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Abstract
Being the most vascular tissue of the eye, importance of the choroid has been very well established in various retinal and chorio-
retinal diseases. Understanding of the choroidal structures has improved significantly since the evolution of enhanced depth
imaging. Quantitative assessment of choroidal measurements has been found to be reproducible using different devices. This
review article describes factors affecting choroidal thickness and choroidal changes in several diseases and reports its clinical
importance. Evaluation of choroid would provide insight into the pathogenesis, treatment planning and follow up in chorioretinal
diseases.
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Introduction

Choroid being the most vascular tissue in the eye, plays an
important role in the pathophysiology of various ocular dis-
eases. It provides nutrition to the outer retinal structures.
Its role is established in various chorioretinal diseases such
as central serous chorioretinopathy,1 Vogt–Koyanagi–Harada
disease,2 high myopia-related chorioretinal atrophies,3 age
related macular degeneration,4 and polypoidal choroidal vas-
culopathy.5 Quantitative assessment of choroid has been
very challenging with traditional imaging modalities such as
indocyanine green angiography and ultrasonography due
to limited resolution and repeatability.6,7

Recent advances in optical coherence tomography includ-
ing enhanced depth imaging have significantly improved
understanding of the choroid. The outer limit of the choroid
and the sclera cannot usually be reliably identified using con-
ventional spectral domain optical coherence tomography
(SD-OCT) due to scattering of light from pigmented retinal
pigment epithelium (RPE) layer as well as decreasing sensitiv-
ity and resolution with increasing displacement from zero-de-
lay. In SD-OCT, depth information is encoded as different
frequencies of the interference spectrum. With increasing
depth into tissue, echoes occur further from the point of
detection, which is known to be the ‘‘zero delay line.’’ For a
retinal OCT, zero delay line is positioned at posterior vitreous
to provide clear image of retinal structures. By moving the
joystick closer to the eye, zero delay line is focused at the ret-
inal structures to provide better resolution choroidal images.
Image averaging, eye tracking, high-speed scanning and low
speckle noise produce high-quality choroid images with EDI-
OCT.8

Swept source OCT (SS-OCT) is another device that uses a
frequency swept laser with a narrowband light source that is
rapidly tuned over a broad optical bandwidth that enables
the measurement of interference at different optical frequen-
cies or wavelengths sequentially over time.7 No spectrometer
or line camera is needed for the Fourier transformation. This
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increases the imaging speed up to 300,000 axial scans per
second and allows a deeper penetration of the sampling
beam. SS-OCT offers several potential advantages over SD-
OCT, including increased sensitivity through the full imaging
depth, decreased fringe washout, better axial resolution over
a broad imaging range, and higher detection efficiencies.
Being a longer wavelength, it has the potential to image cho-
roid much better than conventional SD-OCT.9
Choroidal imaging using different instruments

Choroidal imaging and thickness measurements have
been reported with several commercially available OCT sys-
tems including the Cirrus (Carl Zeiss Meditec Inc, Dublin,
CA, USA), Topcon 3DOCT 2000 (Topcon Corporation,
Tokyo, Japan), Optovue RTVue (Optovue Inc., Fremont,
CA, USA), Bioptigen (Bioptigen Inc., Research Triangle Park,
NC, USA) and the Heidelberg Spectralis (Heidelberg
Engineering, Heidelberg, Germany). Spectralis OCT has
eye-tracking ability, low speckle noise and averaging (up to
100 B-scans). Cirrus HD-OCT (Carl Zeiss Meditec) lacks
eye-tracking ability and can only perform 20 B-scans at a time
for each measurement.10

Yamashita et al. performed subfoveal choroidal thickness
measurements using three different SD-OCTs: Heidelberg
Spectralis-OCT (Spectralis), Cirrus HD-OCT (Cirrus), and Top-
con 3D OCT-1000 Mark II (Topcon) and reported a high intra-
class correlation coefficients (up to 0.98) as well as high
interrater correlation coefficients (up to 0.95) with Spectralis,
Cirrus, and Topcon.11 The intermachine correlation coeffi-
cient was also significantly high among the machines
(P < 0.001, Spearman), 0.97 (Spectralis-Cirrus), 0.96 (Cirrus-
Topcon), and 0.98 (Topcon-Cirrus). Similarly, Branchini et al.
also reported a high reproducibility in choroidal thickness
measurements among Zeiss Cirrus HD-OCT (Carl Zeiss Med-
itec Inc., Dublin, CA), Heidelberg Spectralis (Heidelberg
Engineering, Heidelberg, Germany), and Optovue RTVue
(Optovue Inc., Fremont, CA).10

While comparing choroidal thickness measurements
between SD-OCT and SS-OCT, Matsuo et al. reported that
the choroid measured with SS-OCT was thicker than that
measured with SD-OCT instruments, and, thus, the choroidal
thickness should not be compared between the SD-OCT and
SS-OCT instruments.12
Choroidal thickness measurements

The choroidal thickness so far has been measured manu-
ally perpendicularly from the outer edge of the hyperreflec-
tive retinal pigment epithelium (RPE) to the inner sclera
(choroid–sclera junction) at 500 microns interval from the
fovea using the SD-OCT software. Choroidal thickness
measurements in normal subjects appear to be highly repro-
ducible.13,14 Shao et al. reported very high reproducibility
with a mean difference of 3.14 ± 13.1 lm between the
observers.15 Rahman et al. reported that a change >32 mm
in subfoveal choroidal thickness probably exceeds interob-
server variability.14 Similarly, Chhablani et al. reported highly
reproducible manual segmentation of choroid for choroidal
volume measurements using the built-in automated retinal
segmentation software on Spectralis SD-OCT.16
Choroidal imaging in healthy subjects

Subfoveal choroidal thickness was reported in normal
range from 191 ± 74.2 to 354 ± 111 microns.13,14,17–20 This
variation could be due to the effect of ethnic differences also.
The choroid is thickest subfoveally and thins nasally more
than temporally. Inferior macular choroid has been measured
thinner than the superior macular choroid.21

Barteselli et al. reported that the mean choroidal volume
was 0.228 ± 0.077 mm3 for the center ring and
7.374 ± 2.181 mm3 for the total (Early Treatment Diabetic
Retinopathy Study) ETDRS grid.22 The nasal quadrant
showed the lowest choroidal volume, and the superior quad-
rant showed the highest choroidal volume. The temporal and
inferior quadrants did not show different choroidal volume
values. Ouyang et al. reported that the thickest choroid
was found in the outer superior subfield, whereas the
thinnest choroid was located in the outer nasal subfield. They
reported that the optic nerve head could be a better center
to study the regional differences in choroidal thickness
compared to foveal thickness.21
Factors affecting choroidal thickness

Age related choroidal thinning in healthy eyes have been
reported by numerous studies.13,18,20 Margolis et al.18

reported 15.6 microns decrease in choroidal thickness every
decade, similarly 14 microns decrease every decade was
reported by Ikuno et al.19 Ding et al. reported that this
age-related thinning occurs only in age older than 60 years.20

Bidaut-Garnier et al. reported mean subfoveal choroidal
thickness of 341.96 ± 74.7 lm in children.23 Choroidal thick-
ness correlated with age (R2 = 0.056, P = 0.0017), height
(R2 = 0.0292, P = 0.028), and weight (R2 = 0.0274, P = 0.033)
but not with gender (P = 0.25). It was also inversely corre-
lated to the axial length (R2 = 0.065, P = 0.0008). The nasal
choroid appeared thinner than in the temporal area
(P < 0.0001). Read and Park associates reported similar
results.24,25 Read et al. reported choroidal thinning in myopic
children compared to non-myopic children. They reported
that the thinning of the choroid was greater than what would
be predicted by a simple passive choroidal thinning with axial
elongation.26

Wei et al. reported that the subfoveal thickness decreases
by 15 microns for every increase in myopic refractive error of
1 D, or by 32 microns for every increase in axial length of
1 mm.17 Fujiwara et al. reported that choroidal thickness de-
creases by 12.7 lm for each decade of life and by 8.7 lm for
each diopter of increasing myopia.27

Gender might play a role in choroidal thickness. Li et al.
reported that women have a thinner choroid than men.28 In
contrary, adult men have been reported to have thicker cho-
roid than adult females.22 However, in children, Mapelli
et al.29 reported a thicker choroid in females with slight
significance (P = 0.056), similar to results from the Copenha-
gen Child Cohort 2000 Eye Study.30 The reason proposed for
this difference is that the puberty promotes choroidal thick-
ening in girls, an effect that may be mediated by the pubertal
growth spurt. Chen et al. reported no interocular difference
in choroidal thickness with 95% limits of agreement of �80
to +83 microns.31
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In regard to diurnal variation, Tan et al. reported a signif-
icant variation in choroidal thickness in subjects with thicker
choroid in the morning compared with those with thin
choroids.32 The change in choroidal thickness also correlated
with change in systolic blood pressure. Comparing choroidal
thickness on two different days, a similar diurnal pattern was
observed, with no significant difference between corre-
sponding measurements at the same time point.32 Water
drinking test has been reported to cause increase in choroi-
dal thickness.33 Vural et al. reported decrease in choroidal
thickness 4 h after coffee drinking.34

Choroidal imaging in various retinal diseases

High myopia

Due to increase in axial length, high myopic eyes have thin
choroid (Fig. 1). Flores-Moreno et al. reported decrease in
choroidal thickness by 25.9 ± 2.1 lm for each additional
millimeter in high myopia.3,35 The choroid was found to be
the thinnest at the nasal end. Thickness increased in a graded
fashion toward the temporal side and reached maximum at
the temporal end. This is in contrast to that in normal sub-
jects, where thickness was highest under the fovea. Thinning
of the choroid could be a predictive factor for visual acuity in
highly myopic patients because the choroid is responsible for
the oxygen and nutrient supply of the outer retina.

Retinitis pigmentosa

It has been hypothesized that there is a primary vascular
dysfunction including reduced choroidal as well as retinal
blood flow which leads to photoreceptor damage.36 Mea-
surements of choroidal thickness in retinitis pigmentosa pa-
tients could be very useful for future therapies, such as
suprachoroidal electrode arrays.

Previous studies have shown that the eyes with retinitis
pigmentosa tend to have thin choroid, including focal and
diffuse thinning.37,38 Ayton et al. reported that the patients
with retinitis pigmentosa who have poorer visual acuity or
longer duration of symptoms tend to have thinner choroids.39

In contrast, Dhoot and colleagues38 found that there was no
correlation between visual acuity and choroidal thickness.
However, implication of choroidal thickness in the patho-
physiology of retinitis pigmentosa is not clear.

Other inherited disorders

Yeoh et al.37 performed a retrospective observational case
series consisting of 20 eyes with a variety of inherited retinal
Figure 1. Decrease in choroidal thickness in an eye with high myopia.
Outer margin of the choroid is shown as arrow-heads.
diseases such as Best disease, Stargardt, choroideremia,
peripherin retinal degeneration slow (RDS) mutations, and
Bietti crystalline retinal dystrophy and reported variable
choroidal thinning in these inherited diseases. They reported
no association between choroidal thinning and visual acuity
or extent of retinal dysfunction on electrophysiology.

Coscas et al. demonstrated choroidal thickening in adult
(AOFVD) in contrast with the choroidal thinning observed in
advanced AMD.40 Choroidal thickness measurement could
help differentiate the challenging diagnosis between exuda-
tive AMD and the AOFVD complicated with choroidal
neovascularization.

Central serous chorioretinopathy (CSCR)

Indocyanine green angiography shows increased choroi-
dal permeability in CSCR, which may be the cause for in-
creased choroidal thickness (Fig. 2).41 Increased choroidal
thickness has been demonstrated in patients with acute
CSCR (range, 439–573 lm), which was 214 lm (85%) greater
than the mean choroidal thickness of age-matched normal
eyes (P 6 0.001). Additionally, studies have reported
increased choroidal thickness in both eyes in patients with
unilateral CSCR.1,42–44

Maruko et al. measured the subfoveal choroidal thickness
before and after the treatment in eyes with chronic CSCR,
using SD-OCT. Patients treated with photodynamic therapy
(PDT) showed a decrease in the subfoveal choroidal thickness
after the treatment, however, patients treated with laser
photocoagulation did not demonstrate a reduction in the
choroidal thickness.45 Jirarattanasopa et al. showed global
choroidal thickening on choroidal macular maps.46 The cho-
roidal thickness may be used as an additional parameter to
assist in the differentiation of CSCR from other causes of ser-
ous retinal detachment and may indicate the activity of the
disease on the follow-up after treatment with PDT.

Age-related macular degeneration (AMD)

SD-OCT has improved the understanding and manage-
ment of AMD. Being a multifactorial disease, change in cho-
roidal circulation may also contribute to the development of
AMD. Therefore, evaluation of choroidal structural changes is
important in AMD.

Choroidal thickness seems to be least affected in the early
stage of the disease, however, the changes in late stages
could be variable.47 Manjunath et al. reported that eyes with
AMD on an average had a thinner choroid than that of normal
Figure 2. Increased choroidal thickness in an eye with central serous
chorioretinopathy. Outer margin of the choroid is shown as arrow-heads.
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controls (Fig. 3). Furthermore, eyes with exudative AMD had
thinner choroids than eyes with nonexudative AMD.48 In a
population based study, Jonas et al. reported no significant
change in any form of AMD.49 In contrary, Lee et al. reported
that the subfoveal choroidal thickness is closely related to the
severity of nonexudative AMD, as well as the rate of GA
progression.50 Regarding the effect of frequent anti-VEGF
injections on choroidal thickness in eyes with neovascular
AMD, there are many conflicting reports. Previous reports
have shown significant decrease in choroidal thickness in eyes
with wet AMD following intravitreal ranibizumab,51 as well as
photodynamic therapy (PDT).52 On the contrary, other
groups have not confirmed such a change in thickness
following anti-VEGF treatment.53

With the improved visualization of choroid, Spaide
described a distinct entity, termed age-related choroidal
atrophy, which has some overlap with dry AMD. He reported
decrease in choroidal thickness was associated with loss of
visible vessels, implying that age-related choroidal atrophy
is a manifestation of small-vessel disease affecting the
choroid.54

Koizumi et al. reported that eyes with polypoidal choroidal
vasculopathy (PCV) have a thicker subfoveal choroid
(293 ± 72.3 lm) when compared with eyes featuring typical
neovascular AMD (245 ± 73.1 lm). The thicker choroid could
be partially attributed to the dilation of middle and large
choroidal vessels or an increase in the choroidal vascular
permeability that is observed by ICG.55

Measuring the choroidal thickness may help differentiate
between exudative AMD and PCV as well as from CSCR.
Both PCV and CSC eyes have thicker choroids than those in
normal individuals. Conversely, eyes with exudative AMD
have thinner choroids.4,55

Spaide reported the presence of hyperreflective tissue in
PEDs, which were found to be serous on conventional SD-
OCT. These findings can help explain the pathogenesis of
PEDs, retinal vascular anastomosis with choroidal neovascu-
larization, and RPE tears.56
Vogt–Koyanagi–Harada (VKH) disease

Choroidal vessel hyperpermeability has shown to be cor-
related with increase in choroidal thickness in acute stage.2

Decrease in choroidal thickness with treatment and increase
with recurrence have also been reported.57 The choroid
was significantly thinner in eyes with VKH, both acute and
convalescent compared to normal controls.58 Fong et al.
reported loss of focal hyperreflectivity in the inner choroid
Figure 3. Decreased choroidal thickness in an eye with dry age-related
macular degeneration. Outer margin of the choroid is shown as arrow-
heads.
in both acute and convalescent phases suggestive of perma-
nent structural change to small choroidal vessels.59 Choroidal
thickness may be monitored to understand the disease
activity and further management.2,57
Diabetic retinopathy

Histopathological studies have shown various choroidal
abnormalities, including obstruction of the choriocapillaris,
vascular degeneration, choroidal aneurysms, and choroidal
neovascularization in diabetic retinopathy.60,61 A large popu-
lation-based study from China reported choroidal thickening
in diabetic patients, however, diabetic retinopathy did
not appear to associate with increased choroidal thickness.62

A recent retrospective study from Korea, demonstrated
increasing choroidal thickness with increasing severity of ret-
inopathy.63 A recent article from Italy, however, reported a
significant thinning of subfoveal choroid in patients with dia-
betes as compared to controls.64 There are other reports that
suggest choroidal thinning in diabetics65–67 and increasing
thinning with progressive retinopathy.65 These conflicting
reports may reflect dynamic nature of natural history of dia-
betes and its effect on the eye. Choroidal EDI-OCT imaging
might be a useful method to study the contribution of the
choroidal circulation to the overall visual dysfunction seen
in diabetic patients.
En-face choroidal imaging

Motaghiannezam et al. reported choroidal vascular
pattern using en-face images processed from 3D images
obtained with SS-OCT prototype.68 The retinal layers, chori-
ocapillaris (CC), Sattler’s layer (SL), Haller’s layer (HL), and
the lamina suprachoroid layer (LSL) could be delineated in
2D sagittal tomograms. Long and short posterior ciliary
artery branches could also be imaged including their entry
sites. Further understanding of these structures in normal
individuals and comparison with cadaveric eyes would
improve the histological correlation with OCT findings.

Zhang et al. introduced an automated algorithm for
segmentation of choroidal vasculature and reported average
choroidal vasculature thickness of 172.1 micron and average
choriocapillaris-equivalent thickness of 23.1 micron in normal
subjects.69

En-face choroidal imaging in CSR has shown focally
enlarged choroidal vessels at all the layers of the choroid.
Ellabban et al. reported focal choroidal excavations in 7.8%
of eyes with CSC. They proposed that these focal choroidal
excavations may have been formed from RPE retraction
caused by focal scarring of choroidal connective tissue.70

Using en-face imaging, Coscas et al. showed the entire
branching neovascular network of CNV within fibrovascular
PED (FV-PED) without dye injection.71

In conclusion, choroidal imaging has improved under-
standing of pathogenesis and diagnostic information of the
disease. It also helps in monitoring treatment response in var-
ious chorio-retinal diseases. Various factors such as age, axial
length, gender, and diurnal variation affect choroidal thick-
ness. Automated segmentation of the choroid and its individ-
ual layers would improve the quantitative assessment of
choroidal layers. Clinical application of knowledge from cho-
roidal images further needs to be evaluated.
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