kupper, L.; Muller, K.; Nizam, A. Applied regression analysis and other 
multivariable methods. 3. Pacific Grove, CA: International Thomson Publishing Company; 1998. 

3. Solomon DH, Glynn RJ, Rothman KJ, et al. Subgroup analyses to determine cardiovascular risk 
associated with nonsteroidal antiinflammatory drugs and coxibs in specific patient groups. Arthritis 
Rheum. Aug 15; 2008 59(8):1097–1104. [PubMed: 18668605] 

4. Rothman, K.; Greenland, S. Modern Epidemiology. 2. Lippincott Williams & Wilkins; 1998. 

5. Sabin CA, Worm SW, Weber R, et al. Use of nucleoside reverse transcriptase inhibitors and risk of 
myocardial infarction in HIV-infected patients enrolled in the D:A:D study: a multi-cohort 
collaboration. Lancet. Apr 26; 2008 371(9622):1417–1426. [PubMed: 18387667] 

6. Friis-Moller N, Reiss P, Sabin CA, et al. Class of antiretroviral drugs and the risk of myocardial 
infarction. The New England journal of medicine. Apr 26; 2007 356(17):1723–1735. [PubMed: 
17460226] 

7. Weber R, Sabin CA, Friis-Moller N, et al. Liver-related deaths in persons infected with the human 
immunodeficiency virus: the D:A:D study. Archives of internal medicine. Aug 14–28; 2006 
166(15):1632–1641. [PubMed: 16908797] 

8. d’Arminio A, Sabin CA, Phillips AN, et al. Cardio- and cerebrovascular events in HIV-infected 
persons. Aids. Sep 3; 2004 18(13):1811–1817. [PubMed: 15316342] 

9. Althoff KN, Justice AC, Gange SJ, et al. Virologic and immunologic response to HAART, by age 
and regimen class. AIDS. Oct 23; 2010 24(16):2469–2479. [PubMed: 20829678] 

10. Crane HM, Grunfeld C, Willig JH, et al. Impact of NRTIs on lipid levels among a large HIV-
infected cohort initiating antiretroviral therapy in clinical care. AIDS. Jan 14; 2011 25(2):185–195. 
[PubMed: 21150555] 

11. Lau B, Gange SJ, Moore RD. Risk of non-AIDS-related mortality may exceed risk of AIDS-
related mortality among individuals enrolling into care with CD4+ counts greater than 200 cells/
mm3. J Acquir Immune Defic Syndr. Feb 1; 2007 44(2):179–187. [PubMed: 17075385] 

12. Varas-Lorenzo C, Castellsague J, Stang MR, Tomas L, Aguado J, Perez-Gutthann S. Positive 
predictive value of ICD-9 codes 410 and 411 in the identification of cases of acute coronary 
syndromes in the Saskatchewan Hospital automated database. Pharmacoepidemiology and drug 
safety. Aug; 2008 17(8):842–852. [PubMed: 18498081] 

13. Pladevall M, Goff DC, Nichaman MZ, et al. An assessment of the validity of ICD Code 410 to 
identify hospital admissions for myocardial infarction: The Corpus Christi Heart Project. 
International journal of epidemiology. Oct; 1996 25(5):948–952. [PubMed: 8921479] 

14. Chambless LE, Toole JF, Nieto FJ, Rosamond W, Paton C. Association between symptoms 
reported in a population questionnaire and future ischemic stroke: the ARIC study. 
Neuroepidemiology. Jan-Apr;2004 23(1–2):33–37. [PubMed: 14739565] 

15. Kiyota Y, Schneeweiss S, Glynn RJ, Cannuscio CC, Avorn J, Solomon DH. Accuracy of Medicare 
claims-based diagnosis of acute myocardial infarction: estimating positive predictive value on the 
basis of review of hospital records. American heart journal. Jul; 2004 148(1):99–104. [PubMed: 
15215798] 

Brouwer et al. Page 9

Med Care. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



16. Petersen LA, Wright S, Normand SL, Daley J. Positive predictive value of the diagnosis of acute 
myocardial infarction in an administrative database. Journal of general internal medicine. Sep; 
1999 14(9):555–558. [PubMed: 10491245] 

17. Choma NN, Griffin MR, Huang RL, et al. An algorithm to identify incident myocardial infarction 
using Medicaid data. Pharmacoepidemiology and drug safety. Nov; 2009 18(11):1064–1071. 
[PubMed: 19718697] 

18. Berger AK, Duval S, Jacobs DR Jr, et al. Relation of Length of Hospital Stay in Acute Myocardial 
Infarction to Postdischarge Mortality. The American journal of cardiology. 2008; 101(4):428–434. 
[PubMed: 18312752] 

19. Saczynski JS, Lessard D, Spencer FA, et al. Declining Length of Stay for Patients Hospitalized 
with AMI: Impact on Mortality and Readmissions. Am J Med. Nov; 2010 123(11):1007–1015. 
[PubMed: 21035590] 

20. Benchimol EI, Manuel DG, To T, Griffiths AM, Rabeneck L, Guttmann A. Development and use 
of reporting guidelines for assessing the quality of validation studies of health administrative data. 
Journal of clinical epidemiology. Aug; 2011 64(8):821–829. [PubMed: 21194889] 

21. De Coster C, Quan H, Finlayson A, et al. Identifying priorities in methodological research using 
ICD-9-CM and ICD-10 administrative data: report from an international consortium. BMC health 
services research. 2006; 6:77. [PubMed: 16776836] 

22. Prela CM, Baumgardner GA, Reiber GE, et al. Challenges in merging Medicaid and Medicare 
databases to obtain healthcare costs for dual-eligible beneficiaries: using diabetes as an example. 
Pharmaco Economics. 2009; 27(2):167–177.

23. Bild DE, Bluemke DA, Burke GL, et al. Multi-ethnic study of atherosclerosis: objectives and 
design. American journal of epidemiology. Nov 1; 2002 156(9):871–881. [PubMed: 12397006] 

24. Crane, HM.; Paramsothy, P.; Rodriguez, C., et al. Primary versus secondary myocardial infarction 
events among HIV-infected individuals in the CNICS cohort. 19th Conference on Retroviruses 
and Opportunistic Infections; Seattle, WA. 2012. 

25. Rosner, B. Fundamentals of Biostatistics. 4. Belmont: Duxbury Press; 1995. 

26. Rosamond WD, Chambless LE, Sorlie PD, et al. Trends in the sensitivity, positive predictive 
value, false-positive rate, and comparability ratio of hospital discharge diagnosis codes for acute 
myocardial infarction in four US communities, 1987–2000. American journal of epidemiology. 
Dec 15; 2004 160(12):1137–1146. [PubMed: 15583364] 

27. Rosamond W. Are migraine and coronary heart disease associated? An epidemiologic review. 
Headache. May; 2004 44( Suppl 1):S5–12. [PubMed: 15149488] 

28. Chubak J, Pocobelli G, Weiss NS. Tradeoffs between accuracy measures for electronic health care 
data algorithms. Journal of clinical epidemiology. Mar; 2012 65(3):343–349. e342. [PubMed: 
22197520] 

29. Setoguchi S, Solomon DH, Glynn RJ, Cook EF, Levin R, Schneeweiss S. Agreement of diagnosis 
and its date for hematologic malignancies and solid tumors between medicare claims and cancer 
registry data. Cancer causes & control: CCC. Jun; 2007 18(5):561–569. [PubMed: 17447148] 

Brouwer et al. Page 10

Med Care. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Generation of the sample population used to validate myocardial infarction outcomes 

ascertained from the North Carolina Medicaid Administrative Data. The North Carolina 

Medicaid data was linked to the UNC CFAR HIV Clinical Cohort (UCHCC) study via 

social security number, last name and first name.
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Figure 2. 
Sensitivity and false positive rate for claims-based identification of myocardial infarctions 

allowing for varying periods of continuous eligibility (3, 6, 12, 24 months). Myocardial 

infarction events were identified by ICD-9 code 410 in the 1st or 2nd position and a length of 

stay ≥ 3 days.
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Table 1

Clinical and socio-demographic characteristics of Medicaid, UNC HIV Clinical Cohort and Validation Sample 

populations

Medicaid
N=13,006 n(%)

UCHCC
N=2,340 (%) n (%)

Validation Sample
N=1,063 n (%)

Gender

 Female 5,918 (45.5) 706 (30.2) 437 (41.1)

Age at UCHCC/Medicaid entry, years

 <40 5,505 (42.3) 1,259 (53.8) 541 (50.9)

 40–50 4,699 (35.1) 783 (33.5) 389 (36.6)

 >50 2,802 (21.5) 298 (12.7) 133 (12.5)

Race

 White 2,740 (21.1) 738 (31.5) 229 (21.5)

 Black 9,221 (71.0) 1,369 (58.5) 757 (71.2)

 Hispanic 0 (0.0) 138 (5.9) 22 (2.1)

 Asian 68 (0.5) * 0 (0.0)

 Native American/Pacific Islander 169 (1.3) 42 (1.8) 32 (3.0)

 Other 0 (0.0) 48 (2.1) 22 (2.1)

 Unknown 808 (6.0) * *

Insurance at UCHCC entry

 Medicaid NA 572 (24.5) 475 (44.7)

 Medicare NA 133 (5.7) 54 (5.1)

 Other Public Insurance NA 149 (6.4) 71 (6.7)

 Private NA 630 (27.0) 117 (11.0)

 No Insurance NA 849 (36.3) 344 (32.4)

Men who have sex with Men (MSM)

 Yes NA 914 (39.1) 263 (24.7)

Intravenous Drug User (IDU)

 Yes NA 338 (14.0) 235 (22.1)

CD4 count (cells/μL) most proximal to UCHCC entry (median, IQR)† NA 310 (104, 507) 280 (73, 483)

log HIV RNA (copies/mL) most proximal to UCHCC entry (median, 
IQR)††

NA 4.4 (3.2, 5.0) 4.4 (3.4, 5.1)

*
Cell counts < 11 not displayed

**
<0.01 percent missing values for insurance status in the UCHCC and validation cohort respectively

†
<0.01 percent missing CD4 count values for UCHCC and the validation cohort respectively.

††
<0.01 percent missing log HIV RNA values for UCHCC and the validation cohort respectively.
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