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Abstract

Bone metastasis will impact most men with advanced prostate cancer. The vicious cycle of bone

degradation and formation driven by metastatic prostate cells in bone yields factors that drive

cancer growth. Mechanistic insights into this vicious cycle have suggested new therapeutic

opportunities, but complex temporal and cellular interactions in the bone microenvironment make

drug development challenging. We have integrated biological and computational approaches to

generate a hybrid cellular automata (HCA) model of normal bone matrix homeostasis and the

prostate cancer-bone microenvironment. The model accurately reproduces the basic multicellular

unit (BMU) bone coupling process, such that introduction of a single prostate cancer cell yields a

vicious cycle similar in cellular composition and pathophysiology to models of prostate-to-bone

metastasis. Notably, the model revealed distinct phases of osteolytic and osteogenic activity; a

critical role for mesenchymal stromal cells (MSCs) in osteogenesis; and temporal changes in

cellular composition. To evaluate the robustness of the model is we assessed the effect of

established bisphosphonate and anti-RANKL therapies on bone metastases. At ~100% efficacy,

bisphosphonates inhibited cancer progression while, in contrast to clinical observations in humans,

anti-RANKL therapy fully eradicated metastases. Reducing anti-RANKL yielded clinically

similar results, suggesting that better targeting or dosing could improve patient survival. Our work

establishes a computational model that can be tailored for rapid assessment of experimental

therapies and delivery of precision medicine to prostate cancer patients with bone metastases.
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Introduction

Prostate cancer frequently metastasizes to bone with approximately 90% of the men

displaying evidence of skeletal lesions upon autopsy (1). Despite medical advances, prostate

to bone metastases remain incurable with treatments being mainly palliative (2). Advances

in our knowledge of the molecular mechanisms underlying the disease should provide

therapeutic opportunities to improve overall survival rates but on a more

microenvironmental scale, predicting how putative therapies will impact multiple cellular

responses remains a challenge. However, integrating key biological findings with the power

of computational modeling offers a unique opportunity to assess the impact of putative

therapies on the progression of prostate cancer.

Understanding the normal BMU bone remodeling process is critical for the generation of a

robust computational model (3). The initiation of the BMU by local or systemic signals

results in the retraction of the osteoblasts from the bone surface and the formation of a

canopy. Local MSCs generate RANKL-expressing osteoblasts precursors that subsequently

facilitate osteoclast recruitment, maturation and bone resorption. Degradation of the bone

results in the release of sequestered growth factors such as transforming growth factor beta

(TGFβ) that in turn serve to control the extent of bone degradation and osteoblast expansion.

After osteoclast apoptosis, osteoblasts rebuild the bone with a portion terminally

differentiating into osteocytes and the remainder reconstituting the bone lining, ready for the

next remodeling cycle.

In the metastatic prostate cancer-bone microenvironment, prostate cancer cells perturb the

balance of the BMU to generate a “vicious cycle” via the expression of factors such as

RANKL thereby inducing excessive bone resorption (4). The release of sequestered growth

factors from the bone matrix such as TGFβ in turn stimulates the survival and growth of the

metastatic prostate cancer cells. Of note, prostate to bone metastases are also characterized

by areas of extensive bone formation/osteogenesis, a phenomenon that is mediated by

factors such as, endothelins (ET) and bone morphogenetic proteins, BMP-2 and BMP-4 (5).

To date, the majority of our knowledge of the mechanisms driving prostate cancer

progression has been garnered by focusing on the role of individual cancer/host derived

molecules. However, this molecular reductionist approach often does not take into account

the multiple cellular effects of molecular mechanisms being investigated. Mathematical and

computational models are a powerful means with which to study complex in vivo

interactions. Numerous advances using this approach have identified roles for tumor

heterogeneity in cancer progression and evolution, accurately predicting glioma progression

and response to disease and, describing the cellular dynamics of bone remodeling (6). To

understand the simultaneous and multiple interactions occurring over time in the metastatic

prostate cancer bone microenvironment we have generated a HCA based integrated

computational model. Using this approach we tested the models response to therapies

currently used in the clinic to treat prostate to bone metastases (7–9). We posit that

computational models will be a powerful means with which to test the efficacy of available

or putative therapies for the treatment of prostate to bone metastases.
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Quick guide to assumptions and equations

For our HCA model we consider 6 different cell types, including 5 residents of the BMU:

Osteoblasts (OBs), Osteoclasts (OCs), precursor Osteoblasts (pOBs), precursor Osteoclasts

(pOCs), MSCs, as well as prostate tumor cells (PCa), capable of recruiting MSCs and

producing TGFβ (Table 1). Next, we considered the interactions between the key cell types

(Fig. 1A) and the microenvironmental factors that control those interactions which were

defined as follows:

Bone

Bone is one of the richest reservoirs of TGFβ in the human body (700pg/mg of bone tissue)

(10). We have modeled bone explicitly as static cells that, when resorbed, disappear from

the domain and release bone derived factors (BDF) and TGFβ.

MSCs, pOBs and OBs

Bone generating osteoblasts (pOBs) are derived from MSCs (11). MSCs undergo

asymmetrical division and pOBs proliferate in response to TGFβ, ultimately differentiating

into bone matrix producing OBs, a process mediated by factors such as BMP-2 (12). In our

model, pOBs express RANKL, migrate towards and expand clonally in response to TGFβ,

and finally differentiate into OBs after 14 days. As adult OBs, the modeled cells seek TGFβ
and bone. If in contact with bone, they lay down bone matrix with an active lifespan of 75

days (Fig. 1B).

pOCs and OCs

pOCs are derived from myeloid precursors and, in response to RANKL, undergo cellular

fusion to generate mature OCs (13). OCs resorb the bone matrix leading to the release of

BDFs and TGFβ (5, 14). We have explicitly modeled these processes. pOCs are recruited

by RANKL from the vasculature, and have a lifespan of 2 days. Once on the bone surface,

they will fuse together provided that the local levels of RANKL are high while those of

TGFβ are low. A minimum of 3 pOCs (usually 5 or more) can fuse to form an OC. OCs

have a lifespan of 14 days, in which their singular function is to resorb bone thereby

releasing TGFβ and BDFs (Fig. 1C). Based on the amount of TGFβ present in bone, we

have calculated that a single osteoclast measuring 100µm in diameter will resorb approx.

10µm3 of bone per day. Given the density of bone as 1500mg/Kg, we estimate that an

osteoclast can resorb 1.17×10−3 mg/day. With the concentration of TGFβ in bone being

5ng/mg, we calculated that a mature osteoclast can generate up to 0.00558 ng of TGFβ per

day.

PCa

Based on our empirical as well as published data, we engineered the PCa cells to express

TGFβ ligands and receptors. Importantly, the level of PCa TGFβ (5×10−12 pg/day) is

approximately 1000 fold less than that generated by bone resorbing OCs (5×10−9 pg/day).

This ensures the reliance of the prostate metastases on TGFβ released from the bone. In the
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computational model we have described the TGFβ producing PCa metastases as agents

chemoattracted to the BMU, with an ability to recruit MSCs, based on our empirical studies

(Fig. 2). PCa replication potential is proportional to the availability of bone-derived factors

and, if not bathed with these essential factors, PCa cells will die within 14 days. The PCa

metastases are the only ones that can destroy the canopy of the BMU as they grow (Fig.3B).

We have considered that PCa promote OB differentiation, a phenomenon that is not noted in

lytic lesions (14).

The microenvironment

TGFβ, RANKL and BDFs are generated by the behaviors and interactions amongst the

cellular components; and are characterized by partial differential equations that are

subsequently discretized and applied to a grid. TGFβ is produced by bone destruction

(αβBi,j) and cancer cells (αcCi,j) in proportion to the local TGFβ concentration, with natural

decay of the ligand (σβTβ); ensuring the density never exceeds a saturation level, m0. TGFβ
has pleiotropic effects on osteoblasts, osteoclasts and metastatic prostate cancer cells. Low

concentrations of TGFβ stimulate osteoclastogenesis but high concentrations inhibit the

process; illustrating the biphasic effects of this growth factor even on the same cell type (15,

16). Our group and others have shown that TGFβ supports tumor survival and growth by

activating TGFβ receptors (TβR) on the tumor cell surface (17–19). TGFβ is governed by

the following differential equation:

RANKL RL is produced by precursor Osteoblasts, αL0i,j, in proportion to the local RANKL

concentration, with natural decay of the ligand, σLRL; ensuring the density never exceeds

the saturation level n0. The concentration of RANKL is determined by:

Factors FB are released by bone destruction, αBBi,j, in proportion to the local factor

concentration, with natural decay of the factors, σBFB; ensuring the density never exceeds

the saturation level p0. As such, the dynamics of the bone related factors are calculated

through:

Periodic boundary conditions were considered only for the left and right sides of the

microenvironment, while no-flux boundaries were imposed on the top and bottom of the two

dimensional grid.
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Materials and Methods

Mathematical model

Parameters for the HCA model were derived from empirical and published data (Table 1)

(9). The model is comprised of a grid (200×50 points) representing 2×0.5 mm2 of the bone

microenvironment. A major advantage of the HCA is in its intimate interconnection with

experimental data, where the model and the experiments inform each other. This increases

the accuracy of the model abstractions and connectivity of the basic elements, which yields

reliable and biologically relevant emergent behaviors. To model the normal sequence of the

BMU program, we have focused on understanding the role and behavior of the key

regulators of the BMU dynamics. The principal cellular players: bone, MSCs, pOBs, OBs,

pOCs and OCs, have been explicitly modelled as agents in a grid following specific rule sets

in a physical microenvironment (see Quick guide to assumptions and equations).

Collectively, these components find a natural homeostatic balance that recapitulate the

dynamics of bone remodeling, a homeostasis that can be perturbed via the introduction of

metastatic PCa cells.

Immunofluorescence and quantitation

Human prostate to bone metastases samples (5µm), provided by Dr. Robert Vessella

(University of Washington), were rehydrated and blocked prior to the addition of phospho-

specific anti-Smad2 (1:200 dilution; Millipore) and pan anti-Cytokeratin (1:200 dilution;

Sigma) and appropriate IgG controls. Tissue sections were incubated overnight at 4°C.

Subsequently, species-specific secondary AlexaFluor 568 and AlexaFluor 488-conjugated

antibodies (1: 1000 dilution for one hour at room temperature; Invitrogen) were added for

imaging by microscopy. For semi-quantitative analysis, regional images were segmented

based on the intensity of staining using Definions Tissue Studio (TS)©.

Migration

Osteoblast (MC3T3) and MSC migration was assessed using a modified Boyden Chamber

assay. Cells (5×105) were seeded in the upper chamber and their migration to TGFβ rich

PAIII conditioned media in the presence of a TGFβ inhibitor (1D11; Genzyme) or isotype

control (13C4) at a concentration of 5µg/mL was measured over a 5 hour period at 37°C.

Migrated cells were stained with hematoxylin and air dried. The number of migrated cells

was counted in 3 random 20× fields for each condition. All experiments were performed in

triplicate.

Intratibial Prostate Model of osteogenesis, histology and TRAcP staining

All animal experiments were done with University of South Florida IACUC approval (CCL;

#R3886). PAIII luciferase expressing cells were injected (1×105 in 10 µl volume) into the

tibia of anesthetized immunocompromised mice (recombinase activiating gene-2 null;

RAG-2−/−) (20). Tumor growth was imaged using bioluminescence imaging and quantitated

with IVIS Living Image software. After two weeks, tumor bearing tibias were excised, soft

tissue removed and processed for histology and histomorphometry as we have previously

described (19, 21).
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For cell culture and statistical methods, please see supplementary materials.

Results

Key for the generation of the BMU was the incorporation of major cellular players namely

the PCa metastases, MSCs, pOBs, OBs, pOCs and OCs. Further, based on the literature,

RANKL, TGFβ and bone derived factors were considered main mediators driving the

cellular interactions (14). While RANKL has been well characterized in the context of

prostate to bone metastases, few studies have explored the role of TGFβ signaling in this

setting. Therefore, we initially examined the activity of TGFβ signaling in prostate to bone

metastases in human specimens. Using phosphorylated SMAD2 (pSMAD2) as a readout for

TGFβ receptor activity, our results indicated that TGFβ signaling is active in human prostate

to bone metastases (Fig. 2A). Quantitative analysis revealed that in the human specimens,

TGFβ signaling was highest in the prostate cancer cells but we also observed strong staining

in stromal cells including osteoblasts (Fig. 2B). We also examined the effects of TGFβ on

the proliferation and migration of the cellular components of the vicious cycle including

prostate cancer cells, osteoclast precursors and osteoblast precursors, including MSCs. Of

note, we observed that TGFβ significantly impacted the migration of MSCs and the

osteoblast precursor cell line, MC3T3-E1 suggesting a role of the growth factor in the

recruitment of cells that could impact prostate cancer induced osteogenesis (Fig. 2C–D).

Based on these empirical data and the literature, we parameterized a HCA computational

model of the homeostatic BMU (Fig. 3A, supplemental Fig. 1 and Movie 1). Based on

multiple simulations (N=25) of the computational model, we observed little variation in each

populations cell number. In some instances (N=2), the BMU failed to initiate, in part, due to

spatial and cytokine gradient differences between the different simulations (data not shown)

but, we expect that persistent remodeling initiation stimuli would eventually lead to the

formation of the BMU in vivo. We also observed that in a subset of BMU simulations (N=2)

that simultaneous osteoclast fusion resulted in two sites of resorption. However, the

generation of BDFs by the osteoclasts sufficiently increased osteoblast numbers and

returned the BMU to baseline (data not shown). Importantly, the typical interactions

between the different elements of the computational model result in a homeostatic BMU. It

is important to note that each of the cells behave as autonomous agents and possesses the

inherent ability to respond to the surrounding environment independently.

Next, we introduced a single metastatic PCa cell expressing TGFβ ligand and receptors into

the BMU. Interestingly, we observed that in many of the simulations (N=18 of 25) the

metastases failed to generate a lesion. We anticipate that the introduction of PCa emboli

would significantly enhance the “take rate.” This “take rate” result emphasizes the stochastic

nature of the model and reflects the in vivo reality where not every metastatic cancer cell

that successfully invades a BMU would result in a viable lesion. In the simulations where

lesions were initiated (N=7 of 25) we observed that after 10 days, the presence of the

prostate cancer cells resulted in the integrity of the canopy being compromised and a

resultant increase in osteoclast recruitment and maturation (Fig. 3B). Over time, the prostate

cancer cells expanded resulting in MSC infiltration and osteoblast mediated bone formation
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ultimately recapitulating the “vicious cycle” paradigm (Fig. 3B, supplemental Fig. 2 and

Movie 2).

Analysis of the computational prostate cancer-bone microenvironment at day 240 revealed

striking histological similarities to an in vivo model of the osteogenic/osteolytic prostate to

bone metastasis environment (Fig. 4A–B). We noted that the number of prostate cancer cells

varied amongst simulations (8625 ±4580; N=5) but in general the growth rate predicted by

the computational model was comparable to the growth rate of the prostate cancer cells in

vivo (Supplemental Fig. 3). We also noted similar proportions of stromal cell populations at

the computational and biological study endpoints (Fig4C–D). In the computational model,

distinct phases of cell activity were observed. For example, the numbers of adult osteoblasts

increased over time but notable plateaus prior to increases in cell number existed (Fig. 4C).

These plateaus in adult osteoblasts corresponded with dips in the pOB and pOC precursor

population. MSC numbers however, gradually increased over time and in general, paralleled

increases in cancer cell number. In fact the model predicts that MSCs are crucial for the

progression of the metastases since relaxing the probability of recruitment greatly impacts

the growth of the metastases (Supplemental Fig. 4). Furthermore, we observed that

osteoclasts were critical for cancer progression in the model with numbers changing over

time from zero to 12 (Fig. 4E). While the in vivo model output has a similar number of

osteoclasts per field (Fig. 4D and F) at the study endpoint, the phasic nature of osteoclast

involvement is not apparent.

To test the applicability of the model in treating prostate to bone metastases we applied two

standard of care treatments, namely, a bisphosphonate and an anti-RANKL inhibitor that

induce osteoclast apoptosis during resorption and inhibit osteoclastogenesis respectively. To

mimic the clinical scenario, we applied the bisphosphonate at a time where metastases had

established (Day 80), although it should be noted that therapies could be applied at any

juncture to the model (Fig. 5A–B and D; N=5 simulations per group). During

bisphosphonate treatment, osteoclasts still formed but typically died within 24 hours of

initiating bone resorption (Fig. 5B lower panel). However, residual bone resorption during

bisphosphonate therapy was sufficient to sustain the metastases with the number of cancer

cells on average at the final time point being 7138±2343 (n=5) compared to non-treated

control of 8624±4580 (n=5; p>0.05). Interestingly, the application of an anti-RANKL

inhibitor halted cancer growth with no cancer cells detectable after 20 days of administration

(Fig 5C–D; p<0.05). These data suggest that treatment with anti-RANKL inhibitors should

be curative in the clinical setting. However, in clinical trials with anti-RANKL inhibitors

such as Xgeva, there is a slight but not significant increase in survival of patients on the

therapy compared to bisphosphonates (2). In our simulations we found that reducing the

efficacy of the anti-RANKL inhibitor from 100% to 40% resulted in an output of cancer

cells (3157±3037; N=5)) that was comparable to that of the bisphosphonate treated group

(7138±2343 cancer cells; N=5)(Fig. 5B and Supplemental Fig. 5). These data suggest that

improved efficacy of anti-RANKL delivery into the prostate cancer bone microenvironment

could be curative.
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Discussion

In the current study we have generated a faithful computational model of the BMU. It is

important to note that the homeostatic behavior is not hardcoded but emerges from the

interactions between the different primary cell types of the bone in response to TGFβ,

RANKL and BDFs. Further, informed by experimental evidence, the introduction of a

simulated TGFβ ligand and receptor expressing PCa cell into the BMU resulted in a vicious

cycle that yielded mixed osteogenic/osteolytic lesions over clinically relevant periods of

time. Key findings arising from the computational model include: 1) the ability to assess

temporal changes in cellular populations and dissect complex dynamics that are difficult to

determine in vivo 2) the phasic osteolytic/osteogenic nature of the metastases, 3) the

application of clinically used therapies such as bisphosphonates and anti-RANKL therapies

illustrate the usefulness of the model in predicting the efficacy of targeted inhibitors and, 4)

the impact of inhibitors at varying doses on the progression of prostate to bone metastases.

In our study, we selected the BMU as the primary target for metastatic PCa cells in which to

establish and grow. This is logical since reports have shown that high rates of bone turnover

correlate with poorer prognoses for prostate cancer patients and that the metastases can

utilize many of the bioavailable factors present in the remodeling environment (22–24).

Based on this rationale, we introduced a single metastatic prostate cancer cell into the BMU

that over time recapitulated the vicious cycle paradigm. The “histological” output of the

computational model at the endpoint was remarkably similar both in morphology and in

cellular population proportion to an in vivo model used by our group to study mixed prostate

to bone metastases. In contrast however, the computational model illustrates that the cellular

population in the prostate cancer-bone microenvironment is dynamic and changes occur

both exponentially (tumor growth) but also in phases (osteoclast, osteoblasts). For example,

our model illustrates that osteoclast numbers rarely exceed a total of 20 out of approx. 2×104

cells per computational field of view (Fig. 4C and E). Reports have shown that high levels

of TGFβ can hinder osteoclastogenesis therefore, limiting the number of osteoclasts that can

form in the tumor-bone microenvironment even in the presence of RANKL producing

osteoblast precursors (25). In fact our results show that osteoclast mediated bone resorption

is critical for the induction of the osteogenic metastases, an observation that is supports the

use of anti-RANKL therapies in men with osteogenic prostate to bone metastases.

In a number of model iterations, we observed that the recruitment of MSCs to the prostate

cancer-bone microenvironment was essential for the generation of osteoblast precursors and

the development of osteogenic lesions. Our in vitro data also show that TGFβ contributes to

MSCs and osteoblast precursor migration therefore, providing a means through which these

cell types can be recruited to areas of prostate to bone metastases and contribute to their

progression (Fig. 2). Although the role of MSCs in the prostate cancer-bone

microenvironment has not been explicitly explored thus far, our model predicts an important

role for this cell type in tumor growth. It is important to note that we did not consider the

trans-differentiation of prostate cancer cells into osteoblasts but “osteomimicry” is a distinct

possibility that could also be integrated into future iterations of the model (26).
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The ability to dissect changes in cellular composition in the computational model provides

key insights into how the cancer cells, MSCs, osteoblast precursors, osteoblasts, osteoclast

precursors and osteoclasts are interacting with each other over a clinically relevant period of

greater than 200 days. In vivo models are typically analyzed at end point or at predetermined

time steps in order to assess cancer growth and changes in the microenvironment in control

and test groups. For example, the MDA-MB-231 progression in bone is often measured at

weekly time points (27). The computational model generated in this study clearly illustrates

that a number of the host microenvironment components, notably the mature osteoclasts and

osteoblasts, undergo phases of activity and rest (Figs. 3 & 4). This level of resolution is not

available in biological models but demonstrates that the time-points or end-points chosen for

in vivo models are a “snapshot” that may not be truly reflective of what has, or is about to

happen in the tumor-bone microenvironment. Knowledge of the dynamic changes occurring

over time in the computational cancer bone-microenvironment could lead to a better

understanding of when to apply inhibitors or what happens to the cell populations over time

once inhibitors have been applied.

Bisphosphonates and more recently anti-RANKL therapies are used as treatment strategies

to protect patients with prostate to bone metastases from skeletal related events (SREs).

Studies have shown that bisphosphonates can extend the average time to SRE for patients

and anti-RANKL based therapies are significantly better than bisphosphonates in extending

that time to first SRE (2, 28). However, neither treatment increases overall survival. We

applied these inhibitors to our computational model. Assuming an efficacy of 100%,

application of a bisphosphonate after a period in which the metastasis is actively growing

(day 80) demonstrated an impact on osteoclast activity and on tumor growth. This time point

was chosen based on the prostate metastases being established and actively growing but

therapeutics could be applied at any juncture, a useful feature to study the response of

multiple bone metastases at various stages of progression. Subsequent to the application of

bisphosphonates to the model at day 80, we observed that osteoclasts still formed and that

the residual production of TGFβ and bone derived factors was sufficient to sustain tumor

growth, albeit to a lesser extent compared to the non-treatment control arm (Fig. 5).

Significantly, we also assumed that the dosing of bisphosphonates was at 100% efficacy

over the course of the therapy but in reality there are most likely changes in concentrations.

Gradients in therapy concentration can be accounted for and pharmacokinetics can be

explicitly simulated in the computational model and it will be interesting to determine the

impact of dosing gradients on the behavior of the cell populations over time in the

computational microenvironment.

Application of an anti-RANKL inhibitor, again at a presumed efficacy of 100%,

significantly impacted the prostate tumor-bone microenvironment by preventing osteoclast

formation, and subsequently, tumor growth. The model therefore, predicts that anti-RANKL

inhibitors should be curative in the clinical setting. However, the clinical reality is that anti-

RANKL inhibitors do not significantly extend overall survival in men with metastatic

prostate cancer (2). Interestingly, reducing the efficiency of the anti-RANKL therapy to 40%

closely mimics that of the bisphosphonate treatment and suggests that increasing doses or

better targeting of the anti-RANKL inhibitors to the bone could enhance the efficacy of the
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drug provided that there are no or minimal increases in noted side effects such as

osteonecrosis of the jaw (ONJ) or cataract formation (supplemental Fig. 3). Clinically, the

dosage and frequency of administration of anti-RANKL therapy such as Xgeva is based on

trials that demonstrated the optimal balance of efficacy, as determined by a greater than 70%

decrease in urine N-terminal collagen fragments (NTX), and tolerability was 120mg sub-

cutaneously delivered every four weeks (29). It is possible that higher doses may prove more

efficient in significantly enhancing overall survival in patients with prostate to bone

metastases as suggested by the computational model but this increase in dose may be

outweighed by increased risks of side effects. A major advantage of the computational

model is the application of combination or putative therapies to study cellular behavior in

the prostate bone-microenvironment over time. For example, our results highlight the role of

active TGFβ signaling in the cancer and host cells of human prostate to bone metastases and

in the migration of MSCs and osteoblasts (Fig. 2). This observation is in keeping with other

studies and underscores the key role TGFβ signaling plays in the bone microenvironment in

regards to promoting the progression of prostate to bone metastases. The computational

model could therefore easily test the efficacy of TGFβ inhibitors applied to the prostate

cancer-bone microenvironment and predictions used to inform pre-clinical and ultimately

clinical trials.

There are a number of caveats to the computational model described herein. Quantitative

predictions from computational models are typically dependent on the information used to

parameterize it. The key values used to parameterize the computational model presented in

this paper are based on TGFβ and RANKL. The flexibility of the model ensures that ranges

in the concentration and balance of other factors and cells that can impact the BMU in the

normal and disease setting can be easily integrated. Enhancing these qualities will improve

the accuracy of the generated predictions but our existing model is already quite robust to

changes in the parameterization (Supplemental Fig. 4). While our model is relatively

sophisticated, simpler less computationally intensive mathematical models have a number of

advantages in that they are easier to understand and analyze. Furthermore, having fewer

parameters they are amenable to the fitting of existing experimental data using techniques

such as approximate Bayesian computation (ABC). Fitting extant experimental data to

mathematical models has been used successfully to drive a model to closely represent a set

of observations in cases such as imatinib response in leukemia patients (30). These

approaches can also provide exact results when sufficient summaries are used (31). Simpler

mathematical models are usually preferable, especially when values for biological

parameters are largely unknown (32, 33). In this case, a more complex model was necessary

to capture the bone homeostasis emerging from the interactions between MSCs, OCs, OBs,

precursor OCs and precursor OBs. The existence of reliable empirical data made it possible

to properly parameterize such model. This has allowed us to elucidate the mechanisms

involved in the vicious cycle of prostate to bone metastases. One drawback of more complex

computational models is that they are computationally intensive therefore, limiting the

ability to perform large numbers of simulations that statistically can explore the robustness

of each of the chosen parameters. However, in multiple simulations (N=25) we have ensured

that the plausible plasticity of these parameters fall within the currently accepted biological

empirical values. As such we have focused on investigating changes on the parameters that
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may vary experimentally; especially molecules such as RANKL and TGFB that are difficult

to measure in vivo that have yielded interesting insights (Figure 5 & Supplemental Material).

Follow-up experiments will use increased numbers of simulations to enhance statistical

analysis and use new biological parameters being empirically determined in order to

improve the accuracy of the model predictions.

In conclusion, using empirical and published data, we have generated a hybrid discreet

model of the BMU and shown that the introduction of single active metastatic prostate

cancer cell into the BMU is sufficient to generate osteogenic lesions that are similar in

pathophysiology to those in an animal model of the disease. Further, the application of

existing clinical therapies to the computational model underscores the value of this new

approach for testing the impact of combining available therapies or putative targeted

therapies for the treatment of prostate to bone metastases. Clinically, the versatility of the

equations used to build the computational model ensure that it can be quickly individualized

and be a powerful tool for the delivery of precision medicine to better treat and cure men

with prostate to bone metastases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Major Findings

• The hybrid cellular automata model recapitulates the key aspects of the

physiology of the BMU as well as the “vicious cycle” of prostate to bone

metastases

• Progression of osteogenic prostate to bone metastases is critical on osteoclast

activity and MSCs.

• The computational model also illustrates the temporal and phasic nature of the

metastases.

• The application of clinically used bisphosphonates and anti-RANKL therapies

to the computational model illustrates the power of the approach in predicting

the efficacy of current and putative therapies.

Araujo et al. Page 14

Cancer Res. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.
Developing a model of the prostate tumor bone microenvironment. A, Interaction diagram

showing the positive (blue) and negative (red) interactions between cell types (boxes) and

factors such as TGFβ, RANKL and BDFs. B-D, Flowchart describing the sequence of steps

followed by osteogenic cells (B), osteolytic cells (C) and prostate cancer cells (D) in the

mathematical model.
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Figure 2.
TGFβ expression in human prostate to bone metastases. A, Patient samples (N=9) were

stained for pSMAD2 (red), pan-cytokeratin (green) with nuclear contrast (DAPI). Dashed

inset is magnified in panel on right. B, The intensity of pSMAD2 staining in patient samples

was assessed using Definiens Tissue Studio software. C–D, TGFβ significantly enhances the

migration of MSCs and MC3T3 osteoblast precursors. Representative low power objective

(20×) filters illustrating MSC (C) and MC3T3 (D) migration to prostate cancer conditioned

media (PAIII CM) in the presence of a TGFβ blocking antibody (1D11) or IgG control

(13C4). Serum-free media (SFM) was used as a baseline control for migration. Asterisk

denotes statistical significance (p<0.05).
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Figure 3.
Simulation runs from the BMU model of the bone modeling unit (BMU) and the metastatic

prostate cancer bone microenvironment (PCa-BME). A, Canopy formation in response to

local/systemic stimuli (Day 0). Initial osteoid degradation by retracting osteoblasts can result

in the release of TGFβ that stimulates pOB expansion subsequent to asymmetric division by

MSCs. Scale bar represents 250 µm. pOBs recruit pOCs in a RANKL dependent manner

(Day 2). As they fuse, the pOCs become fully differentiated OCs that start resorbing bone.

Inset illustrates bone resorption in the BMU. Scale bar represents 100 µm. Upon osteoclast

apoptosis, pOBs differentiate into adult osteoblasts (OBs) and begin the apposition phase

(Day 40). OBs rebuild bone over the course of 3 months and undergo terminal

differentiation into osteocytes during the process (Day 100). B, The introduction of a TGFβ
ligand and receptor expressing metastatic PCa cell perturbs BMU homeostasis (Day 0). Inset

highlights tumor-bone interaction. Scale bars are 250 µm. and 100 µm respectively. The

BMU canopy is compromised at Day 40 and uncontrolled bone turnover results in the

enhanced recruitment of MSCs and pOCs that establishes a vicious cycle (Day 100–200).
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Figure 4.
Computational and biological model output comparisons of the prostate cancer-bone

microenvironment. A–B, The computational output (A) of the prostate cancer-bone

microenvironment is similar to that of an in vivo prostate cancer to bone metastasis model

(B). Dashed line in B represents the tumor-pathological bone interface. C, Temporal changes

in cell population in the computational model. D, Analysis of cell populations (prostate

cancer cells, bone rimming cuboidal osteoblasts and TRAcP positive osteoclasts) and bone

volume in biological model endpoint. E–F, Computational model outputs reveal the
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fluctuation of osteoclast numbers over time (E), numbers that correlate with the numbers of

TRAcP osteoclasts (arrows) in similar sized fields in vivo (F).
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Figure 5.
Application of therapies to the computational model of the metastatic prostate cancer bone

microenvironment. A–C, The impact of standard of care therapies on the host

microenvironment cell numbers in prostate to bone metastases was assessed in simulations

where no therapy was applied (Control; A), Bisphosphonates at a dosing of 4mg/5ml

intravenous (Bisphosphonate; B) or RANKL targeted therapy (Anti-RANKL; C) at a dose of

120mg/1.7ml intravenous were applied at approximately 80 days post metastasis (Rx On).

D–E, The impact of placebo control and standard of care therapies on tumor volume (D) and

bone volume (E) over time.
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Table 1

Parameter Value Normalized
value

Reference

Osteoblast Diameter 15µm 1 px (34)

Osteoclast Diameter 50–100µm 3–5px (35)

Osteoclast migration speed 100µm/hr
5nm/s but can vary between 30 and 248 mm/h.

1px/ts (36)
(37)
(38)

Osteoblast migration speed 10µm/hr
0.1470 +/− 0.02mm/day

1/6px/ts (36)
(39)

Cell cycle time 24h 240ts Estimated

TGFβ diffusion rate 750 µm2/min
2×10−9 cm2/s DPP-10µm/2

0.01px/ts (40)
(8)
(41)

TGFβ half-life 2 min 2–3 min. Presence of LAP can extend half life
to 100 min in plasma.

0.5ts (42)
(43)

TGFβ Quantity released by
OCL/day

0.00558ng per day 1 MaxTGFβ/ts Estimated

TGFβ Quantity released by tumor
cell/day

0.005pg per day 0.0001 MaxTGFβ/ts Estimated

Rate of bone degradation 10µm/day
43µm3/hr-1225µm3/hr for ~2weeks

1/240px/ts (44)
(45)

Volume of a resorption pit 78539 um3 = 7.58× 10−14 m3 70px Assumed from the
diameter of an
osteoclast and the
amount of bone
resorbed over a 24-
hour period.

Bone formation 0.656 µm/day but up to .24mm/year 1 µm/day 1/850px/ts (45)
(46)

BMU size 2×0.5 mm2 200×50px Estimated
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