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Underestimation of heritability using a mixed
model with a polygenic covariance structure in a
genome-wide association study for complex traits

Hyunju Ryoo1 and Chaeyoung Lee*,1

Recently, the use of a mixed model methodology in genome-wide association studies (GWAS) has been considered effective

for controlling population stratification and explaining the polygenic effects of complex traits. However, estimating polygenic

variance components and heritability was biased when the mixed model was used. This bias results from a diluted genetic

relationship covariance structure, particularly with a limited number of underlying causal variants. We simulated disease and

quantitative phenotypes with a variety of heritabilities (0.1, 0.2, 0.3, 0.4, and 0.5), prevalence rates (0.1, 0.2, 0.3, and 0.5),

and causal variant numbers (10, 30, 50, and 100). Heritabilities from the simulated data using restricted maximum likelihood

were underestimated in many populations (Po0.05). The underestimation increased with a large heritability, a small

prevalence, and a small number of causal variants. The underestimation was larger in analyzing disease traits compared with

quantitative traits. This study suggests an underestimated heritability in GWAS upon using the mixed model methodology

with an excessively larger number of variants versus causal variants.
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INTRODUCTION

Genome-wide association studies (GWAS) have become routine for
unraveling the genetic variants underlying complex phenotypes in
humans and many other species.1–3A significant concern regarding
data analysis for GWAS has been to control for population
stratification that often produces spurious genetic associations.
Recently, a Hendersonian approach using a mixed model was
introduced to GWAS in order to overcome critical weaknesses of
genomic control,4 principal component analysis,5 and structured
association6 in controlling population stratification. The mixed
model methodology7–8 controls population stratification as well as
reflects polygenic effects by using pairwise genetic relationships
among individuals with abundant genotype data. However, diluted
genomic backgrounds confounded with unnecessary markers would
lead to a bias in genetic parameter estimation, particularly with a
limited number of underlying causal loci. This study aimed to
conduct a simulation study to examine such biases in heritability
estimates using a mixed model.

MATERIALS AND METHODS

Simulation
Data with limited numbers of causal loci were simulated using genomic

information from a Korean population. Originally, 10 038 unrelated Koreans

were recruited by the Korean Genome Epidemiology Study. The Korea

Association REsource (KARE) consortium then obtained genotypes from

8842 individuals at 351 677 single-nucleotide polymorphisms (SNPs) after

genotype calling and quality control for GWAS using the Affymetrix Genome-

Wide Human SNP Array 5.0 (Affymetrix, Inc., Santa Clara, CA, USA).9 In the

current study, genotypes of 6000 individuals with small genetic relationship

(o0.2) were used to simulate phenotypes for disease and quantitative traits

under the assumption of an additive genetic model. The genetic relationship

between individuals j and k was defined as 1
351 677

P351 677

i¼1

ðxij � 2piÞðxik � 2piÞ
2pið1� piÞ where xij

(xik) is the number of copies of the reference allele for the ith SNP of the jth

(kth) individual and pi is the frequency of the reference allele.10 The disease trait

cases and controls were generated under the assumption of the following

threshold model. That is, the case was an individual with a larger disease

liability than the threshold of a normal distribution determined by disease

prevalence of 0.1, 0.2, 0.3, or 0.5, whereas the control was an individual with a

smaller disease liability. Data were simulated using a variety of heritabilities

and numbers of causal SNPs. Input values of the heritabilities were 0.1, 0.2, 0.3,

0.4, and 0.5. The numbers of causal SNPs were 10, 30, 50, and 100, which were

randomly selected from a total of 351 677 SNPs. Their effect sizes were also

randomly generated from a normal distribution with a dispersion parameter

according to heritability. The quantitative trait phenotypes were simulated by

adding a residual to the polygenic effects randomly generated with covariance

structure among individuals. For each population, 50 replicates were

simulated.

Analyses
A mixed model was used to analyze simulated data in the current study:

y ¼ gþ e

where y is the phenotype vector of disease statuses (0 or 1) or quantitative

values, g is the vector of random polygenic effects (g � Nð0;Gs2
gÞ), and e is

the vector of random environmental effects (e � Nð0; Is2
e Þ). G is the n� n

genetic relationship matrix with elements of pairwise relationship from 351 677

SNPs, and I is the n� n identity matrix. s2
g is polygenic variance and s2

e is

environmental variance. Heritability was estimated using restricted maximum

likelihood (REML) estimates of the two-variance components.
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The variance components were obtained using the AI-REML algorithm with

their EM-REML estimates as initial values. Each disease trait heritability was

estimated on the observed scale and also on the liability scale transformed by

the probit function to provide robust estimates.11 The variance component

estimation was conducted using the genome-wide complex trait analysis.10

Sampling variance was estimated empirically from the heritability estimates

obtained across 50 replicates.

Heritability of hypertension
Heritability was estimated using hypertension data from the KARE

consortium. Among 6000 individuals, 945 subjects were self-reported patients

with hypertension. Subjects were assumed to be diagnosed by physicians using

the criteria of either a clinical systolic blood pressure 4140 mm Hg or a

diastolic blood pressure490 mm Hg. The other subjects in the cohort were

used as controls.

RESULTS

The heritability estimation with simulated data for disease traits
showed that heritability was underestimated regardless of heritability
size, prevalence rate, and causal SNP number using the observed scale
(Figure 1). In contrast, the underestimation was dramatically reduced
after the probit transformation, although they were still under-
estimated in many populations (Figure 1). The heritability estimates
did not differ from corresponding input values across a variety of
heritabilities for the data simulated with 100 causal SNPs (0.029% of
the total number of 351 677 SNPs used in the analysis). However, the
bias increased with a reduced number of causal SNPs. The bias also
increased with a large input value of heritability and with a small
prevalence. Heritability estimates for quantitative traits showed a
similar pattern to those for disease traits with the underlying scale,
but underestimation of the heritability estimates was slightly smaller

Figure 1 Mean heritability estimates of simulated data for disease traits. The vertical bar of each mean estimate represents its corresponding SE empirically

estimated from the heritability estimates obtained across 50 replicates.
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for quantitative traits than for disease traits (Figure 2). The SEs of the
heritability estimates were also reduced when the quantitative traits
were analyzed.

The hypertension heritability was 0.15 when the 351 677 SNPs were
included in the analytical model (Figure 3). This heritability estimate
was not significantly different (P40.05) from the estimates (0.17)
obtained by including the 100–150 SNPs most significantly associated
with hypertension.

DISCUSSION

A variety of GWAS brought the ‘missing heritability’ for complex
traits into view. This might be attributed to various factors. First,
GWAS have not used all sequence variants. Generally, they use sparse
markers across the genome, and rare variants with small minor allele
frequencies were excluded in association analyses.12–15 Furthermore,
highly repetitive sequence variants intensively located in the human
genome could not be analyzed in GWAS. Another factor was that
some associated SNPs included in GWAS are not causal but are linked
to causal SNPs.16 It is also possible that the missing heritability can be
exaggerated by inflated heritability from shared environmental factors
within a family.17

One of the systematic reasons for bias in heritability is the use of
somewhat diluted genetic relationships when polygenic effects were
estimated with a mixed model methodology. The bias is caused by
addition of spurious causal SNPs and thus would be significant with a
limited number of causal SNPs. The current simulation study showed
that the heritability was underestimated for complex traits with r50
causal SNPs. Indeed, the underestimation increased with a small
number of causal SNPs. This underestimation concurs with a
previous simulation study18 where heritability was underestimated
from 0.5 to 0.4 using data simulated with artificial linkage
disequilibrium patterns. However, it was suggested that heritability
was unbiased by noncausal SNPs simulated without any linkage to
causal SNPs.18,19 We suspect that this unbiased heritability might be
caused by a relatively large ratio of causal to noncausal SNPs. These
authors obtained the results from data simulated with 10 causal SNPs
and 100, 1000, or 5000 noncausal SNPs, and the corresponding ratio
was 1:10, 1:100, or 1:500. They were considerably larger than the

largest ratio (1:3500) in the current study in which heritability was
not biased.

The current study further shows that heritability was less under-
estimated with a small heritability. We obtained unbiased estimates
with the heritability of 0.1, and the heritability with 100 causal
variants tended to be overestimated, although the overestimation was
not significant (P40.05). We suspect that this might be caused by a
property of REML estimates that must be located within parameter
space. In this case, the genetic variance component must be 40; thus,
there might be overestimation in some of the 50 replicates. In fact,
zero estimates of genetic variance components were observed in
12 out of 50 replicates when we obtained the heritability estimates
from the data simulated with 10 causal SNPs (h2¼ 0.1). That is, the
overestimation of heritability offset the underestimation that might
also occur with a small heritability.

The underestimation of heritability showed a similar pattern
for both disease and quantitative traits. However, the heritability
estimates were less biased for quantitative traits than for disease traits.
The SEs of heritability estimates were also smaller in quantitative
traits than in disease traits.

The current study showed a heritability estimate (0.15) for
hypertension. We suggest that underestimation of this heritability
estimate might be negligible or not significant. This is because we

Figure 2 Mean heritability estimates of simulated data for quantitative traits. The vertical bar of each mean estimate represents its corresponding SE

empirically estimated from the heritability estimates obtained across 50 replicates.

Figure 3 Heritability estimates for hypertension. ~ indicates heritability of

the liability scale, and� indicates heritability of the observed scale.
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could not find any significant difference from the estimate (0.17) with
putative causal variants of 100–150 SNPs for hypertension. In
addition, hypertension had roughly Z100 causal variants.

In conclusion, underestimation would be introduced into herit-
ability estimations when GWAS is conducted using a mixed model
with an excessively large number of variants compared with the
underlying causal variants. It is important to pay attention to
underestimation of heritability, because GWAS with a tremendously
large number of variants are readily available due to improvements in
sequencing technology.
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