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Genome-wide analysis of parent-of-origin effects
In non-syndromic orofacial clefts
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Paras Gargl’s, Kerstin U Ludwig2’3’8, Anne C Bohmer?3, Michele Rubini?, Regine Steegers-Theunissen
Peter A Mossey’, Elisabeth Mangold® and Andrew ] Sharp*!

Parent-of-origin (PofQ) effects, such as imprinting are a phenomenon where the effect of variants depends on parental origin.
Conventional association studies assume that phenotypic effects are independent of parental origin, and are thus severely
underpowered to detect such non-Mendelian effects. Risk of orofacial clefts is influenced by genetic and environmental effects,
the latter including maternal-specific factors such as perinatal smoking and folate intake. To identify variants showing PofO
effects in orofacial clefts we have used a modification of the family-based transmission disequilibrium test to screen for biased
transmission from mothers and fathers to affected offspring, biased ratios of maternal versus paternal transmission, and biased
frequencies of reciprocal classes of heterozygotes among offspring. We applied these methods to analyze published genome-
wide single-nucleotide polymorphism (SNP) data from ~ 2500 trios mainly of European and Asian ethnicity with non-syndromic
orofacial clefts, followed by analysis of 64 candidate SNPs in a replication cohort of ~ 1200 trios of European origin. In our
combined analysis, we did not identify any SNPs achieving conventional genome-wide significance (P<5 x 10 ~8). However, we
observed an overall excess of loci showing maternal versus paternal transmission bias (P=0.013), and identified two loci that
showed nominally significant effects in the same direction in both the discovery and replication cohorts, raising the potential for

PofO effects. These include a possible maternal-specific transmission bias associated with rs12543318 at 8q21.3, a locus
identified in a recent meta-analysis of non-syndromic cleft (maternal-specific P=1.5 x 10 7, paternal-specific P=0.17).
Overall, we conclude from this analysis that there are subtle hints of PofO effects in orofacial clefting.
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INTRODUCTION
Orofacial clefting (OFC) is one of the most common of all human
congenital birth defects with a prevalence rate of 1 in 700 live births
worldwide.? Tt may either occur in the context of malformation
syndromes, or as an isolated anomaly (ie, non-syndromic OFC,
NSOFC). Non-syndromic clefts are divided into two categories on the
basis of epidemiological and embryological research findings: (i) cleft lip
with or without cleft palate (CL/P) and (ii) cleft palate only (CPO).>*
Although genome-wide association studies (GWAS) have identified
several genetic loci associated with risk oral clefting,>” there is
significant evidence of other biological factors contributing to
etiology of OFC.® These may include parent-of-origin (PofO) effects
such as imprinting,” and other effects such as maternal—fetal inter-
actions. In fact, environmental studies have indicated maternal
smoking, and potentially alcohol consumption, during pregnancy
greatly increase the risk of clefting in offspring, with some evidence of
genetic interactions.>!®!! Similarly, according to several studies,
multi-vitamin supplements with or without folic acid taken during
pregnancy have been shown to decrease the risk of oral clefting, with a
stronger effect seen in CL/P as compared with CPO.!2"!* If levels of

circulating folate are influenced by genetic factors, then it can be
hypothesized any maternal genes involved in dictating circulating
folate levels could also alter the risk of OFCs in the fetus. Indeed,
evidence in support of this idea has recently been published.!> As
such, some genetic effects on disease risk can operate via a mechanism
of maternal/fetal interaction. Previous candidate gene studies have
suggested evidence for PofO effects in CL/P providing a strong
rationale for performing comprehensive analysis to identify
unconventional modes of inheritance.!61°

However, non-Mendelian inheritance patterns such as imprinting
are generally ignored in conventional GWAS, as these tests ignore the
differential effects of maternally and paternally inherited alleles on
phenotype. Indeed, simple case—control GWAS are unable to address
this question. A detailed assessment of the extent of PofO effects
across the genome is therefore important for the proper under-
standing of genome function in relation to disease. Although
individual candidate gene studies have suggested possible PofO effects
in OFC, a recent GWAS specifically investigated the role of PofO
effects in OFCs, but was unable to identify any loci showing genome-
wide significant effects.?
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Previously, we used association methods specifically designed to
detect PofO effects, and applied these to successfully detect quanti-
tative trait loci exerting PofO effects on the expression of imprinted
genes missed by conventional approaches.?! These methods take
advantage of trio data to first define the parental origin of each
allele in the offspring based on rules of Mendelian inheritance, and
then perform separate association analyses of the two parental
genotypes.

To analyze the role of PofO effects in common complex diseases,
here we have employed an extension of the transmission asymmetry
test and parental asymmetry test, to detect PofO effects using single-
nucleotide polymorphism (SNP) genotyping in trios.?>?> We applied
these methods to re-analyze publicly available genotype data from
trios with NSOFC from the database of Genotypes and Phenotypes.?*
Our strategy analyzes associations separately for the maternally and
paternally derived alleles, providing considerably increased power to
detect PofO effects over conventional GWAS approaches. By first
annotating parental origin of each allele in the affected offspring, we
can conduct specific tests for association with maternal and paternal
alleles independently, together with additional tests to look for
differential effects of alleles inherited maternally versus paternally.
From this initial genome-wide screen, we then selected 64 SNPs
showing the strongest putative transmission bias for follow-up in a
replication cohort of ~1200 additional trios of European origin.
Although we failed to identify any loci with PofO affects achieving
genome-wide significance, our results do provide evidence suggesting
biases for maternally inherited genetic factors influencing the risk of
NSOFC.

METHODS

Genome-wide detection of putative PofO effects

Genome-wide SNP data for 7018 individuals comprising 2339 trios in which
each child was affected with any type of NSOFC (CL/P or CPO), were
downloaded from dbGaP (Accession number: phs000094.v1.p1).” Available
genotype data included a total of 1387466 SNPs, comprising 601273
genotyped SNPs and an additional 786193 SNPs with discrete genotypes
imputed by BEAGLE using HapMap Phase II samples as a reference panel.
After converting high confidence imputed SNPs at r2>0.9 to their respective
genotypes and filtering non-informative SNPs (see Supplementary
Information), we identified the transmitted and non-transmitted alleles in
each parent, and the paternally and maternally inherited alleles in each child
using rules of Mendelian inheritance. We then performed four different tests to
detect putative PofO effects: (i) analysis of transmission bias from heterozygous
fathers to affected children (PAT); (ii) analysis of transmission bias from
heterozygous mothers to affected children (MAT); (iii) a comparison with the
maternal and paternal odds ratios (PofO); and (iv) a comparison of the relative
frequency of the two classes of heterozygotes in affected children (HET)
(Figure 1). We analyzed this data set using seven different combinations based
on disease subtype (NSCL/P and NSCPO>*) and ethnic groups (Europeans
and Asians). The number of SNPs and samples used in each analysis are shown
in Table 1.

SNPs showing putative parental-specific transmission bias in this discovery
cohort were defined as follows: as a primary filter, we first selected those SNPs
showing nominal significance (Ppofn<0.05) in the PofO test, despite the large
number of tests. Then, using a significance threshold of P<1 x 107>, SNPs
were considered to show a possible PofO bias if they were significant in any of
the four tests: PAT, MAT, PofO and HET. A subset of these SNPs was then
carried forward for further investigation in a replication cohort (see below).

Using the PLINK -blocks function,?> we calculated the number of distinct
linkage disequilibrium (LD) blocks containing GWAS SNPs showing
Ppofo<0.05, and either Pyap<10~* or Ppyr<10~% Enrichment analysis
was performed using y?-test with d.f.= 1, under the null hypothesis that there
should be equal numbers of MAT and PAT LD blocks.
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Replication study

We selected 64 SNPs (32 SNPs for NSOFC, 33 SNPs for NSCL/P and 5 SNPs
for NSCPO; with six SNPs shared between NSOFC and NSCL/P) for a
replication study using 1197 European trios. Seven hundred and forty six trios
were part of the EUROCRAN/ITALCLEFT studies (273 from the Netherlands,
124 from Italy, 118 from the UK, 73 from Slovakia, 71 from Hungary, 33 from
Bulgaria, 23 from Slovenia, 21 from Estonia and 10 from Spain), and the 451
remaining trios were recruited in Bonn, Germany.® Two additional SNPs
overlapping SEMA4D, a gene with roles in axon guidance,?® were also included
for CLP + CPO replication analysis. At the phenotypic level, the sample was
subdivided into 931 trios where the index patient had NSCL/P and 266 with
NSCPO (see Supplementary Information).

Genotyping was conducted using Sequenom MALDI-ToF mass spectro-
meter MassArray system (Sequenom Inc., San Diego, CA, USA). Primers were
synthesized at Metabion (Martinsried, Germany). Using Sequenom MassARRAY
Assay Design Software 3.4, two multiplex assays comprising all 64 selected
SNPs plus the gender-specific variant were designed. Genotype data were
analyzed using Sequenom Spectrodesigner Software package. Inter- and
intraplate duplicates were included to check for genotype consistencies across
DNA plates. Allele peaks were analyzed using Sequenom Typer Analysis
software and genotype calls were confirmed by visual inspection of cluster
plots. After quality control filtering, our final filtered replication data set
comprised 48 SNPs mapping to 38 distinct chromosomal loci (see
Supplementary Information). As the patient consent does not allow any
unrestricted release of data, even in anonymised form, genotypes were not
deposited in a public database. However, genotypes can be provided by the
authors upon request.

In the replication sample PAT, MAT, PofO and HET tests for analysis of
PofO effects were performed, as described above. Subsequently, combined
analyses in which we pooled both the discovery and replication samples were
conducted.

RESULTS

Genome-wide analysis of PofO effects

Table 1 summarizes the results for genome-wide analysis of PofO
effects in the different phenotypic and ethnic groups analyzed. Based
on a low stringency discovery threshold of P<1 x 107> in any of the
four tests for PofO effects (PAT, MAT, PofO and HET), among the
combined NSCL/P and NSCPO samples, we identified a total of 55
SNPs (representing 13 distinct LD blocks) when the two ethnic
groups were analyzed together, 31 SNPs (21 LD blocks) using only
European samples, and 9 SNPs (8 LD blocks) using only Asian
samples (Supplementary Table 1). Similarly, when performing our
analysis based on each disease subtype, we identified an additional 52,
21 and 16 SNPs (falling in 14, 17 and 12 separate LD blocks)
associated with NSCL/P based on the analysis of all samples combined
(Europeans and Asians), respectively (Supplementary Table 2). In the
analysis of NSCPO, we identified 36 SNPs (representing 19 LD
blocks) when analyzing all ethnic groups (Supplementary Table 3).

The most significant site, showing a putative association only when
transmitted by the mother, was produced by SNP rs3814878
(16p11.2) in the MAT test (Pyar=1.69 x 10~7). This same SNP
showed no significant transmission bias in PAT test (Ppar=0.052)
(Figure 2, SNP M11). This region contains an interesting candidate
gene for OFC, namely TBX6 (Supplementary Figure 1).

To investigate whether there was any bias in the transmission ratio
of nominally significant associations between the two parental alleles,
we calculated the number of independent loci (LD blocks) containing
any SNP exceeding a threshold of P<1 x 10~ in the MAT and PAT
tests for each ethnic group and each category of OFC (Figure 3).
In every case the total number of maternal-specific signals equaled or
exceeded the number of paternal-specific signals, with a significant
excess of maternal-specific signals observed in three categories: All
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Oral Cleft Lip/Palate (CL/P)

dbGaP Study Accession: phs000094.v1.p1

1,387,466 SNPs in 7598 individuals on autosomal chromosomes after imputation with
BEAGLE using HapMap samples as a reference set

l

After QC filtering, 1,068,286 SNPs in 5,817 individuals in complete trios were used for further analysis

4

Using rules of Mendelian inheritance, the parental origin of inherited alleles was determined in
each child. Example of a SNP with alleles A and B is given below:

AviBr

T: Transmitted allele
NT: Non Transmitted allele

M: Maternally inherited allele
P: Paternally inherited allele
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Figure 1 Summary of the method used to screen for parent-of-origin effects in orofacial clefts.

(NSCL/P +NSCPO, P=0.013), Europeans (NSCL/P -+ NSCPO,
P=0.026) and All (NSCPO, P=0.003). A similar excess of loci
showing maternal-specific transmission bias was also observed using
SNPs with an increased significance threshold of P<1x 10> in the
MAT and PAT tests, although due to the smaller number of loci, these
differences did not reach statistical significance (data not shown).

We calculated the genomic inflation factors for the MAT and PAT
tests (Supplementary Table 4). We observed a small increase in the
genomic inflation factor for the MAT compared with the PAT in all
categories, although the magnitude of this bias is small, with the
maximum genomic inflation factor observed being 1.04. QQ plots for
the MAT and PAT are shown in Supplementary Figure 2.

Replication study
The results of replication analysis using 48 SNPs passing all quality
filtering steps are summarized in Table 2 and Supplementary Table 5.
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Among the SNPs exceeding our low stringency discovery thresholds
in the initiall GWAS (P<1 x 107), only two passed our thresholds
for successful replication, showing P<0.01 with the MAT or PAT in
the replication cohort in the same direction as observed in the
discovery phase. Considering the replication data alone, the most
significant P-value observed was Ppyr=0.002 at SNP rs719325 in
NSCL/P (Figure 4). This same SNP yielded Ppyr= 8.1 x 10~ in the
discovery GWAS (using combined European and Asian samples),
giving a combined Ppyr=5.4 x 108, However, although in the
discovery GWAS this SNP yielded Pp,so=0.005 and Ppjar=0.69
suggesting this locus shows a paternal-specific transmission bias, this
effect was not seen in the replication cohort, with Pp,go=10.41 and
Priar = 0.048. Results using a conventional TDT test for this SNP
were Prpr=7.8 x 10~ in the discovery GWAS, Prpr=0.002 in the
replication cohort, yielding a combined P=4.9 x 107 %. A second
SNP 1512543318, yielded Pyjor=2.2 x 107° in the discovery GWAS
(NSOEC in European samples), and Pyjar=0.004 in the replication



Parental effects in orofacial clefting
P Garg et al

Table 1 Summary of genome-wide screening for parent-of-origin effects in oral clefts

Number of complete trios Number of filtered SNPs

utilized in genome-wide

used in genome-wide

No. of SNPs (independent LD blocks) identified in
genome-wide screen with P< 1 x 10-% in MAT, PAT,

SNPs carried for-

ward to replication

Cleft type Ethnicity analysis analysis PofO or HET tests study
NSCL/P and NSCPO All individuals 1939 1068286 55 (13) 11+22
Europeans 758 1060874 31 (21) 19
Asians 949 952138 9 (8) —
NSCL/P All individuals 1491 1068429 52 (14) 15
Europeans 570 1060675 21 (17) 18
Asians 742 952438 16 (12) —
NSCPO All individuals 437 1068897 36 (19) 5

Abbreviations: HET, heterozygous; LD, linkage disequilibrium; MAT, maternal; NSCL/P, non-syndromic cleft lip with or without cleft palate; NSCPO, non-syndromic cleft palate only; PAT, paternal;

PofO, parent-of-origin; SNP, single-nucleotide polymorphism.
2Two SNPs overlapping the SEMA4D gene were added to our replication set (see Methods).
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Figure 2 Manhattan plot showing the results of four tests for 22 autosomes performed using all ethnic groups (Europeans and Asians) and disease subtypes
(CL/P and CPO) combined. The y axis shows the —log;o P-value for each test and the red and blue lines represent thresholds of P<1 x 102 (suggestive
association) and 0.05 (nominal significance), respectively. Green dots represent loci showing suggestive associations identified by the four tests (see Methods).
Each locus is labeled based on the test showing P<1 x 10~°: P# for PAT, M# for MAT, PofO# for PofO test and H# for HET. The P-values generated by four
tests for each locus are shown in all four panels using the same label. For example, all SNPs at M11 loci have P<10~° in MAT (above red line), while the
same SNPs show P>0.05 in PAT (below blue line). These SNPs show nominal significance in PofO and HET (between blue and red line).

cohort, giving a combined Pyjar= 1.5 x 10~/ (Figure 4). However,
although this SNP yielded Ppogo = 0.009 in the GWAS PofO test, and
Ppar=0.24 and 0.43 in the discovery and replication cohorts,
respectively, suggesting a putative maternal-specific transmission bias,
results for the PofO test in the replication cohort were not clear
(P=0.12). Results using a conventional TDT test for this SNP were
Prpr=12x10"* in the discovery GWAS, Prpr=0.022 in the

replication cohort, yielding a combined Prpr = 2.4 x 10 ~>. This same
SNP also yielded very similar results in NSCL/P using both European
alone, and the combined European and Asian GWAS and replication
samples.

Results for the 48 SNPs using a conventional TDT (which does not
consider parental origin) are listed in Supplementary Table 6. We
observed four SNPs (corresponding to three LD blocks) yielding both
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Figure 3 A global bias for maternal genetic effects in the etiology of OFCs.
In every comparison using different subtypes of orofacial clefts and
ethnicities (All: all ethnic groups, Eur: Europeans and Asn: Asians), we
observed that the number of maternal-specific signals equals or exceeds the
number of paternal-specific signals. A significant excess (P<0.05) of
maternal-specific signals is observed in three categories, as indicated. Bar
plots show the number of independent loci (LD blocks) with P<1 x 104
identified using the MAT (gray) and PAT (black) tests. A similar excess of
maternal associations was also observed using a more stringent significance
threshold of P<10~5, although due to the smaller number of loci, these
differences did not reach statistical significance (data not shown).

Prpr<0.01 in the discovery cohort and Prpr<0.05 in the replication
cohort.

DISCUSSION

In this study, we have applied modified versions of the Transmission
Asymmetry Test and Parental Asymmetry Test to perform genome-
wide screening for PofO effects associated with non-syndromic oral
cleft in mother/father/affected child trios. We used a previously
published genome-wide SNP data from ~ 2500 trios for discovery,”
followed by genotyping of selected SNPs in a replication cohort of
~1200 trios. Using four tests (PAT, MAT, PofO and HET - see
Methods), a low stringency threshold in the discovery cohort
identified a total of 210 SNPs (corresponding to 88 independent
regions) showing evidence of possible parental-specific transmission
bias associated with risk of non-syndromic oral clefts (NSCL/P or
NSCPO) in various ethnic groups (all, European or Asian
populations). Of these discovery SNPs, 64 were carried forward for
testing in the replication cohort.

Although in our replication analysis we observed several loci
reaching nominal significance in the same direction as the discovery
GWAS data, none of the markers tested achieved generally accepted
definitions of genome-wide significance (P<5 x 10~%) in the com-
bined sample. However, there are several possible explanations for
failure to replicate GWAS signals, including the ‘winners curse’
phenomenon.?’ Of particular note, our replication cohort was
approximately half the size of our discovery cohort, and as a result
is underpowered to detect small effects on disease risk detected in our
discovery phase.

We identified two loci that passed our thresholds for successful
replication (P<1x 107> in the discovery cohort and P<0.01 in
replication with either the MAT or PAT), raising the potential for
PofO effects tagged by these loci. Paternally biased transmission was

European Journal of Human Genetics

detected for rs719325 at 2q25, and this result approached genome-
wide significance in the combined analysis (Ppyr = 5.4 x 10 %), This
marker is located ~164kb upstream of SLC4A3, a gene which
encodes a trans-membrane transport protein involved in regulation
of intracellular pH. SLC4A3 has been described as a candidate gene
for human retinal degeneration,28 however, no role in craniofacial
development has been described so far. Aside from genomic
imprinting, mechanistically it is harder to conceptualize how
paternal-specific effects on disease risk might operate, although
some have been recognized.’

We also identified a possible maternal-specific transmission bias
associated with rs12543318 located within 8q21.3. This same SNP was
recently identified as a susceptibility locus for NSCL/P in a recent
meta-analysis.?’ This marker maps to an intergenic region for which,
so far, no functional information related to OFC is available.
Although the meta-analysis of Ludwig et al.?’ and the current study
utilized many of the same individuals, this previous study did not test
for PofO effects. Comparison of the TDT results for the NSCL/P
group in the present and the trio-part of Ludwig et al?® reveals they
are in the same range (with the slight difference being attributed to
different quality controls on samples). However, the present PofO
analysis suggests the signal at rs12543318 is largely attributable to
maternally derived alleles, as our MAT test yielded a combined
P=1.5x 1077, while the corresponding PAT test gave a combined
P=0.17, with a combined Ppyinp=0.004. No known imprinting
effects map to this region. Thus, the 8q21.3 region might contain a
genetic element which in some way interacts with other maternal-
specific risk effects.

Two other loci that achieved suggestive evidence of replication
(P<1x 1072 in discovery and P<0.1 in replication with the MAT)
are worthy of mention. rs17447439 maps within an intron of the
TP63 gene at 3q28, and showed weak evidence of a maternal-specific
transmission bias. Several studies provide evidence linking TP63 with
the development of OFC. For example, a homozygous mutation in
TP63 has been suggested to have a causative role in NSCL/P.°
Further, a recent genome-wide analysis of p63-binding sites
identified the AP-20 transcription factor as target site.3! AP-2u is
known to be essential for craniofacial development and cranial
closure’? and has been implemented in NSCL/P3? Similarly in the
analysis of NSCPO, a suggestive bias for maternal over-transmission
was observed for rs6539608 located on chromosome 12q21. No genes
or transcripts map to this region, making an interpretation of
functional relevance difficult. Notably, however, Koillinen et aP*
found suggestive linkage to this locus in a study comprising nine
Finnish multiplex families affected with NSCPO.3*

On balance our analysis finds only weak evidence for specific
genetic loci individually contributing to PofO effects in OFC. After
performing replication analysis of 48 SNPs showing suggestive
evidence of PofO effects in the discovery cohort, individually none
of these showed unambiguous confirmation of statistical signals that
would allow us to define any PofO effects with confidence. These
results are broadly consistent with the study of Shi et al,?® which
utilized an alternative method to analyze the same discovery cohort.
One of the limitations of our method compared with the method
used in Shi et al?® is the inability to differentiate between different
types of parental biases, such as imprinting or maternal effects. Our
analysis approach also does not directly consider environmental
effects such as the maternal intrauterine environment. One
advantage of our method, however, is that by performing
independent tests of the maternally and paternally derived alleles
(MAT and PAT tests) we are able to directly compare the relative
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Figure 4 Loci on 2935 and 8g21.3 show suggestive evidence of PofO effects in NSCL/P in both discovery and replication cohorts. (a) A paternal-specific

signal at SNP rs719325 on chromosome 2q35

in combined European and Asian analysis (Pgwas:

PPAT:8.07><10_6, Puar=0.69, Pcomb:

Ppar=5.43 x 1078, PMAT_012) (b) A maternal-specific signal at SNP rs12543318 on chromosome 8g21.3 in European-only analysis (Pgwas:

PPAT*O 31 PMAT72 89 x ].O
combined analysis, respectlvely.

alternative interpretation of our results is that some or all of the loci
we detected with suggestive PofO effects might simply represent weak
risk loci for OFC, and which manifest in our data in only one of the
two parental tests by chance due to insufficient power to reliably
detect these effects in both MAT and PAT tests. As such, we suggest
some of the loci we identify represent interesting candidate regions for
future studies of OFC.

In conclusion, our study provides suggestive evidence for PofO
effects in susceptibility to OFC, identifying several loci showing a
parental transmission bias, and an overall excess of maternal-specific
association signals in the genome. Given abundant evidence supporting
a role for non-Mendelian and transgenerational inheritance patterns in
a variety of different diseases and conditions,” we suggest similar
analyses considering parental origin of risk alleles will likely reveal novel
PofO effects contributing to many human phenotypes.
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