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Abstract

Large-scale characterization of post-translational modifications
(PTMs), such as phosphorylation, acetylation and ubiquitination,
has highlighted their importance in the regulation of a myriad of
signaling events. While high-throughput technologies have
tremendously helped cataloguing the proteins modified by these
PTMs, the identification of lysine-methylated proteins, a PTM
involving the transfer of one, two or three methyl groups to the
e-amine of a lysine side chain, has lagged behind. While the initial
findings were focused on the methylation of histone proteins,
several studies have recently identified novel non-histone lysine-
methylated proteins. This review provides a compilation of all
lysine methylation sites reported to date. We also present key
examples showing the impact of lysine methylation and discuss
the circuitries wired by this important PTM.
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Introduction

Covalent post-translational modifications (PTMs) of proteins create

an intricate layer of modulation of the proteome. The convergence

of high-throughput proteomics efforts with targeted studies of site-

specific PTM and protein-modifying enzymes has shed light on the

scope of these modifications across a wide variety of organisms.

Among the 20 amino acids, lysine is one of the most heavily modi-

fied. To this day, lysine residues are known to be covalently modi-

fied by acetyl (Choudhary et al, 2009; Weinert et al, 2011;

Henriksen et al, 2012), hydroxyl (Van Slyke & Sinex, 1958), glycosyl

(Johansen et al, 2006), propionyl (Chen et al, 2007; Cheng et al,

2009), butyryl (Chen et al, 2007), crotonyl (Tan et al, 2011), ubiqui-

tinyl and ubiquitinyl-like (SUMOylation, ISGylation and NEDDyla-

tion) (Hochstrasser, 2009; Kim et al, 2011a; Wagner et al, 2011),

formyl (Wisniewski et al, 2008), malonyl (Peng et al, 2011), succi-

nyl (Zhang et al, 2011b; Park et al, 2013; Weinert et al, 2013) and

methyl (Lan & Shi, 2009; Yang et al, 2009b; Egorova et al, 2010;

Stark et al, 2011) groups. Among those modifications, lysine

methylation represents a complex and often elusive PTM that has

nonetheless the potential to alter the function of the modified

protein. This widespread PTM, which involves the transfer of up to

three methyl groups to the e-amine of a lysine residue, has drawn

considerable attention in recent years. To this day, lysine methyla-

tion has been observed in both nuclear and cytoplasmic proteins

and is now considered a prevalent modification in eukaryotes, pro-

karyotes and archaea (Iwabata et al, 2005; Jung et al, 2008; Botting

et al, 2010; Pang et al, 2010). Here, we review the range of lysine

methylation, its regulation, dynamics and effects.

Uncovering lysine methylation

Methylation of a lysine residue was first reported in 1959 by Ambler

and Rees (1959), in the flagellin protein of Salmonella typhimurium.

While the origin and the function of the methyllysine residue was a

mystery at the time, the observation that histone proteins were also

methylated suggested that this PTM is a prevalent modification

(Murray, 1964). The subsequent discovery of the methylation of a

wide range of proteins (DeLange et al, 1969, 1970; Hardy & Perry,

1969; Hardy et al, 1970; Ames & Niakido, 1979; L’Italien & Laursen,

1979; Bloxham et al, 1981; Motojima & Sakaguchi, 1982; Tong &

Elzinga, 1983) confirmed the predominance of this PTM in both

prokaryotes and eukaryotes.

In addition, the regulation of EF-Tu methylation by carbon, phos-

phorus or nitrogen availability (Young et al, 1990) and the evolu-

tionarily conserved character of multiple methylation sites identified

in ribosomal proteins (Dognin & Wittmann-Liebold, 1980; Amaro &

Jerez, 1984; Lhoest et al, 1984; Guérin et al, 1989) hinted that lysine

methylation could serve important biological functions. This was

confirmed by the report that methylation of calmodulin K115

(Watterson et al, 1980; Marshak et al, 1984; Lukas et al, 1985) lowers

its capacity to stimulate NAD kinase activity (Roberts et al, 1986).

Methylation of calmodulin does not, however, prevent the activa-

tion of other calmodulin targets (Molla et al, 1981; Roberts et al,

1986). These findings showed that lysine methylation modulates the

function of a protein and demonstrated that this PTM has the ability

to affect only a subset of activity of the methylated substrate.

Interest in lysine methylation intensified following the observa-

tion that the methylation of lysine 9 on histone H3 leads to the
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recruitment of HP1 (Swi6 in S. pombe) to chromatin (Bannister

et al, 2001; Lachner et al, 2001) and consequently promotes

heterochromatin formation. This effect suggested that the wide-

spread modification of histone proteins by methylation could lead

to dramatic effects on gene expression.

Protein lysine methyltransferases

Two groups of enzymes, both using S-adenosyl-L-methionine (SAM)

as a methyl donor, catalyze the addition of a methyl group to the

e-amine group of a lysine side chain (Schubert et al, 2003). The first

type of protein lysine methyltransferase regroups the enzymes

containing a catalytic SET domain (class V methyltransferases). The

SET domain, named after SU(var), Enhancer of Zeste and Trithorax,

the three first identified proteins harboring this domain in Drosophila

(Tschiersch et al, 1994), is characterized by three regions folded

into a mainly b-sheet knot-like structure that forms the active site

consisting of the four conserved motifs GXG, YXG, NHXCXPN and

ELXFDY (Dillon et al, 2005; Qian & Zhou, 2006; Cheng & Zhang,

2007). Binding of SAM and the substrate takes place on each side of

a methyl-transfer channel formed by this knot-like structure. It is

suggested that a catalytic tyrosine resting in this channel is impor-

tant for the methyl transfer from SAM to the lysine e-amine (Min

et al, 2002; Trievel et al, 2002, 2003; Wilson et al, 2002; Kwon et al,

2003; Manzur et al, 2003; Xiao et al, 2003; Couture et al, 2006). A

network of aromatic residues and hydrogen bonds in this channel

limits the possible orientations of the lysine substrate (Couture et al,

2008), controlling the ability of SET domain proteins to transfer a

specific number of methyl groups to a substrate.

Based on sequence similarities and domain organization, the

SET-domain-containing proteins can be broadly divided in seven

families (Dillon et al, 2005): SUV3/9, SET1, SET2, SMYD, EZ, SUV4-

20 and RIZ. Members of the SUV3/9 (G9a (Rathert et al, 2008b),

GLP (Chang et al, 2011), SETDB1 (Van Duyne et al, 2008)), SET1

(SET1 (Zhang et al, 2005)), SET2 (NSD1 (Lu et al, 2010)), SMYD

(SMYD2 (Huang et al, 2006), SMYD3 (Kunizaki et al, 2007)) and EZ

(EZH2 (He et al, 2012a)) families methylate both histone and non-

histone substrates (Supplementary Table S1 and Fig 1), while

substrates reported to this day for the SUV4-20 and RIZ families are

limited to histone proteins (Yang et al, 2008; Pinheiro et al, 2012).

Outside of these seven families, SET7/9 and SET8 are also reported

to methylate a substantial number of proteins (Table 1, Supplemen-

tary Table S1 and Fig 1).

The second class of PKMTs, the seven b-strand methyltransfer-

ases (class I methyltransferases), belongs to an extended superfamily

of methyltransferases found throughout eukaryotes, prokaryotes

and archaea. Members of this family methylate DNA, RNA or

amino acids such as arginine, glutamine, aspartate and histidine

(Martin & McMillan, 2002; Schubert et al, 2003). They are named

after its Rossmann fold built around a central b-sheet structure,

which includes the conserved, catalytic motifs hhXhD/E, XDAX

and PXVN/DXXLIXL (h=hydrophobic residue) that allow the asso-

ciation of SAM and the protein substrate.

Across all three domains of life, a number of class I meth-

yltransferases are reported to methylate lysine residues in proteins

(Table 1 and Supplementary Table S1). The bacterial methyltransfer-

ases PrmA and PrmB methylate the ribosomal units L11 (Cameron

et al, 2004) and L3 (Colson et al, 1979), respectively (Supplemen-

tary Table S1). In S. cerevisiae, Rkm5 methylates the ribosomal

protein L1ab (Webb et al, 2011) and See1 methylates the elonga-

tion factor EF1-a on K316 (Lipson et al, 2010) (Supplementary

Table S1; Fig 1). Recently, VCP-KMT, a newly identified class I

methyltransferase, was shown to methylate the membrane protein

VCP (Kernstock et al, 2012). Class I methyltransferases are also

able to methylate histones, as Dot1 homologs trimethylate K79 of

histone H3 (Nguyen & Zhang, 2011). In crenarchaea, the methyl-

transferase aKMT, a broad specificity class I lysine methyltransfer-

ase, was shown to methylate the DNA-binding protein Cren7 (Chu

et al, 2012) (Table 1; Fig 1).

Detection of lysine methylation

Systematic high-throughput studies helped uncover the global impli-

cation of PTMs such as phosphorylation (Ptacek et al, 2005; Sopko

& Andrews, 2008) and acetylation (Choudhary et al, 2009; Weinert

et al, 2011; Henriksen et al, 2012) in different cellular processes. If

the terms “phosphorylome” and “acetylome” can now properly be

applied to our understanding of those modifications, an exhaustive

description of the lysine methylome and the biological functions it

regulates has yet to be produced. The challenges still associated with

the detection of lysine methylation impede research on this PTM.

The small molecular weight of a methyl group relative to other

PTMs and the lack of a charge difference between methylated and

unmethylated lysine residues leave few options for the detection of

methylated lysine residues via direct physicochemical methods.

Targeted discovery of lysine methylation

Given the challenges associated with its detection, the identification

of lysine methylation has long relied on the targeted identification of

single sites by amino acid sequencing, radio-labelled assays or

immunoblotting. Some of the earliest reports of lysine methylation

were provided by Edman sequencing (Bloxham et al, 1981; Tong &

Elzinga, 1983; Schaefer et al, 1987; Ammendola et al, 1992). This

method is reliable and precise enough to detect methyllysine

(Fig 2A). However, Edman sequencing is time-consuming and

necessitates large amounts of the target proteins, making it inappli-

cable to high-throughput approaches. Introduction of radioactively

labelled methyl donors either in culture media or lysate (Fig 2A,B)

has also been used to detect methylated proteins in model systems,

together with 2D SDS–PAGE or liquid chromatography (Dognin &

Wittmann-Liebold, 1980; Wang et al, 1982, 1992; Wang & Laza-

rides, 1984). The use of radioactive material on this scale is however

cumbersome and does not allow the identification of specific meth-

ylation sites. It also does not indicate what type of residue is

labelled, as arginine, histidine, aspartate and glutamate residues as

well as the amino terminus of proteins can be the targets of

S-adenosyl-L-methionine-dependent methyltransferase (Stock et al,

1987; Webb et al, 2010; Petrossian & Clarke, 2011). More recent

studies have made use of immunoblotting to explore potential

methylation sites on proteins (Iwabata et al, 2005). However, pan-

methyllysine antibodies suffer from a low level of specificity, sensi-

tivity and low reproducibility between suppliers and lots available.

As for generic radioactive methylation assays, immunoblotting with

pan-methyllysine antibodies does not allow the determination of the
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Figure 1. PKMT–substrate association maps suggest that lysine methylation is found in complex regulatory networks.
Each PKMT or substrate node of the methylation networks is color-coded according to its functional classification (see Supplementary Table S1). In Eukarya, 34 PKMTs
methylate > 65 substrates other than histones. SET7/9 is by far the most promiscuous PKMT targeting close to half of eukaryotic substrates reported to this day. In contrast to
eukaryotes, only 8 unique PKMTs have been identified in prokaryotes and 2 in Archaea. Those interactions, together with the 1,018methylation sites listed in Supplementary
Table S1, demonstrate the complexity of this modification and its regulatory potential for the proteome.
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methylation site. Antibodies raised against a specific methylation

site have however been invaluable in the identification and in vivo

confirmation of methylated proteins (Fig 2A and Supplementary

Table S1).

High-throughput discovery of lysine methylation

Mass spectrometry is the current method of choice to detect PTMs.

This technique is sensitive and reproducible: it can detect the 14 Da

shift in the mass of a given peptide corresponding to methyl group

and is also capable to determine the residues being methylated

(Fig 2B). Its use has nonetheless been impaired by the low abun-

dance, in vivo, of methylated sites relatively to their non-methylated

counterpart. In addition, the small mass difference between a tri-

methylated and an acetylated peptide (42.05 Da versus 42.01 Da)

cannot be separated using low-resolution mass spectrometers.

Fortunately, the precision of recent instruments such as Orbitrap

and triple TOF simplifies their respective identification (Huq et al,

2009; Chu et al, 2012). Previous proteome-scale studies of acetyla-

tion in human cells have used pan-acetyllysine antibodies to enrich

acetylated proteins prior to mass spectrometry analysis (Choudhary

et al, 2009). Low specificity and sensitivity of previously available

pan-methyllysine antibodies have limited the use of this approach.

Recently, a cocktail of antibodies was developed to enrich methylat-

ed peptides (Guo et al, 2014) and has successfully yielded a signifi-

cant number of novel methylation sites. This novel approach

identified 165 sites across a wide variety of sequences in histones,

elongation factors and chaperone proteins in HCT116 cells. In addi-

tion, metabolic labeling methods, such as heavy methyl SILAC (Ong

et al, 2004), are being developed and have been applied to the de

novo, high-throughput discovery of chromatin-specific methylation

sites (Bremang et al, 2013).

Recently, a new approach for the detection of methylation was

reported, based on known methyllysine-binding protein domains in

lieu of a classic antibody fold (Fig 2B). Liu et al used the HP1 b
chromodomain as bait against cell extracts and systematic peptide

arrays to identify a methyllysine-dependent interactome for the

protein (Liu et al, 2013). This led to the discovery of 29 new methy-

lated proteins and demonstrated a role of HP1 b in DNA damage

response, driven by its interaction with methylated DNA-PKc.

Moore et al, (2013) also made use of methyl-binding domains by

engineering a generic methyl probe from the L3MBTL1 fold. This

construct was then used to identify new targets for the PKMTs G9a

and GLP directly from cell extracts, utilizing SILAC and specific

PKMTs inhibitors.

Prediction-based discovery of lysine methylation

As an alternative approach to high-throughput technologies, other

research groups decided to focus on the determination of substrate

recognition by PKMTs. A library of peptides spanning the sequence

recognized by a PKMT and bearing targeted or systematic mutations

is assayed for methylation optima. These, often together with struc-

tural studies, allow for the elucidation of the PKMT specificity and

the prediction of new substrates. The approach has so far been

applied to G9a (Rathert et al, 2008a), SETD6 (Levy et al, 2011b),

SET7/9 (Couture et al, 2008; Dhayalan et al, 2011) and SET8 (Kudi-

thipudi et al, 2012). More specifically, the methyltransferase activity

of SET7/9 toward TAF7 (Couture et al, 2008), TAF10 (Kouskouti

et al, 2004) and E2F1 (Kontaki & Talianidis, 2010; Xie et al, 2011)
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was first predicted on the basis of methylation assays performed

on a small library of peptides (Couture et al, 2008). To date, the

majority of methylation sites reported for SET7/9 are included

within the motif [R/K]-[S/T/A]-K*-[D/K/N/Q] inferred from these

assays (Supplementary Table S1). Moreover, a recent study

expanded the range of SET7/9 putative substrates (Dhayalan et al,

2011). The broader motif identified in this study, [G/R/H/K/P/S/T]-

[K/R]-[S/K/Y/A/R/T/P/N]-K*, suggests that SET7/9 may have a

more relaxed specificity than previously assessed (Dhayalan et al,

2011). An extensive peptide array based on a 21-residue peptide

encompassing the N-terminus of histone H3 was also used to char-

acterize the sequence recognized by the methyltransferase G9a (Rat-

hert et al, 2008a). The team found that G9a recognizes the motif

[N/T/GS]-[G/C/S]-[R]-K*-[T/G/Q/S/V/M/A]-[F/V/I/L/A], where K*

is the methylated lysine (Rathert et al, 2008a). Among the candi-

dates including this motif, CDYL, WIZ, ACINUS, DNMT1, HDAC1

and Kruppel were shown to be methylated both in vitro and in vivo

by G9a. Furthermore, methylated peptides of the CDYL and WIZ

target sequences were found to bind HP1 b chromodomain,

demonstrating that methyllysine effectors can recognize those sites.

While peptide arrays have proven useful in the identification of

protein substrates, this approach may not be applicable to all

PKMTs. For example, identification of a motif for SET8 based on a

peptide array designed from the tail of histone H4 failed to provide

new substrates for this PKMT, demonstrating that peptide

substrates may lack important structural determinants required for

substrate recognition and catalysis (Kudithipudi et al, 2012). In a

variation on this approach, full-length protein arrays regrouping

over 9000 candidate substrates were used to determine the motif

recognized by the methyltransferase SETD6, only known at the time

to methylate RelA. A total of 154 total putative targets were

predicted. Of these, six substrates were confirmed in vitro, and of

these, PLK1 and PAK4 were found to be methylated in HEK293 cells

overexpressing SETD6 (Levy et al, 2011b). In summary, while the

proteome-wide characterization of lysine methylation has recently

progressed significantly, the success rates of linking a genuine

methylation site to a proper biological cue have remained relatively

low. However, even with the shortcomings of current methods,

efforts from several groups have highlighted the roles played by

lysine methylation in a myriad of cellular processes.

Functional roles of lysine methylation

Methylation of histone proteins

Given their abundance and ease of preparation, histone proteins

were one of the first characterized methyllysine proteins (Murray,

1964). Research efforts have subsequently mapped several
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◂

Molecular Systems Biology 10: 724 | 2014 ª 2014 The Authors

Molecular Systems Biology The diversity of lysine methylation Sylvain Lanouette et al

12



methyllysine residues on histone proteins and related those modifi-

cations to specific biological cues (Fig 3) (comprehensively

reviewed in (Black et al, 2012; Kouzarides, 2007; Shilatifard, 2006;

Smith & Shilatifard, 2010). For example, methylation of histones is

associated with activity at transcription start sites (H3 K4 (Santos-

Rosa et al, 2002)), heterochromatin formation (H3K9 (Bannister

et al, 2001; Lachner et al, 2001)), X chromosome silencing and tran-

scriptional repression (H3 K27 (Cao & Zhang, 2004; Plath, 2003)),

transcriptional elongation and histone exchange in chromatin

(H3K36 (Carrozza et al, 2005; Keogh et al, 2005; Li et al, 2007a;

Venkatesh et al, 2012; Wagner & Carpenter, 2012)) and DNA

damage response (H4 K20 (Greeson et al, 2008; Sanders et al, 2004)

and H3K79 (Huyen et al, 2004)). Our view of this network of modi-

fications increased in complexity with the recent observation that

methylation of a lysine residue influences the deposition of the same

PTM on other histone proteins (Latham & Dent, 2007). The combi-

nation of different PTMs forms patterns of modifications distributed

throughout the genome, and these configurations strongly correlate

with the state, cell type and gene expression profile of the cell line

studied (Heintzman et al, 2009; Ernst et al, 2011; Kharchenko et al,

2011; Yin et al, 2011).

Methylation of the transcription apparatus

The study of histone lysine methylation paved the way for the

subsequent identification of an important number of sites on other

proteins involved in the regulation of transcription and translation

(Table 1 and Supplementary Table S1). Among those, methylation

of p53 by SET7/9 (Chuikov et al, 2004) was initially reported to

promote the pro-apoptotic activity of the transcription factor in stim-

ulating its acetylation by p300/CBP (Ivanov et al, 2007). Methyla-

tion of K370 by SMYD2 was later shown to prevent the methylation

of K372 by SET7/9, thus keeping p53 in a “poised” state (Huang

et al, 2006, 2007). Methylation of K373 and K382, by G9a (Huang

et al, 2010) and SET8 (Shi et al, 2007; West et al, 2010), respec-

tively, were also reported to regulate the function of p53. In the first

case, the modification directly inhibits p53 pro-apoptotic activity

(Huang et al, 2010). Methylation of K382 recruits the transcriptional

suppressor L3MTL1 to block the expression of p53 target genes such
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Figure 3. Methyllysine residues on canonical histone H2A, H2B, H3 and H4.
Bold numbers indicate the methylated residue, italics indicate the organisms in which these modifications are found: At, Arabidopsis thaliana; Bt, Bos taurus; Ce,
Caenorhabditis elegans; Dm, Drosophila melanogaster; Dr, Danio rerio; Gg, Gallus gallus; Hs, Homo sapiens; Mm, Mus musculus; Nc, Neurospora crassa; Pb, Paramecium bursaria
chlorella virus; Sc, Saccharomyces cerevisiae; Sp, Schizosaccharomyces pombe; Tt, Tetrahymena thermophila. Known methylation states are indicated in parenthesis.
A * indicates methyllysine residues modified by an unidentified enzyme.
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as p21 and PUMA (West et al, 2010). Altogether, these findings

suggest that lysine methylation tunes p53 activity in a variety

of ways. Intriguingly, Lenhertz et al (Lehnertz et al, 2011) and

Campaner et al (Campaner et al, 2011) reported recently that SET7/

9 null mice do not show any defects in p53 acetylation or apoptotic

activity. However, the authors did note the possibility that other

compensatory mechanisms could exist—as p53 is regulated by

redundant mechanisms (Cinelli et al, 1998; Ryan et al, 2001; Kruse

& Gu, 2009; Gu & Zhu, 2012; Shadfan et al, 2012). In addition, it

remains to be investigated whether other p53 PTMs—such as the

methylation of K370 by SMYD2 in control mice or redundant acti-

vating mechanisms such as the acetylation of K373 and 382—buffer

the impact of SET7/9 knock-out.

Besides p53, several transcription factors are methylated by

SET7/9, and as a result, their activity is modulated in different

ways. Methylation of K185 inhibits E2F1 apoptotic activity by induc-

ing its proteasomal degradation (Kontaki & Talianidis, 2010). TAF10

methylation increases its affinity for RNA polymerase II thereby

stimulating the transcription of specific target genes (Kouskouti

et al, 2004). Methylation of K630 on the androgen receptor (AR)

stabilizes interaction of its N- and C-terminal domains, allowing

transactivation of AR-responsive genes (Gaughan et al, 2011), while

methylation of FOXO3 on K270 lowers the DNA binding affinity of

the forkhead protein (Xie et al, 2012).

In apparently conflicting studies, SET7/9 was reported to methyl-

ate RelA (p65) on both K37 (Ea & Baltimore, 2009) and K314/315

(Yang et al, 2010b). While Ea & Baltimore (2009) showed that meth-

ylation of K37 is required for NF-jB target gene expression in

HEK293 cells following TNFa stimulation, Yang et al (2010b)

showed that, also in response to TNFa, methylation of K314 and

K315 induces the proteasomal degradation of the protein in U2OS

cells. It is possible that SET7/9 can methylate both residues and that

another regulatory switch directs its activity specifically toward the

activation or repression of RelA.

In addition to SET7/9, other methyltransferases modulate RelA

activity. Methylation of K310 on p65 by SETD6 tethers GLP through

its ankyrin repeat domain, promoting the deposition of the repres-

sive mark H3K9Me2 on inflammatory response NF-jB target genes

(Levy et al, 2011a). In contrast, cytokine stimulation induces meth-

ylation of RelA by NSD1, which promotes NF-jB activity through an

unknown mechanism (Lu et al, 2010).

Similar to RelA, lysine methylation is a key PTM in the intricate

regulatory network of the retinoblastoma protein (pRb) (Saddic

et al, 2010; Cho et al, 2012a). Methylation of K810 by SMYD2

enhances pRb phosphorylation and promotes cell cycle progression,

while methylation of K860 by the same PKMT stimulates the bind-

ing of the tumor suppressor to L3MBTL1 and induces cell cycle

arrest (Saddic et al, 2010). Interestingly, following DNA damage,

pRb methylation on K810 by SET7/9 leads to cell cycle arrest (Carr

et al, 2011). Intriguingly, the same enzyme also methylates the

tumor suppressor on residue K873, leading to the recruitment of

HP1 to pRb target genes which also triggers cell cycle arrest (Munro

et al, 2010).

Methyllysine residues have also been mapped on other pioneer

transcription factors. Methylation of GATA4 by EZH2 regulates asso-

ciation of the activator to p300, regulating the expression of GATA4

target genes (He et al, 2012a). Similarly, methylation of C/EBP b
(Pless et al, 2008) by G9a is important for the transactivation

potential of the transcription factor. Conversely, methylation of

Reptin by the same enzyme negatively regulates a subset of hypoxia

responsive genes (Lee et al, 2010). Taken together, these studies

suggest that lysine methylation of the same residue can lead to

different outcomes depending on the cellular context. Overall, it is

clear that different methylation sites on the same protein can lead to

drastically different effects. These findings also suggest that

additional mechanisms such as feedback loops, switches and even

demethylation of methyllysine residues (see below) will mark which

lysine will be methylated during a given cellular process.

Methylation of the translation apparatus

In contrast to the various effects reported for lysine methylation on

gene transcription, investigation of the impacts of lysine methyla-

tion on translation has yielded far less details. Notably, although

methylation of ribosomal proteins has been reported for three

decades, the molecular and biological implications of these marks

have remained elusive. Evidence that these PTMs are found in

mammals, yeast, plants, bacteria and archaea lends credence to the

hypothesis that methylation of the ribosome is important for its

functions. However, systematic mutation of lysine residues known

to be methylated failed to promote or impair either ribosomal

assembly or cell survival, suggesting that methylation of ribosomal

subunits plays a role in a novel, yet unexplored, biological pathway.

It was recently suggested that methylation of K106 and K110 of

L23ab could influence its precise positioning within the ribosome

(Porras-Yakushi et al, 2007), while methylation of K55 on L42 might

modulate association with tRNA (Shirai et al, 2010). However, in

both cases, further experimental evidence is needed to provide a

definite answer. Interestingly, recent studies have shown that the

Drosophila Polycomb interactor Corto (centrosomal and chromo-

somal factor) recognizes trimethylated K3 of the ribosomal protein

L12. This association, mediated by the chromodomain of Corto,

recruits the RNA polymerase III and activates transcription of the

heat-shock responsive gene hsp70 (Coléno-Costes et al, 2012). The

involvement of lysine methylation in the nuclear functions of ribo-

somal proteins (Bhavsar et al, 2010) suggests that lysine methyla-

tion of ribosome components has the potential to modulate or elicit

important functions beside its canonical functions. However, given

the substantial number of methyllysine residues within a ribosome

(approximately 80), redundant mechanisms could mask the role of

lysine methylation during translation.

Functional diversity of lysine methylation beyond histones
and transcription

In addition to transcription factors and the translation machinery, a

wide variety of proteins are methylated by PKMTs, as demonstrated

by both targeted and large-scale studies (Iwabata et al, 2005; Jung

et al, 2008; Pang et al, 2010). Across all domains of life, a critical

set of functions is regulated by the methylation of lysine on

proteins.

Lysine methylation & eukaryotes

Some chaperone proteins are regulated by lysine methylation

in eukaryotes. For example, methylation of HSP90 by SMYD2

is involved in sarcomere assembly through titin stabilization
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(Donlin et al, 2012; Voelkel et al, 2013). Also, SETD1 methylation

of HSP70 on K561 promotes the association of the chaperone to

Aurora Kinase B and stimulates the proliferation of cancer cells

(Cho et al, 2012b). In the yeast kinetochore, methylation of Dam1

by SET1 at the yeast kinetochore is important for proper chromo-

some segregation during cell division (Zhang et al, 2005; Latham

et al, 2011), while methylation of DNA methyltransferase DNMT1

by SET7/9 regulates global levels of DNA methylation (Estève et al,

2009, 2011; Zhang et al, 2011a). These examples demonstrate that

in eukaryotes, lysine methylation is not limited to proteins of the

transcriptional apparatus, but affects a wide variety of functions in

the cell, many of them yet to be explored.

The role of lysine methylation in plants is even more elusive:

The chloroplastic Rubisco large subunit (Houtz et al, 1989) and

fructose 1,6-biphosphate aldolase (Magnani et al, 2007; Mininno

et al, 2012) are both methylated by RLSMT, but their activity

remains unaffected by the modification. Methylation of aquaporin

PIP2 K3 is necessary for E6 methylation in Arabidopsis thaliana; yet

the roles that these PTMs play remain unknown (Santoni et al,

2006; Sahr et al, 2010).

Lysine methylation & prokaryotes

Similar to eukaryotes, lysine methylation modulates protein func-

tions in bacteria. Methylation of pilin in Synechocystis sp. regulates

cell motility (Kim et al, 2011b), while methylation of EF-Tu’s K56

lowers its GTPase activity and stimulates dissociation from the

membrane (Van Noort et al, 1986). In the latter case, levels of

methylated EF-Tu increase in response to deprivation in carbon,

nitrogen or phosphate levels, suggesting that extracellular cues

control the activity of lysine methyltransferases (Young et al, 1990;

Young & Bernlohr, 1991). Other lines of evidence suggest that lysine

methylation of surface proteins might play a role in optimizing

bacterial adherence to their environment (see Disease implications

of lysine methylation and (Biet et al, 2007; Delogu et al, 2011; Guer-

rero & Locht, 2011; Soares de Lima et al, 2005; Temmerman et al,

2004)). Recent large-scale proteomic studies in Desulfovibrans

vulgaris (Gaucher et al, 2008; Chhabra et al, 2011) and Leishmania

interrogans (Cao et al, 2010) reported a large number of methyla-

tion sites on a wide variety of proteins (Supplementary Table S1),

suggesting that lysine methylation is a prevalent and dynamic post-

translational modification in bacteria.

Lysine methylation & archaea

Archaea are devoid of histone proteins capable of folding DNA into

octameric nucleosomes reminiscent of those found in eukaryotes.

Instead, DNA compaction is achieved by a family of small basic

proteins (Sandman & Reeve, 2005). As an interesting parallel with

lysine methylation in eukaryotes, several of these DNA-binding

proteins are methylated on lysine residues. Among those, Sac7d

from S. acidocaldarius was the first archaeal protein reported to be

methylated (Mcafee et al, 1995). Other members of the archaeal

histone-like DNA-binding proteins, such as CCI, Cren7, Sso7c, are

methylated on multiple lysine residues (Knapp et al, 1996; Opper-

mann et al, 1998; Guo et al, 2008; Botting et al, 2010). However, no

role has yet been ascribed to this modification in the context of

archaeal chromatin (Mcafee et al, 1996). As a possible counterpart

to eukaryotes, a SET protein able to methylate the DNA-associated

protein MC1-a was identified in the crenarchaea Methanococcus

mazei (Manzur & Zhou, 2005), illustrating that similar processes

bring about lysine methylation across life’s domains. Unique to

an archaeal organism, the b-glycosidase of the hyperthermophile

Sulfolobus solfataricus was reported to be methylated on up to five

residues, a modification reported to protect the protein from thermal

denaturation (Febbraio et al, 2004). Further proteomic studies

uncovered a large number of proteins methylated in S. solfataricus

(Botting et al, 2010). Interestingly, for a subset of these proteins

such as the b-glycosidase, lysine methylation enhances the thermal

stability of the modified protein (Fusi et al, 1995; Knapp et al, 1996;

Botting et al, 2010). Altogether, these findings strongly suggest that

lysine methylation in Archaea is equally important for proper prote-

ome function as in Eukarya.

Lysine methylation of viral proteins

Viruses are able to use the arsenal of methyltransferases of their

host cell. Burton and Consigli, (1996) were the first to report the

methylation of the major capsid protein VP1 of the murine

polyomavirus. Since then, other examples of methyllysine residue

have been discovered in viral proteins. Methylation of the HIV-1

transcriptional activator Tat on K50 by SETDB1 inhibits LTR trans-

activation (Van Duyne et al, 2008), while concurrent methylation

of K51 by SET7/9 enhances HIV transcription (Pagans et al, 2011;

Sakane et al, 2011), demonstrating that, at least in a specific

context, the virus uses the host’s PKMTs to ensure proper viral

propagation. Some viruses also possess their own methylation

machinery: Paramecium bursara chlorella virus 1 methyltransferase

vSET site-specifically methylates histone H3 on K27 to trigger gene

silencing (Manzur et al, 2003; Mujtaba et al, 2008). Overall,

viruses seem to take advantage of lysine methylation mechanisms

in their invasion cycle as they do of other PTMs (Gustin et al,

2011; Keating & Striker, 2012; Van Opdenbosch et al, 2012; Zheng

& Yao, 2013).

Lysine demethylation

Evidence that purified cell extracts showed slow yet detectable

activity toward methylated lysine suggested that the methyl moiety

added to lysine residues could be removed by dedicated lysine

demethylases (KDM) (Paik & Kim, 1973, 1974). The discovery of the

first KDM, LSD1, a flavine amine oxidase able to demethylate mono-

and di-methylated histone H3K4, confirmed those initial reports and

demonstrated that lysine methylation was part of a dynamic equilib-

rium. Jumonji-containing proteins, Fe(II)/a-KEG-dependent dioxy-

genase, were subsequently shown to demethylate tri-, di- and

mono-methyllysine residues in histone proteins (Tsukada et al,

2006). In contrast to other KDMs, LSD1 shows a broad specificity

and demethylates a large spectrum of methylated proteins. For

example, demethylation of the poised K370-methylated pool of p53

by LSD1 is necessary for subsequent methylation and activation by

SET7/9 (Huang et al, 2007). LSD1 also plays a role in the function

of other transcription factors such as E2F1 (Kontaki & Talianidis,

2010), Sp1 (Chuang et al, 2011), STAT3 (Yang et al, 2010a) and

MYPT1 (Cho et al, 2011). In addition to the demethylation of tran-

scription factors, LSD1 also targets the DNA methyltransferases

DNMT1 (Wang et al, 2009) and DNMT3 (Chang et al, 2011) and the

molecular chaperone HSP90 (Abu-Farha et al, 2011). Notably,
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demethylation of DNMT1 by LSD1 enhances its stability and regu-

lates global levels of DNA methylation in embryonic stem cells

(Wang et al, 2009).

Only two jumonji proteins are reported to demethylate non-

histone proteins. JHDM1 (FXBL11) demethylates RelA on K218Me

and K221Me, opposing the activation of this transcription factor.

Interestingly, given that RelA regulates fxbl11 gene expression, the

demethylase participates in a negative feedback loop that tightly

controls the activity of FXBL11 (Lu et al, 2010). In another study,

Baba et al reported that the jumonji demethylase PHF2, following

activation by protein kinase A, demethylates the transcription factor

ARID5B. Demethylation of ARID5B stabilizes the PHF2/ARID5B

complex and triggers the recruitment of PHF2’s H3K9Me2 demethy-

lase activity to, and regulate the expression of, ARID5B target genes

(Baba et al, 2011). These examples demonstrate that demethylation

is a key component of the signalization and modulation dynamics of

the proteome.

Molecular functions of lysine methylation

In comparison with other post-translational modifications, methyla-

tion appears to present only limited ways to affect the chemistry of

a residue. For example, acetylation of lysine e-amine neutralizes its

positive charge and the addition of a carbonyl’s dipole makes possi-

ble new types of interactions. Phosphorylation drastically modifies

the charge of a protein (-3 per phosphate group) and adds a rela-

tively important mass to an amino acid side chain (95 Da; 80 Da for

Ser and Thr phosphorylation). The addition of ubiquitin and ubiqu-

itin-like molecules, which increase the size of the targeted proteins

by at least 10 kDa, is linked to cell trafficking, transcriptional regu-

lation and endocytosis (Hicke, 2001; Haglund et al, 2003) and is

coupled to a dedicated recognition pathway, leading to degradation

by the proteasome (Glickman & Ciechanover, 2002; Ciechanover,

2005). Comparatively, methylation of a lysine residue does not

modify the side chain’s positive charge and causes only a small

change in mass of a protein (14, 28 or 42 Da).

Following the large-scale identification of methylated lysine resi-

dues in S. cerevisae, Pang et al (2010) observed that 43% of these

sites corresponded to potentially ubiquitinated residues, thus raising

the possibility that methylation increases the stability of proteins by

competing with ubiquitination (Fig 4A). Accordingly, pulse-chase

experiments revealed an increase in the half-life of several proteins.

Therefore, methylation can be considered as a regulator of ubiquiti-

nation. However, this means of regulating protein turnover rate

cannot be applied to the entire proteome, as lysine methylation has

been shown to increase global ubiquitination of E2F1, DNMT1,

RORa and NF-jB (Estève et al, 2009; Yang et al, 2009a; Kontaki &

Talianidis, 2010; Lee et al, 2012).

In the most direct case, methylation of a given lysine residue

would preclude the addition of another modification on the same

methylation site. However, “methyl switches”, in which methyla-

tion of one lysine residue stimulates or inhibits the modification of

at least one neighboring residue (Fig 4B), have been observed. For

example, methylation of p53 K372 depends on the addition of an

acetyl moiety on neighboring lysine residues (Kurash et al, 2008).

Inhibition of cell cycle-promoting activity of E2F1 is blocked by

methylation of K185, thereby stimulating the ubiquitination of the

transcription factor and preventing its phosphorylation by CK2 and

ATM as well as its acetylation by PCAF (Kontaki & Talianidis,

2010). Another example is the methylation of K810 on pRb by

SMYD2, which enhances phosphorylation of serine residues 807

and 811 by CDK4, inhibiting its cell cycle repressor activity (Cho

et al, 2012a). In S. cerevisae, methylation of Dam1 K233 prevents

the phosphorylation of S232 and S234 by Ipl1, allowing its optimal

phosphorylation at S235, which promotes efficient chromosome

segregation (Zhang et al, 2005). Overall, these observations support

the fact that lysine methylation is connected to other networks of

PTM and consequently to most signaling events.

In addition to controlling the deposition of neighboring PTMs,

lysine methylation creates a binding surface for the recruitment of

other proteins (Fig 4C). Recognition of methylated lysine residues

by chromodomain proteins—part of the Royal domain family—was

first reported for histone proteins (Bannister et al, 2001; Jacobs

et al, 2001; Lachner et al, 2001; Jacobs & Khorasanizadeh, 2002).

Members of the Royal domains family can specifically bind methy-

lated lysine residues through an “aromatic cage” formed by combi-

nation of hydrophobic contacts and cation-p interactions (Ma &

Dougherty, 1997; Jacobs & Khorasanizadeh, 2002; Botuyan et al,

2006; Hughes et al, 2007; Taverna et al, 2007). Besides the Royal

family, the Plant HomeoDomain (PHD) family also reads methyl-

lysine residues. Despite structural divergence between chromo-

domain and PHD, the methyllysine engages in similar cation-p
interactions (Li et al, 2006; Peña et al, 2006; Shi et al, 2006;

Wysocka et al, 2006). Interestingly, the presence of hydrogen bond

networks in the aromatic cages allows the specific recognition of

either mono- or di-methylated over tri-methylated lysine (Li et al,

2007b) triggering a specific biological response.

For instance, in histone proteins, the Polycomb complex chromo-

domain recognizes di- or tri-methylated H3K27 (Min et al, 2003),

while the Eaf3 chromodomain protein recruits the Rpd3S deacetylase

complex to regions enriched in H3K36 methylation (Carrozza et al,

2005). Among the numerous domains able to recognize methylated

lysine residues on histone proteins (Musselman et al, 2012), the

Tudor (Cui et al, 2012) and MBT (Kim et al, 2006; Li et al, 2007b)

domains are also able to read specific methyl marks of both histone

and non-histone proteins (Fig 4C). L3MBTL1 binds methyllysine

residues on p53 (West et al, 2010) or pRb (Saddic et al, 2010), and

the MPP8 chromodomain associates with the methylated form of

DNMT3 (Chang et al, 2011) (Fig 4D). Interestingly, ankyrin repeats

also appear to recognize methyllysine residues, as illustrated in the

recruitment of GLP to methylated RelA (Levy et al, 2011a).

Lysine methylation can also affect biological outcomes through

other mechanisms such as modulation of a protein’s DNA affinity

(Ito et al, 2007; Xie et al, 2011; Calnan et al, 2012), resistance to

tryptic cleavage (Soares de Lima et al, 2005; Kim et al, 2011b) and

heat denaturation (Febbraio et al, 2004). Overall, despite its appar-

ently simple character, lysine methylation regulates the proteome

using a wide range of mechanisms.

Disease implications of lysine methylation

Several types of cancer involve the misregulation of PKMTs (Varier

& Timmers, 2011; Butler et al, 2012; Greer & Shi, 2012; Hoffmann

et al, 2012; Black & Whetstine, 2013; Campbell & Turner, 2013;
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Xhemalce, 2013; Zagni et al, 2013). For example, expression of

SMYD2 is up-regulated in esophageal squamous cell carcinoma

(Komatsu et al, 2009) and bladder cancer cells (Cho et al, 2012a).

SMYD3 is overexpressed in breast carcinoma and correlates with

tumor proliferation (Luo et al, 2009), while G9a is overexpressed in

hepatocellular carcinoma and contributes to lung and prostate

cancer invasiveness (Kondo et al, 2007, 2008; Chen et al, 2010;

Huang et al, 2010). Accordingly, lysine methylation has been

reported to influence processes directly linked to oncogenic path-

ways, providing a rationale for the involvement of PKMTs in cancer.

For instance, methylation of pRb by SMYD2 promotes cell prolifera-

tion, possibly through E2F transcriptional activity (Cho et al,

2012a). Similarly, SMYD2 methyltransferase activity prevents the

activation of p53 pro-apoptotic function by the opposing modifica-

tion of K372 by SET7/9 (Huang et al, 2006). Accordingly, these

enzymes are currently explored as efficient cancer markers and

potential anti-oncogenic drug targets (Cole, 2008; Natoli et al, 2009;

Poke et al, 2010; Huang et al, 2011; Varier & Timmers, 2011; He

et al, 2012b; Hoffmann et al, 2012; Zagni et al, 2013).

In addition to cancer, lysine methylation plays key roles in

bacterial pathogenicity. Vaccination efforts against typhus’ agent

Rickettsia typhi are targeting the immunodominant antigen OmpB.

Interestingly, a critical difference between OmpB from infectious

and attenuated strains is the methylation of several lysine residues

of the N-terminal region of the protein (Chao et al, 2004, 2008).

Chemical methylation of lysine residues on a recombinant peptide

re-establishes serological reactivity of the OmpB fragment (Chao

et al, 2004). In a similar fashion, Mycobacterium tuberculosis adhe-

sins HBHA and LBP, important for adhesion to host cells, are also

heavily methylated (Pethe et al, 2002; Temmerman et al, 2004;
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Figure 4. Molecular mechanisms of lysine methylation.
(A) Lysinemethylation impacts protein ubiquitination. Numerous instances ofmethylated lysine residues regulate protein turnover in preventing ubiquitination (seeMolecular
functions of lysine methylation). (B) Lysine methylation indirectly controls, in cis, deposition of other PTMs. Methyl “switches” are known to positively or negatively regulate
the installationofotherPTMsonneighboringresiduesbyrecruitingotherprotein-modifyingenzymesorpreventing theirassociationwiththeir substrates. (C) Lysinemethylation
controls protein-protein interactions (Examples shown in D). (D) Methyllysine residues recruit specific effector proteins. “Readers” such as the chromo, PHD finger and MBT
domains can specifically bind methylated lysine residues. In addition to numerous effector proteins able to bind methylated lysine residues located on histone tails (reviewed
in Musselman et al 2012), a few examples have been reported for non-histone substrates. In addition to HP1, the chromodomains of MPP8 and Cbx3 recognize (above)
methyllysine residues (green) of non-histone proteins through residues forming an aromatic cage (blue) (PDB ID 3SVM and 3DM1). In addition, mono-methylated K382 and di-
methylated K370 of p53 are bound, respectively, by the second MBT repeat of L3MBTL1 and the second Tudor domain of PHF20 (PDB ID 3OQ5 and 2LDM), respectively.
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Soares de Lima et al, 2005; Biet et al, 2007; Delogu et al, 2011;

Guerrero & Locht, 2011). Similar to OmpB in R. typhi, immunologi-

cal protection potential can be sustained by Mycobacterium tubercu-

losis HBHA only in its methylated form (Temmerman et al, 2004).

Methylation of lysine residues in HBHA or LBP per se does not

appear to affect the adhesive potential of the pathogen, but it instead

protects the protein against proteolytic cleavage in mouse

bronchoalveolar fluid, suggesting a possible role for methylation in

the biology and pathogenicity of Mycobacteria. This hypothesis is

further strengthened by the observations that the related species

Mycobacterium smegmatis and Mycobacterium leprae possess

methylated adhesins (Pethe et al, 2002; Soares de Lima et al, 2005).

More recently, methylation of P. aeruginosa Ef-Tu K5 was shown to

mimic the ChoP epitope of human platelet-activating factor (PAF),

allowing association with PAF receptor and strongly contributing to

bacterial invasion and pneumonia onset (Barbier et al, 2013). Given

the increasing need for new and more efficient vaccines, under-

standing how lysine methylation impacts host–pathogen interaction

will open exciting new avenues in understanding the mechanisms

of pathogenicity.

Concluding remarks

Since its discovery over half a century ago, lysine methylation has

been found in all domains of life. It is a dynamic modification, as it

can involve the addition of one, two or three methyl groups, and it

can be reversed by dedicated demethylases. Although histone lysine

methylation is held as a canonical example of the importance of this

PTM, it still remains unclear whether it acts as repository of epige-

netic instructions or whether it is a consequence of transcriptional

and replicative DNA-based processes. Importantly, methylation of

lysine residues influences protein function beyond the context of

chromatin, predominantly by modulating the deposition of other

PTMs such as phosphorylation, acetylation and ubiquitination or by

regulating protein–protein interactions. The versatility of lysine

methylation is highlighted by the fact that the same mark, mediated

by different methyltransferases, can trigger distinct biological effects

in different cellular contexts. Similarly, modification of different

residues on a given protein by the same methyltransferase can elicit

different biological responses. Future efforts involving the high-

throughput analysis of protein methylation and the identification of

the specific subsets of substrates attributable to each PKMT will

advance our understanding of the regulatory networks underlying

the lysine methylome and will provide novel functional insights

regarding this PTM. Moreover, considering the involvement of

protein methylation in pathologies, such analyses would be benefi-

cial for developing diagnostic biomarkers and for revealing mecha-

nisms of pathogenicity.

Supplementary information for this article is available online:

http://msb.embopress.org
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