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Background: A cytoplasmic PAS domain regulates Kv11.1 function, but its role in channel assembly is unclear.
Results: PAS domain deletion does not alter assembly, but removal of the N-Cap that immediately precedes the PAS domain
severely disrupts channel trafficking.
Conclusion: The N-Cap is vital for PAS domain stability and channel trafficking.
Significance: Kv11.1 channel assembly defects underlie the pathogenesis of long QT syndrome.

The N-terminal cytoplasmic region of the Kv11.1a potassium
channel contains a Per-Arnt-Sim (PAS) domain that is essential
for the unique slow deactivation gating kinetics of the channel.
The PAS domain has also been implicated in the assembly and
stabilization of the assembled tetrameric channel, with many
clinical mutants in the PAS domain resulting in reduced stabil-
ity of the domain and reduced trafficking. Here, we use quanti-
tative Western blotting to show that the PAS domain is not
required for normal channel trafficking nor for subunit-subunit
interactions, and it is not necessary for stabilizing assembled
channels. However, when the PAS domain is present, the N-Cap
amphipathic helix must also be present for channels to traffic to
the cell membrane. Serine scan mutagenesis of the N-Cap
amphipathic helix identified Leu-15, Ile-18, and Ile-19 as resi-
dues critical for the stabilization of full-length proteins when
the PAS domain is present. Furthermore, mutant cycle analysis
experiments support recent crystallography studies, indicating
that the hydrophobic face of the N-Cap amphipathic helix inter-
acts with a surface-exposed hydrophobic patch on the core of
the PAS domain to stabilize the structure of this critical gating
domain. Our data demonstrate that the N-Cap amphipathic
helix is critical for channel stability and trafficking.

Kv11.1, often referred to as the human ether-a-go-go-related
gene K� channel, encodes the rapid component of the delayed
rectifier potassium channel, IKr. There are at least three alter-
natively spliced isoforms of Kv11.1, denoted Kv11.1a, Kv11.1b,
and Kv11.1–3.1 (1). Kv11.1 is an important repolarizing chan-
nel in a wide range of tissues but most notably in the heart
where Kv11.1a and Kv11.1b are the predominant isoforms
expressed (1). Mutations in KCNH2, which encodes the Kv11.1

protein, result in congenital long QT syndrome type 2 (LQT2)2

(2). LQT2 is associated with an increased risk of ventricular
arrhythmia and sudden cardiac death often at a young age (3, 4).
The majority of LQT2-associated missense mutations cause
protein trafficking defects (5). There has therefore been consid-
erable interest in understanding the mechanisms by which mis-
sense mutations result in reduced Kv11.1 trafficking, not just to
gain insights into clinical genotype-phenotype relationships (6)
but also to further understand the mechanisms of channel fold-
ing and assembly.

Like other voltage-gated K� channels, Kv11.1 channels
assemble as tetramers with each subunit containing cytoplas-
mic N- and C-terminal regions and a transmembrane region.
The transmembrane region contains the voltage sensor (trans-
membrane helices 1– 4) and pore (transmembrane helices 5– 6,
along with an intervening pore loop region) domains (Fig. 1A).
In Kv11.1a channels, the N-terminal cytoplasmic region con-
tains a PAS domain (residues 1–135), which has a very similar
overall structure to PAS domains in other proteins (7). The
Kv11.1a PAS domain contains an N-terminal Cap (residues
1–25), the PAS core (residues 26 –75), a connector helix (resi-
dues 76 – 87), and a �-scaffold region (residues 88 –135). There
is very little known about the structure of the remainder of the
N-terminal region (proximal N terminus, residues 136 – 405).
The C-terminal region contains a cyclic nucleotide-binding
homology domain (residues 748 – 865), which is connected to
the transmembrane region via a structured domain usually
referred to as the C-linker (residues 667–744). The cytoplasmic
domains fine-tune channel gating (8, 9) and play a role in
assembly and structural stability of the channels (10 –12).

In the original x-ray crystal structure of the Kv11.1a PAS
domain, the N-Cap was not sufficiently well ordered for its
structure to be determined (9). Subsequent NMR studies from a
number of laboratories have shown that the N-Cap contains an
amphipathic helix (N-Cap helix, residues 13–23) and a flexible
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N-terminal tail (N-tail, residues 1–12) (13–15). More recently,
using a construct in which the flexible N-terminal tail was
deleted, Morais-Cabral and co-workers (26) showed that the
N-Cap helix can fold back and interact with a surface-exposed
hydrophobic patch on the remainder of the PAS domain. In
numerous previous studies, it had been suggested that the
hydrophobic patch on the surface of the PAS domain was
important for domain-domain interactions (9, 16, 17), and it
had also been suggested that it may interact with the cNBH
domain in the cytoplasmic C terminus (18). Consistent with
this hypothesis, Zagotta and co-workers (10) recently showed,
using x-ray crystallography, that the interaction between the
PAS and cNBH domains from the murine Kv10.1 channel pro-
tein (a closely related homologue of Kv11.1) involved the sur-
face-exposed hydrophobic patches on the PAS and cNBH
domains as well as the amphipathic N-Cap helix of the PAS
domain.

The Kv11.1a PAS domain is a hot spot for clinical mutations
that result in reduced stability of the isolated PAS domain and
decreased trafficking of the full-length channel (17, 19). This is
consistent with the hypothesis that the PAS domain plays an
important role in channel assembly and/or stability of channels
once they reach the plasma membrane. An alternatively spliced
isoform, Kv11.1b, which lacks the PAS domain and a large pro-
portion of the proximal N-terminal cytoplasmic region, also
has impaired trafficking to the plasma membrane (20). More
recently, another Kv11.1 isoform, denoted Kv11.1–3.1, that is
missing the first 102 residues of the PAS domain (and therefore
does not contain a folded PAS domain) has been described (see
Fig. 1A) (21). As is the case for the Kv11.1b isoform (20), it
is possible to record currents from Kv11.1–3.1 channels
expressed alone in mammalian cells (21, 22), although the cur-
rent densities are low. Thus, it is likely that the Kv11.1–3.1 has
a reduced trafficking phenotype, but this has not been formally
demonstrated. Nevertheless, the observation that currents can
be recorded from Kv11.1–3.1 channels expressed alone at the
very least suggests that an intact PAS domain may not be essen-
tial for stable assembly of Kv11.1 tetramers. The aim of this
study was to test whether the PAS domain was critical for chan-
nel assembly and trafficking to the cell membrane. Here, we
demonstrate that the PAS domain of Kv11.1a is not a prerequi-
site for the assembly or tetramerization of channels, nor is it
required for trafficking of channels to the cell membrane. How-
ever, if the PAS domain is present, then the N-Cap is necessary
for stabilizing the structure of the PAS domain and hence traf-
ficking of Kv11.1a channels.

EXPERIMENTAL PROCEDURES

Molecular Biology—Expression and purification of recombi-
nant Kv11.1 PAS domain proteins in bacteria were previously
described in Ref. 13. A plasmid construct expressing full-length
Kv11.1a with a C-terminal FLAG tag or HA tag in pIRES2eGFP
(Clontech) has been previously described (23). Missense muta-
tions in Kv11.1a were introduced by site-directed mutagenesis
as described previously (17). Kv11.1b, Kv11.1–3.1, and N-ter-
minally truncated Kv11.1a constructs were prepared by PCR
cloning in pIRES2eGFP. Constructs were confirmed by auto-
mated Sanger sequencing.

Cell Culture and Transfections—Cell culture and transient
transfection of the human embryonic kidney cell line (HEK293,
European Cell Culture Collections) were previously described
(17). In brief, liposome-based transfection reagent Lipo-
fectamine 2000 (Invitrogen) was used to deliver plasmids into
the cells. Cells were grown and transfected in 24-well plates and
harvested at 48 h after transfection. To investigate the effect of
lower temperature on Kv11.1 trafficking, transfected cells were
incubated for 16 –18 h at 27.5 °C before harvesting. In some
experiments, cisapride (10 �M, a Kv11.1 channel pore-blocker)
was added to the cell culture media 42 h before harvesting.
Stock solutions of cisapride were prepared in DMSO. The final
concentration of DMSO in the cell culture media was less than
0.1%. To determine the half-lives of cell surface Kv11.1a chan-
nels, cells were incubated in brefeldin A (17) to prevent forward
trafficking from the Golgi apparatus, and the rate of degrada-
tion of protein at the cell surface was assayed by Western blot-
ting as described below.

SDS-PAGE and Western Blot—Cell lysates of HEK293 cells
transfected with Kv11.1a cNDAs were prepared for Western
blot analysis as described previously (17). One aliquot of the cell
lysates was scanned for eGFP activity (encoded by the
pIRES2eGFP vector) on a PherastarTM multiwell plate reader
(BMG LabTech, Melbourne, Victoria, Australia). Expression of
eGFP in the cell lysates was used to normalize variations in
transfection efficiencies of different Kv11.1 constructs. For
quantitative Western blot analysis, the nitrocellulose mem-
branes were probed simultaneously with a monoclonal anti-HA
antibody (Covance, Princeton, NJ) and an anti-�-actinin or
�-actin antibody (Cell Signaling Technology, Danvers, MA)
followed by anti-mouse IRDye800 or IRDye680 (Li-Cor Bio-
technology, Lincoln, NE) and scanned on a Li-Cor OdysseyTM

system. The Odyssey application software (version 3) was used
to quantify relevant protein bands with �-actinin or �-actin
used as loading controls. For nonquantitative analysis, the
membranes were probed with horseradish peroxidase (HRP)-
conjugated anti-HA (HA-HRP, Sigma) or anti-FLAG antibody
(FLAG-HRP, Sigma).

Double Mutant Cycle Analysis—To investigate whether pairs
of residues were energetically coupled, we calculated whether
the perturbation to trafficking caused by individual mutations
(�Tx and �Ty) was additive when combined in the double
mutant (�Txy). Additive effects in the double mutant (i.e.
�Txy � �Tx � �Ty) would indicate a lack of energetic coupling,
whereas nonadditive double mutants indicate an energetic
interaction (24). To quantify the assembly of channels, the level
of fully glycosylated protein was normalized for cell density
(estimated from level of actinin expression) as well as transfec-
tion efficiency (estimated from the level of eGFP expression).
As the difference in free energy between two end states is pro-
portional to the logarithm of the equilibrium constant, we esti-
mated the perturbation caused by a mutation as shown in
Equation 1,

�Tx � ln(FGx�FGWT) (Eq. 1)

Proteinase K Digest of Cell Surface Kv11.1—Proteinase K
digest of Kv11.1 proteins present at the surface of HEK293 cells
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has been described previously (17). In brief, transfected cells
were incubated with 200 �g/ml proteinase K (Roche Applied
Science) for 45 min at 37 °C and subsequently lysed for Western
blot analysis after inactivating and removing proteinase K from
the cells.

Coimmunoprecipitation—Kv11.1a or -1b constructs were
tagged with a FLAG epitope (DYKDDDDK), and Kv11.1 con-
structs for immunoprecipitation were tagged with an HA epitope
(YPYDVPDYA), and experiments performed as described previ-
ously (17).

Estimation of Molecular Mass—PAS domain proteins were
expressed and purified as described previously (17). To deter-
mine the molecular mass of WT and mutant PAS domain con-
structs, we loaded the proteins onto a Superdex 75 10/300GL
column (equilibrated with 10 mM HEPES, 150 mM NaCl, 3 mM

tris(2-carboxyethyl)phosphine, and 5 mM n-octyl-�-D-glucopy-
ranoside, pH 6.9) with a flow rate of 0.5 ml/min at room tem-
perature. Light scattering, UV light, and refractive index mea-
surements were made on the eluted proteins using either a
Viscotek TDAmax (Malvern Instruments, Malvern, UK) or a
Mini DAWN Treos (Wyatt Technology Corp., Santa Barbara,
CA) system. Data were analyzed using either the OmniSEC
(Malvern Instruments) or the Astra V (Wyatt Technology
Corp.) software packages.

Thermal Shift Assay of Purified Human Ether-a-Go-Go
Related Gene N-terminal Domain Proteins—Thermal shift
assay to determine in vitro thermostability of recombinant
Kv11.1 PAS proteins has been described previously (17). In
brief, 4 �g of protein was mixed with SYPRO Orange (Molec-
ular Probes Inc., Eugene, OR), and the samples were heated
from 30 to 95 °C at a rate of 1 °C per min. Protein thermal
unfolding curves were monitored by detection of changes in
fluorescence of the SYPRO Orange. The melting temperature
of WT and mutant PAS domain proteins (Tm) was determined
by taking the temperature at which the relative fluorescence
unit reached 50% of the maximum.

Statistical Analysis—All data were analyzed using GraphPad
Prism version 6 (GraphPad Software Inc, San Diego). Data are
presented as mean � S.E. Statistical comparisons were carried
out using a one-way analysis of variance followed by a Bonfer-
roni unpaired t test. A p value of �0.05 was considered
significant.

RESULTS

PAS Domain Is Not Required for Trafficking, Assembly, or
Stability of Kv11.1 Channels—Transfection of HEK293 cells
with full-length Kv11.1a gives rise to two bands on Western
blot, one at �135 kDa, which represents the core-glycosylated
protein, and another at �155 kDa, which represents the fully
glycosylated (FG) protein (Fig. 1B). Incubation of intact
Kv11.1a-expressing cells with proteinase K resulted in the loss
of the higher molecular weight band, indicating that this band
represents protein at the cell surface (Fig. 1C). In contrast to the
full-length Kv11.1a protein, the entire N-terminal truncated
isoform, Kv11.1b, or the partial PAS domain truncated isoform,
Kv11.1–3.1, gave rise to a prominent lower band (at �95 and
�125 kDa, respectively) associated with the core-glycosylated
protein but only faint higher molecular weight bands (at �115

and �140 kDa, respectively, Fig. 1B) associated with the fully
glycosylated forms, indicating that these truncated proteins do
not make it to the membrane surface. Conversely, when cells
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FIGURE 1. Effect of N-terminal deletions on trafficking of Kv11.1 channels. A,
schematic diagrams of Kv11.1a monomers highlighting the N-terminal PAS
domain (gray) and the C-linker and cyclic nucleotide binding homology domain
(cNBHD, black). Scissors in panel i indicate site of deletion for the �2–135 con-
struct. Panel ii illustrates alternatively spliced Kv11.1 isoforms. Kv11.1–3.1 starts
midway through the PAS domain, and Kv11.1b is missing the first 373 amino
acids, which are replaced by an alternative exon containing 33 amino acids. B,
Western blots of whole cell lysates from HEK293 cells expressing Kv11.1a or -1b
with C-terminal HA tag (panel i), Kv11.1a or Kv11.1–3.1 (panel ii), and Kv11.1a or
�2–135 (panel iii) channels. Proteins were probed with anti-HA antibody and IRDye-
conjugated secondary antibody for detection on a Li-Cor OdysseyTM system. �-Ac-
tinin (act) was probed simultaneously as an internal control for equal loading of sam-
ples. Molecular mass markers are indicated in kDa. One aliquot of cell lysates was
scanned for expression of eGFP, which was used to normalize variations in transfec-
tion efficiency between experiments. Panel iv, summarizes the relative levels of
expression of fully glycosylated proteins (FG/actinin/eGFP) normalized against the
level forKv11.1a(mean�S.E.,n�3).Therewasasignificant increaseinexpressionof
FG/actinin/eGFP for �2–135 compared with Kv11.1a but significant decreases in
expression for Kv11.1b and Kv11.1–3.1 (* indicates p � 0.05). Dashed line indicates
levelofKv11.1aexpression.C,Westernblotoflysatesfromintactcellstransfectedwith
Kv11.1a or �2–135 proteins treated with (�) or without (�) proteinase K (PK). The
arrow indicates a C-terminal fragment of Kv11.1a generated by proteinase K digest.
Molecular mass markers are indicated in kDa. Similar results were obtained for three
independent experiments.
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were transfected with constructs lacking just the entire PAS
domain (�2–135 channels), there was again two clear bands, at
�120 and 140 kDa (Fig. 1B), the largest of which was removed
by treatment with proteinase K (Fig. 1C). Thus, deletion of the
PAS domain does not by itself reduce trafficking of the channel
protein to the membrane surface.

Kv11.1a, �2–135-Kv11.1a, Kv11.1b, and Kv11.1–3.1 chan-
nels were all able to coimmunoprecipitate with coexpressed
Kv11.1a or Kv11.1b in HEK293 cells (Fig. 2). Furthermore,
�2–135 Kv11.1a was able to restore trafficking of the Kv11.1b
subunits, similar to that seen when Kv11.1a was coexpressed
with Kv11.1b (see highlighted box in Fig. 2B). Thus, the PAS
domain is not required for subunit-subunit interactions of
Kv11.1 channels.

To assess whether deletion of the PAS domain affected the
stability of assembled channels, we used brefeldin-A (BFA)
chase assays to compare the rate of degradation of the full-

length and PAS-truncated (�2–135) Kv11.1a channels at the
cell surface (see under “Experimental Procedures” for details).
Typical examples of experiments for monitoring degradation of
Kv11.1a and �2–135 channels are shown in Fig. 3A. The half-
lives, calculated by fitting single exponentials to the time course
data in Fig. 3B, were not statistically significantly different for
Kv11.1a and �2–135 Kv11.1 proteins (12.5 � 0.4, n � 3, and
13.6 � 1.5, n � 3, respectively), suggesting that deletion of the
PAS domain does not alter stability of the fully glycosylated
form of the protein.

N-Cap Is Required for Trafficking of Kv11.1a When the PAS
Domain Is Present—The N-terminal PAS domain Cap (N-Cap,
residues 1–25) of Kv11.1a contains an amphipathic helix (resi-
dues 13–23) and a flexible tail (residues 1–12). To investigate
whether the N-Cap is important for protein trafficking, we
expressed N-Cap truncated mutants, �2–9 and �2–25, as well
as a GGS mutant in which residues 15–23 of the amphipathic
helix were replaced with a flexible PDGGSGGSG linker (Fig.
4A). When the entire N-Cap was removed (�2–25), or the
amphipathic helix disrupted (GGS), only a band at �135 kDa
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was seen on Western blots (Fig. 4B). Conversely, when just the
flexible tail region of the N-Cap was removed (�2–9), the pro-
tein had a normal trafficking phenotype with both �135- and

�155-kDa bands present (Fig. 4B). Proteinase K completely
removed the �155-kDa FG form of the �2–9-construct (data
not shown) similar to that seen for full-length Kv11.1a channels
(see Fig. 1C). These results suggest that in channels containing
a PAS domain, the amphipathic helix in the N-Cap must also be
present for the channels to traffic normally. The N-Cap, how-
ever, is not required for assembly of the channels with either
Kv11.1a or Kv11.1b subunits (Fig. 4, D and E).

Effect of the N-Cap on Stability of the Isolated PAS Domain
and Full-length Channels—To investigate why deletion of the
N-Cap reduces channel trafficking, we first investigated how
removal of the N-Cap affected the in vitro stability of recombi-
nant Kv11.1a PAS domains (Fig. 5). The first notable finding
from these in vitro studies was that when the N-Cap was deleted
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(�2–25) or the N-Cap amphipathic helix disrupted (GGS), then
the isolated proteins eluted from the gel filtration columns
much earlier than the WT PAS domain (Fig. 5A). This sug-
gested that the �2–25 and GGS mutants might be forming
dimers, which we confirmed was the case using multiangle light
scattering (Fig. 5B). Conversely, the WT and �2–9 constructs
were stable as monomers. Thus, an intact N-Cap helix was
required to prevent dimerization of the isolated PAS domain.
The �2–25 and GGS mutant PAS domains also had signifi-
cantly reduced thermostabilities (40.9 � 0.9 and 45.8 � 0.4 °C,
respectively, compared with 55.5 � 0.6 °C for the WT PAS
domain). There was a slight increase in the thermostability for
the �2–9 PAS domain (58.3 � 1.2 °C), although this was not
statistically significantly different from the Tm for the WT PAS
domain.

We analyzed the in vivo stability of full-length N-Cap mutant
channels using a BFA-based chase assay as described above for
Kv11.1a and �2–135 Kv11.1a proteins. We could not perform
this assay on �2–25 and GGS mutant channels as these two
mutants failed to express sufficient levels of FG proteins even
after 16 h of cell culture at 28 °C. A typical example of Western
blots obtained for �2–9 Kv11.1a proteins 1–24 h after incuba-
tion with BFA is shown in Fig. 6A, and the mean data from three
independent experiments are shown in Fig. 6B. The gray line in
Fig. 6B shows the data for full-length Kv11.1a proteins from Fig.

3B. The half-life for �2–9 Kv11.1a was 15.4 � 0.6 h (n � 3),
which is statistically significantly longer than that of full-length
Kv11.1a (12.5 � 0.4, n � 3, p � 0.04).

Role of Hydrophobic Face of the N-Cap Amphipathic Helix—
Misfolding of proteins typically results in exposure of hydro-
phobic regions, which in turn causes the protein to be tagged
for degradation before reaching the membrane surface (25).
Recent crystallography studies suggest that the N-Cap
amphipathic helix of Kv11.1a can bind to a surface-exposed
hydrophobic patch on the PAS domain (26). Accordingly, we
hypothesized that the reduced thermostability and severely
impaired trafficking of the N-Cap truncated constructs was a
result of the PAS domain hydrophobic patch no longer being
covered by the N-Cap amphipathic helix. If this is the case, then
we would also expect point mutations on the hydrophobic face
of the N-Cap amphipathic helix to decrease the helix binding
stability and result in decreased trafficking of mutant channels.
To investigate this hypothesis, we performed mutagenesis
scans of the N-Cap amphipathic helix to either a relatively
hydrophobic alanine side chain or a polar serine side chain (Fig.
7). All individual alanine mutants resulted in channels with a
relatively normal trafficking phenotype (Fig. 7A). Conversely,
mutation of three bulky hydrophobic residues in the
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amphipathic helix (Leu-15, Ile-18, and Ile-19) to serine severely
reduced trafficking (Fig. 7B). The other serine mutants had a
normal trafficking phenotype (Fig. 7B). These results suggest
that the hydrophobic face of the N-Cap amphipathic helix is
important for normal trafficking of Kv11.1a channels.

In a previous study, we showed that mutations involving res-
idues in the hydrophobic patch on the PAS domain resulted in
either a severe reduction (F29L, I31S, I42N, and Y43C) or mod-
erate reduction (M124R) in trafficking of the full-length pro-
tein. Structural models of the truncated PAS domain (residues
10 –135), based on the crystal structure from Adaixo et al. (26),
suggest that Leu-15, Ile-18, and Ile-19 would interact with this
patch. We used a double mutant cycle approach to investigate
whether L15S, I18S, and/or I19S had additive effects on the
trafficking phenotype of the M124R mutant. We chose to use
M124R as it had the mildest phenotype of the PAS domain
hydrophobic patch mutants (17), and so it should be easier to
see if there was an additive effect.

Example Western blots for L15S, I18S or I19S in either a WT
or M124R background are shown in Fig. 8A. We estimated the
effect each single and double mutant had on trafficking, �Tx,
from the logarithm of the ratio of the FG bands for a mutant
relative to WT on the Western blot (after normalization for
transfection efficiency and protein levels, Fig. 8A). The sche-
matic double mutant cycle analysis for I18S and M124R, shown
in Fig. 8B, illustrates that the combination of these two mutants
would be expected to cause a perturbation of �1.74 log units if
the perturbation caused by each mutant were independent of
each other. The lower value for the observed perturbation,
�1.25 log units, suggests that these two residues are energeti-
cally coupled. The perturbations caused by each single and dou-
ble mutant combination for L15S/I18S/I19S with M124R are
summarized in Fig. 8C. These data suggest that Leu-15, Ile-18,
and Ile-19 are all energetically coupled to Met-124 and are con-
sistent with the structural model that shows an interaction of
the N-Cap amphipathic helix with the hydrophobic patch
on the PAS domain (Fig. 8D). These data are also consistent
with the structural model, in which the N-Cap amphipathic
helix interacts with the hydrophobic patch on the PAS domain
(Fig. 8D). Together, these results suggest that the hydrophobic
face of the N-Cap amphipathic helix covers a hydrophobic
patch on the PAS domain and that this interaction is critical for
normal trafficking of the Kv11.1a channel, which would reduce
early degradation of the channel protein.
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DISCUSSION

Previous work has demonstrated that the cytoplasmic N-ter-
minal PAS domain of Kv10.1 channels can bind to the cNBH
domain in the cytoplasmic C terminus (10). This might also be
the case for Kv11.1 channels as these domains share significant
sequence homology. Furthermore, it has been postulated that
this interaction is critical for normal gating (18). There are
numerous studies that have shown that Kv11.1 channels with
deletion of large portions of the cytoplasmic N-terminal
domain can give rise to robust currents when channels are
expressed in Xenopus oocytes (8, 9, 27–29). However, there are
only a couple of reports of currents recorded from N-terminal
deletion constructs expressed in mammalian cells (22, 30), and
in general the current densities are lower than those seen for
full-length Kv11.1a channels (22). It is therefore commonly
assumed that, although not essential, the presence of the N
terminus helps to stabilize the assembled channels (10, 16, 17).
Here, we show that deletion of just the PAS domain together
with the N-Cap (�2–135) results in channels that traffic per-
fectly well (Fig. 1B). Furthermore, the half-life at the plasma
membrane of Kv11.1 channels lacking a PAS domain is just as
long as full-length Kv11.1a channels (Fig. 3). Thus, the Kv11.1a
PAS domain is not required for the assembly or stability of
assembled channels at the cell surface, although it is required
for normal gating of the channels (16).

How then can we explain the numerous studies in the litera-
ture indicating that mutations in the PAS domain affect traf-
ficking of full-length Kv11.1a channels (17, 19, 31) and in many
instances affect domain-domain interactions involving the PAS
domain (17, 18)? First, if the PAS domain is present, then it
must be fully intact and properly folded. Thus, in Kv11.1–3.1,
which has a partially truncated PAS domain, the trafficking is
poor. Second, LQT2 mutants that alter stability of the PAS
domain result in improper folding and cause impaired traffick-
ing (17, 19). The data in this study clearly demonstrate that if
the PAS domain is present, then the N-Cap amphipathic helix
of the PAS domain must also be present (Fig. 4). In other PAS
domains, the N-Cap can contribute to protein-protein interac-
tions, e.g. in NifL, the hydrophobic face of the N-Cap helix
forms a hydrophobic interaction with a neighboring PAS mon-
omer in a domain swapping interaction (7). In the Kv11.1a PAS
domain, the amphipathic helix can fold back to interact with
the surface-exposed hydrophobic patch on the core of the PAS
domain (which incorporates many clinical mutants, including
F29L, I31S, I42N, Y43C, and M124R) (26). Here, we report that
the interaction between the N-Cap amphipathic helix and
the core of the PAS domain has a critical role in stabilizing the
isolated PAS domain (Fig. 5). Hence, we suggest that in the
intact channels, removal of the N-Cap amphipathic helix would
result in exposure of the hydrophobic patch on the surface of
the PAS domain, which would likely be recognized by the cel-
lular machinery as being misfolded and therefore tagged for
degradation (25). This would explain the severe trafficking
defect observed in the N-Cap truncated protein (Fig. 4). Simi-
larly, we suggest it is likely that clinical mutations in the hydro-
phobic patch on the core of the PAS domain disrupt this self-
liganded structure, and hence they are tagged for degradation

resulting in poor expression at the membrane, a factor that
underlies their pathophysiology.

It is also worth noting that in both the NMR and crystal
structures of the full-length Kv11.1a N-Cap/PAS domain, the
amphipathic helix was not bound to the PAS domain core,
although the amphipathic helix is bound in the recent crystal
structure of the �2–9 construct (26). This suggests that in the
�2–9 construct the interaction between the amphipathic helix
and the PAS domain could be stronger than in the full-length
domain, which is consistent with our findings that the traffick-
ing and stability of �2–9 Kv11.1a proteins are improved com-
pared with full-length Kv11.1a and consistent with a slightly
higher thermostability of the �2–9 PAS domain compared with
the full-length PAS domain.

The hydrophobic surface of the N-Cap amphipathic helix
contains five bulky hydrophobic residues as follows: Phe-14,
Leu-15, Ile-18, Ile-19, and Phe-22. However, it is only the mid-
dle three (Leu-15, Ile-18, and Ile-19) that when mutated to ser-
ine result in significant perturbation to the trafficking pheno-
type (Fig. 7). This suggests that it is only this central region that
is important for binding to the core of the PAS domain. In the
recent crystal structure of the N-truncated Kv11.1 PAS domain,
the side chains of Phe-14 and Phe-22 were not discernible. This
suggests that these side chains are more flexible and therefore
less likely to contribute to binding of the N-Cap amphipathic
�-helix, which is consistent with the data in our study.

There are at least three isoforms of Kv11.1, denoted Kv11.1a,
Kv11.1b (32), and Kv11.1–3.1 (Fig. 1A) (21). Kv11.1b and
Kv11.1–3.1 both lack a folded PAS domain, and Kv11.1b also
lacks a large portion of the remainder of the N-terminal cyto-
plasmic domain. Although it is possible to record currents from
homotetrameric Kv11.1b (20) and homotetrameric Kv11.1–3.1
channels (21, 22), they clearly traffic less efficiently (Fig. 1B).
The N-terminal region of the Kv11.1b isoform contains an ER
retention motif that is not present in Kv11.1a or Kv11.1–3.1,
which has been shown to be responsible for the poor trafficking
of the Kv11.1b isoform when it is expressed alone (20). Upon
coexpression with Kv11.1a or the �2–135 construct (Fig. 2),
Kv11.1b trafficking is dramatically improved, presumably due
to masking of the ER retention motif (20). That this ER motif
cannot be masked by coassembly with other Kv11.1b subunits,
but can be when expressed with the �2–135 construct, suggests
that it is the proximal N-terminal domain in Kv11.1a (or
�2–135) that binds the ER retention motif in heterotetrameric
channels. This is also consistent with the finding from Phartiyal
et al. (33) who showed that the N-terminal regions of Kv11.1a
and Kv11.1b are sufficient for interaction. In the case of the
Kv11.1–3.1 isoform, the last 33 residues of the PAS domain are
present (21 of these residues are hydrophobic), which we sug-
gest are unlikely to fold into a compact structure and so are
more likely to be recognized as unfolded and be tagged for
degradation.

A recent x-ray crystallography study of the murine Kv10.1
channel showed a partially truncated PAS domain (residues
2– 6 deleted) co-crystallized with the cNBH domain. In this
crystal structure, the N-Cap amphipathic helix was intercalated
between the PAS domain and the cNBH domain with the inter-
action surface, including the hydrophobic patch on the core of
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the PAS domain and a small hydrophobic pocket on the surface
of the cNBH domain (10). The hydrophobic pocket on the
cNBH domain is conserved between murine Kv10.1 and
Kv11.1a (corresponding to residues 794VVVAIL799 in human
Kv11.1a). Many mutations in this domain result in channels
that have significantly altered gating (34) suggesting that this
region also plays an important role in Kv11.1a function. If, as is
likely, given the very high sequence homology between murine
Kv10.1 and human Kv11.1a, the Kv11.1a PAS and cNBH
domains form a similar structure to that reported for murine
Kv10.1, then presumably in the �2–135 construct the hydro-
phobic patch on the cNBH domain would be left exposed. As
such, one might expect the �2–135 channels to be degraded
more rapidly than full-length Kv11.1a channels. That this is not
the case (see Fig. 3) suggests two possibilities. First, the hydro-
phobic patch on the exposed cNBH domain is too small, or
flanking acidic residues (Asp-793 and Asp-803) prevent this
region from being recognized as unfolded. Second, in the
absence of the PAS domain, another portion of the channel can
bind to and cover the exposed cNBH domain hydrophobic
patch. Distinguishing between these possibilities will require
further investigation.

The final unexpected finding of this study is that the �2–135
channels not only traffic efficiently but they achieve signifi-
cantly higher steady-state levels of protein expression at the
plasma membrane compared with full-length Kv11.1a channels
(see Fig. 1B), despite the fact that the rate of degradation of the
�2–135 protein is comparable with that of full-length Kv11.1a
proteins (Fig. 3). Accordingly, we suggest that the higher
steady-state levels of �2–135 FG protein must be due to an
increase in forward trafficking. The synthesis, assembly, and
forward trafficking of proteins are complex multistep processes
(35). From our results, it is not possible to determine which of
the forward processes is altered by deletion of the PAS domain,
but clearly this warrants further investigation.

SUMMARY

In this study, we demonstrated that the PAS domain is not
necessary for assembly and stability of Kv11.1a channels. How-
ever, if the PAS domain is present, then the amphipathic helix
in the N-Cap region of the PAS domain must also be present as
it plays a critical role in the folding stability of the PAS domain.
There is strong evidence to indicate that the PAS domain inter-
acts with cNBH domain of Kv11.1a; however, rather than being
an interaction that stabilizes folding of the channel, the PAS-
cNBH domain interaction regulates the gating of Kv11.1a
channels.
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