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Abstract

There are broad individual differences in the ability to voluntarily and effortfully suppress

motivated, reward-seeking behaviors, and this review presents the hypothesis that these individual

differences are relevant to addictive disorders. On one hand, cumulative experience with drug

abuse appears to alter the molecular, cellular and circuit mechanisms that mediate inhibitory

abilities, leading to increasingly uncontrolled patterns of drug-seeking and –taking. On the other,

native inter-individual differences in inhibitory control are apparently a risk factor for aspects of

drug-reinforced responding and substance use disorders. In both cases, the behavioral

manifestation of poor inhibitory abilities is linked to relatively low striatal dopamine D2-like

receptor availability, and evidence is accumulating for a more direct contribution of striatopallidal

neurons to cognitive control processes. Mechanistic research is now identifying genes upstream of

dopamine transmission that mediate these relationships, as well as the involvement of other

neurotransmitter systems, acting alone and in concert with dopamine. The reviewed research

stands poised to identify new mechanisms that can be targeted by pharmacotherapies and/or by

behavioral interventions that are designed to prevent or treat addictive behaviors and associated

behavioral pathology.
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1. Motivated Actions and Inhibition

Like food/nutrients, water and sexual stimuli, drugs of abuse act as behavioral reinforcers,

and humans and non-human animals are motivated to obtain them (Brady, 1991; Johanson,

1978; Spealman and Goldberg, 1978; Weeks, 1962). Since the work of Olds and Milner in

the 1950s (Olds and Milner, 1954), an immense amount has been learned about the neural

pathways that mediate reinforcement and reward and that allow drugs of abuse to support

seeking and taking behaviors (Gardner, 2011; Haber and Knutson, 2010; Kalivas and

Volkow, 2005; Kelley et al., 2002; Robbins et al., 1989; Sesack and Grace, 2010; Wise,

2002). Additionally, a recent major advance in the study of drug-reinforced behaviors has

been the identification of both goal-directed (“impulsive”) and habitual (“compulsive”)

aspects of drug-seeking and –taking and the characterization of the differential neural

mechanisms that mediate each (Belin-Rauscent et al., 2012; Everitt et al., 2001).

While the motivation to obtain drugs or to engage in drug-directed responding has received

intense study, the phenomenon of inhibitory control – or motivated interruption of

reinforced responding – has received much less attention. Human beings are often motivated

to completely abstain from taking drugs or to reduce their drug use because of the

accumulated aversive consequences of drug consumption, because of the fear of social

stigma or because of their own desire to achieve a healthier lifestyle. These attempts to

avoid, cut down or terminate drug seeking and consumption depend upon effortful,

voluntary inhibition of the conditioned affective and behavioral reactions to drug-related

cues and drugs themselves. The engagement in drug-seeking and –taking therefore depends

upon the relative strength of both the motivation to use the drug and the motivation (and

capacity) to resist it. Thus, while models that propose heightened (“sensitized”) motivation

to obtain drugs as a function of drug experience are relevant to addiction (Robinson and

Berridge, 1993, 2008), so are models that highlight addiction-related problems with the

capacity for inhibitory control (Bechara and Martin, 2004; Garavan and Hester, 2007;

Goldstein and Volkow, 2002; Izquierdo and Jentsch, 2012; Jentsch and Taylor, 1999a;

Robinson and Berridge, 2003; Volkow et al., 2004). This review aims to discuss literature

supporting the hypothesis that inter-individual differences in striatonigral, D2-like receptor

expressing neurons – whether genetically or environmentally influenced – predispose

individuals to the development of addiction by influencing inhibitory control abilities.

Further, in addition to earlier work that predominantly highlighted a role of the prefrontal

cortex in executive control processes, we discuss evidence suggesting a direct role of striatal

neurons in regulating these processes.

2. Inhibitory Control Deficits in Addiction

It is well-established that addictions are associated with reduced inhibitory control (Ersche

et al., 2011; Ersche et al., 2008; Ersche et al., 2012; Fillmore and Rush, 2002, 2006; Lee et

al., 2009; Monterosso et al., 2005). These investigations involved the use of a variety of

laboratory measures conventionally thought to measure inhibitory control over pre-potent or

impulsive responses, including self-report measures of impulsivity (Patton et al., 1995), the

stop signal reaction time task, multiple choice serial reaction time tasks and reversal learning

procedures (Table 1). While these measures and tasks are conceptually and procedurally
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distinct, they appear to uncover similar neural and molecular mechanisms and have similar

informative value in some cases (discussed below) and are therefore referenced collectively

here.

Of importance, however, the extent to which these deficits predate drug use (representing a

biobehavioral marker of susceptibility), and/or consequences of experience with the

pharmacological effects of the drug, is less clear. Another model, yet to be tested, is that

some people are at genetic risk for drug-induced deficits in inhibitory control; a gene by

environment (drug) interaction of this sort may reveal itself through escalating

neuroadaptations in inhibitory control circuitry with prolonged exposure to the

pharmacodynamic effects of drugs of abuse.

2.1 Inhibitory Deficits Result from Drug Use

It is quite clear that long-term exposure to drugs of abuse in animals is sufficient to produce

inhibitory control deficits (Calu et al., 2007; Jentsch et al., 2002; Jentsch et al., 1997a;

Jentsch et al., 2000; Jentsch et al., 1997b; Krueger et al., 2009; Parsegian et al., 2011;

Schoenbaum et al., 2004). Nonetheless, much remains unknown about the details of this

phenomenon. For example, do individual drugs of abuse (stimulants vs. alcohol vs. tobacco

vs. opiates) vary in their propensity to produce inhibitory control deficits (Ersche et al.,

2008)? Are particular patterns of drug intake associated with greater impairment? Do

various forms of inhibitory control (suppression of behavior vs. emotions vs. intrusive

thoughts) show greater sensitivity to drug-induced deficits (Calu et al., 2007; Parsegian et

al., 2011; Schoenbaum et al., 2004)? Though the general idea that chronic drug experience

causes these behavioral abnormalities is now unambiguous, a large set of questions must

still be answered.

Evidence is mounting that drug-induced deficits in inhibitory control are linked with

neuroadaptations in dopamine D2-like receptor signaling (Lee et al., 2009; Volkow et al.,

2001; Volkow et al., 1993; Volkow et al., 1996; Wang et al., 1997). D2-like receptor

availability was first shown to be decreased within the striatum of cocaine abusers twenty

years ago (Volkow et al., 1993). Since then, these findings have been recapitulated in a

number of affected populations, including alcohol (Volkow et al., 1996), nicotine (Fehr et

al., 2008), methamphetamine (Lee et al., 2009; Volkow et al., 2001), and opiate abusers

(Wang et al., 1997), suggesting that these alterations are a common substrate underlying

addiction. In support of the notion that these differences represent neuroadaptations

produced by drugs of abuse, it has been demonstrated using non-human primates that both

the chronic self-administration of cocaine (Moore et al., 1998; Nader et al., 2006) and

chronic experimenter administered methamphetamine (Groman et al., 2012) are sufficient to

produce long-lasting decreases in striatal D2-like receptor availability.

Pharmacological studies have provided a causal link between striatal D2-like receptors and

inhibitory control and suggest that decreased receptor density may directly influence the

inhibitory control deficits seen in addiction. The dopamine D2/D3 receptor antagonist

raclopride has been found to impair reversal learning performance in monkeys (Lee et al.,

2007). Conversely, the performance of cocaine addicts on the reversal learning task was

improved by administration of the D2/D3 receptor agonist, pramipexole, and this change
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was correlated with task-related changes in striatal activity (Ersche et al., 2011). In addition,

the systemic injection of the D2-like receptor agonist, quinpirole, has been shown to

decrease the number of premature responses that rats make in the 5-chioce serial reaction

time task (5-CSRT), possibly reflecting a greater ability to refrain from impulsive actions

(Fernando et al., 2012). Lastly, direct manipulations of striatal D2-like receptors alter both

5-CSRT and reversal learning performance (Besson et al., 2010; Haluk and Floresco, 2009).

In summary, the chronic administration of drugs of abuse appears sufficient to produce

reductions in both striatal D2-like receptors and inhibitory control processes, and reductions

in D2-like receptors may contribute causally to the latter behavioral difference.

2. 2. Inhibitory Control Deficits Index Susceptibility for Addictions

Despite strong evidence that deficits in inhibitory control may result from drug use,

longitudinal and family studies have made it increasingly apparent that reduced inhibitory

control might also serve as a genetically determined risk factor for addiction. Children less

capable of regulating their own behavior appear to be at a heightened risk for developing a

substance use disorder later in life. For instance, male three year olds designated as

undercontrolled, irritable, and impulsive were more likely to be diagnosed with alcohol

dependence at age 21 than well-adjusted children (Caspi et al., 1996), and disinhibition at

ages 10–12 has been shown to predict substance use disorders at age 19 in males (Tarter et

al., 2003). Additionally, the Eysenck and Cloninger personality traits of psychoticism and

novelty seeking – which both comprise impulsive and disinhibited tendencies – were shown

to prospectively predict substance use disorders in college students (Sher et al., 2000).

Lastly, attention deficit hyperactivity disorder, which is in essence a disorder of self-control,

has been associated with the development of substance abuse disorders (Groman et al.,

2009; Mannuzza et al., 1993, 1998; Wilens et al., 2011).

The idea that reduced inhibitory control is a genetic or familial risk factor for addiction

would be quantified by an increased incidence of this trait as a function of genetic proximity

to a substance use disorder. A number of studies have now found that measures related to

behavioral control are affected in the family members of affected probands (Acheson et al.,

2011a; Acheson et al., 2011b; Dawes et al., 1997; Ersche et al., 2012; Nigg et al., 2004).

These studies show that both the children of addicts – who are themselves at high risk for

developing the disorder – as well as their unaffected siblings, display lower levels of

inhibitory control than those that are not in close relation to the disorder.

Data from preclinical research further suggest that measures of inhibitory control predict

patterns of drug use and that these differences are genetically determined. Rats with a

propensity to engage in high levels of premature responding in a choice reaction time task

self-administer greater amounts of cocaine and transition to compulsive patterns of drug

intake more readily (Belin et al., 2008; Dalley et al., 2007). Additionally, recent work in our

laboratory using inbred mice has shown that performance on the reversal learning task is

moderately heritable (Laughlin et al., 2011). Furthermore, inbred mouse strains with poor

inhibitory control performance also self-administer greater amounts of cocaine and are more

sensitive to cocaine’s locomotor-activating properties, suggesting a genetic link between

inhibitory control and substance use (Cervantes et al., 2013).
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Hypothetically, these relationships may depend upon the fact that the neural circuits

mediating inhibitory control and drug reinforcement are both - perhaps independently -

controlled by dopamine D2-like receptors. Recently, it has become clear that individual

differences in dopamine D2-like receptor availability, as assessed via PET imaging, predict

trait-like differences in inhibitory control in multiple species, and across multiple behavioral

tasks. In both rats and mice, a poor inhibitory control phenotype is linked to low dopamine

D2-like receptor availability and/or function (Dalley et al., 2007; Laughlin et al., 2011). In

non-human primates, reversal learning competency also was positively associated with D2-

like receptor availability (Groman et al., 2011). Importantly, unlike the previous rodent

studies in which receptor differences were only noted between groups, likely owing to

limited genetic variability in rodent lines, this work showed a continuous relationship

between the two traits. Lastly, studies on humans have since found that greater D2-like

receptor availability predicts greater inhibitory control capabilities using both the stop signal

reaction time task and the Barratt Impulsiveness Scale (Ghahremani et al., 2012; Lee et al.,

2009; Reeves et al., 2012). Taken as a whole, these studies provide exceedingly consistent

evidence that decreased D2-like receptor availability predicts a diminished capacity for

control over behavior, and further suggest that these differences contribute to the

development of substance dependence.

3. The Neural Circuitry of Inhibitory Control

Earlier models linking inhibitory control deficits to addiction proposed a central role for

catecholamine transmitters in regulating frontostriatal circuits (Jentsch and Taylor, 1999b).

This hypothesis was supported by findings that substance dependent individuals displayed

reduced prefrontal glucose utilization (Volkow et al., 1993; Volkow et al., 1991; Volkow et

al., 1992), that damage to prefrontal regions in humans and animals resulted in disinhibited

and perseverative behaviors (Butter, 1969; Dias et al., 1996, 1997; Iversen and Mishkin,

1970; Milner, 1963; Robbins, 1996), and that pharmacological manipulations that alter

catelcholamines in the prefrontal cortex alter indices of executive control (Charrier and

Thiébot, 1996; Ridley et al., 1981a; Ridley et al., 1981b; Roberts et al., 1994; Sokolowski

and Salamone, 1994; Taylor et al., 1990). Over the course of past decade support for this

hypothesis has grown, with an increasingly large number of human imaging studies showing

structural abnormalities in the prefrontal cortex of substance dependent individuals (Brody

et al., 2004; Franklin et al., 2002; Liu et al., 1998; Matochik et al., 2003; Tanabe et al., 2009;

Thompson et al., 2004), in addition to altered recruitment of prefrontal brain regions in tasks

measuring response inhibition (Bolla et al., 2003; Courtney et al., 2012; Ersche et al., 2011;

Li et al., 2009; Nestor et al., 2011).

Because the striatum remains an important efferent target of prefrontal cortical neurons, and

because striatal neurons are themselves regulated by catecholamine transmitters, it remains

possible that dysregulation within the prefrontal cortex and/or striatum combine to produce

the patterns of inhibitory control problems found in addictions.

Earlier theories of frontostriatal dysfunction in addiction hypothesized that alterations in the

striatum were more likely to be involved in motivational components of addiction, whereas

those in the prefrontal cortex subserved executive functions (Bolla et al., 1998; Jentsch and
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Taylor, 1999b). Such ideas are consistent with a rich literature on mesolimbic dopamine

systems supporting drug reinforcement and motivational output (Koob and Swerdlow, 1988;

Robbins et al., 1989; Roberts et al., 1980; Robinson and Berridge, 1993; Salamone, 1992;

Salamone and Correa, 2012), and in the role of the striatum in acquiring and executing

skilled motor patterns (Graybiel, 1998; Hikosaka, 1991; Lacourse et al., 2005; Lovinger,

2010; Salamone, 1992; Yin et al., 2009). These sentiments have been expanded into popular

Thorndikian learning models wherein the striatum serves to establish behaviors as habitual

and compulsive, becoming independent of voluntary initiation (Everitt and Robbins, 2005;

Hogarth et al., 2012; Shiflett and Balleine, 2011; Yin and Knowlton, 2006).

While there is a great deal of evidence to support such theories, there is a growing body of

evidence that suggests that striatal neurons cooperate with frontal cortical systems in

inhibitory control. A number of studies using both non-human primates and rodents have

now shown that both the ablation and inactivation of medial portions of the striatum

selectively impair inhibitory control in reversal learning tasks (Castañé et al., 2010; Clarke

et al., 2008; Ragozzino et al., 2002). Additionally, 6-hydroxydopamine lesions of this same

region have been shown to impair reversal learning performance, pointing to the importance

of dopaminergic innervation of this region (Clarke et al., 2011; O’Neill and Brown, 2007b).

Lastly, a recent study utilizing optogenetic stimulation to elucidate the role of striatal

neurons at distinct choice points in a two-choice reversal task showed that activation of

dorsomedial striatal neurons is capable of biasing choice behavior, but that this bias is

greatest under conditions of uncertainty, immediately following a switch in reward

contingencies (Tai et al., 2012). Collectively, these studies highlight a role for the striatum

in the ability to suppress prepotent actions and adaptively shift behavior in the face of

changing environmental contingencies.

Striatal neurons play a long recognized role in reward, reinforcement and motivational

processes (Balleine and O’Doherty, 2010; Everitt and Robbins, 2013; Kelley, 2004;

Pennartz et al., 2009; Richard et al., 2012; Salamone and Correa, 2002). A logical question

that arises, therefore, is whether striatal function affects inhibitory control abilities through a

primary modulation of motivational state or by being the site of action of top-down cortical

control over behavior in a manner that is relatively independent of incentive or hedonic

processing? Some data supports the notion that dopamine-modulated striatal systems

contribute directly to both processes; dopaminergic manipulations of the ventral striatum

have been shown to alter both inhibitory control and motivation (Besson et al., 2010;

Cousins et al., 1993; Haluk and Floresco, 2009). On the other hand, dissociable control of

these two processes has also been revealed. While dopamine depletions of the rodent ventral

striatum have been shown to produce robust motivational deficits, depleting dopamine in the

medial striatum has been shown to leave motivation to work for a preferred food reward

intact (Cousins et al., 1993). Moreover, dopamine depletions of the rodent dorsomedial

striatum and homologous primate caudate nucleus impair reversal learning performance but

do not concurrently alter response latencies, another way to index motivation during the

reversal learning task (Clarke et al., 2011; Eagle et al., 2011; O’Neill and Brown, 2007a).

The same has been found following excitotoxic lesions of this brain region (Clarke et al.,

2008). These data could be construed as evidence that dopaminergic function in the striatum

may, under some circumstances, play a more circumscribed role in response inhibition,
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whereas altered ventral striatum function might play a broader role in motivational

processes.

4. Molecular Influences on Inhibitory Control

4.1. Dopamine

Medium spiny neurons of the striatum have canonically been divided into two populations:

those of the striatonigral pathway that express dopamine D1 receptors and those of the

striatopallidal pathway that express dopamine D2-like receptors (Gerfen et al., 1990). In line

with imaging studies showing decreased striatal D2-like receptor availability in substance

dependence, pharmacological and genetic studies have accentuated a role for striatopallidal

neurons in inhibitory control. A study performed in our laboratory using primates showed

that systemic administration of a D2/D3 receptor antagonist, but not of a D1/D5 receptor

antagonist, was able to impair reversal learning performance (Lee et al., 2007). Similarly, in

rodents, direct infusions of a D2-like receptor agonist into the nucleus accumbens, but not of

a D1-like receptor agonist, also impaired reversal learning performance(Haluk and Floresco,

2009). Further, selectively blocking neurotransmission within the striatopallidal pathway,

but not the striatonigal pathway, produced perseverative patterns of responding on the

reversal learning task (Yawata et al., 2012). Lastly, mice with selective deletion of striatal

adenosine 2A receptors, which are co-expressed with D2-like receptors, maintain goal-

directed behavior following training procedures that produce habits in wild-type mice (Yu et

al., 2009). These findings highlight a critical role of the striatopallidal pathway in rapid and

adaptive shifts in behavior.

It is noteworthy that the contribution of D2-like receptors to inhibitory control is not specific

to the reversal learning task, although the dissociation between D2- and D1- expressing

neurons admittedly appears to be the most robust in this situation. For instance, striatal

infusions of both D1/D5 and D2/D3 receptor antagonists are capable of altering stop signal

reaction times, as well as premature responding on the 5-CSRT (Besson et al., 2010; Eagle

et al., 2011).

The hypothesis that inhibitory control may be the causal construct through which alterations

in striatal dopamine D2-like receptors influence addiction has been outlined above. Given

this relationship, pharmacotherapies targeting this system may benefit treatment. That being

said, there are a number of substantial issues that must first be addressed. First, while it is a

predominantly consistent finding that drugs targeting D2-like receptors alter indices of

inhibitory control, the direction of this relationship is sometimes ambiguous, with agonists

and antagonists producing both decrements and enhancements in performance (Besson et al.,

2010; Boulougouris et al., 2009; Ersche et al., 2011; Haluk and Floresco, 2009; Lee et al.,

2007; Mehta et al., 2001). These discrepancies may be the consequence of dose-response

functions, compound selectivity for dopamine receptor subtypes, and/or baseline differences

in the number and/or distribution of receptors throughout the striatum. Understanding the

dynamics by which the activation of receptor subtypes that have hitherto been confounded in

drug studies (e.g. D2 and D3 receptors, D2 autoreceptors) interact with individual

differences in these receptors must be more thoroughly explored. In addition, genetic and

epidemiological studies identifying the source of variation in striatal D2-like receptors may
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provide predictors of drug response. Lastly, because D2-like receptor agonists have also

been shown in animals to reinstate drug taking behaviors (Edwards et al., 2007; Self et al.,

1996; Wise et al., 1990), the clinical benefits of enhancing inhibitory control must be

weighed against the potential for increasing other processes that might promote recidivism.

Because of these issues, future research should address alternative means for modulating

striatopallidal, D2-expressing medium spiny neurons. For example, research could address

the interacting proteins that are co-expressed with dopamine D2-like receptors in discrete

striatal cell populations to explore these possibilities; amongst the known interacting

partners are adenosine A2A receptors and cannabinoid CB1 receptors (Ferre et al., 2009).

Moreover, transcriptome profiling of D2-expressing neurons in the striatum have begun to

generate lists of genes that are enriched in this cellular compartment, some of which have

important actions on motivation and/or impulse control (Lobo et al., 2007; Lobo et al.,

2006).

4.2. Serotonin

Though it is the focus of our review, dopamine is not unique in its modulation of inhibitory

control; indeed, overwhelming evidence indicates that serotonin, acting on neurons of the

orbitofrontal cortex, plays a major role in controlling inhibitory processes, with resulting

effects of serotonin depletions and pharmacological manipulations on tasks that measure

behavioral and response inhibition (Bari et al., 2009; Boulougouris et al., 2008; Brigman et

al., 2010; Clarke et al., 2004; Clarke et al., 2005; Clarke et al., 2007; Eagle et al., 2009;

Evenden, 1999; Izquierdo and Jentsch, 2012; Robbins and Roberts, 2007; Vallender et al.,

2009). Though both dopamine and serotonin influence inhibitory control, it is not entirely

clear if their effects are independent or interactive; some evidence supports the latter

hypothesis. For example, the effects of serotonin depletion on impulsive behavior appear to

depend, at least in part, upon dysregulated dopaminergic transmission (Winstanley et al.,

2003; Winstanley et al., 2005). Moreover, we recently showed that individual differences in

inhibitory control abilities in monkeys are explained by the interaction between cortical

serotonin and striatal dopamine in a neurochemically and neuroanatomically specific

manner (Groman et al., 2013). Though evidence for an interaction is therefore strengthening,

the precise mechanistic account of this interaction remains to be delineated.

5. Inhibitory Control and Process Addictions

Mounting evidence suggests that inhibitory control deficits are not unique to addictions to

drugs of abuse, but rather, may also play a role in process addictions, such as pathological

gambling, compulsive overeating and/or sex addiction (Batterink et al., 2010; Blaszczynski

et al., 1997; Cserjési et al., 2007; Jasinska et al., 2012; Leeman and Potenza, 2012; Steel and

Blaszczynski, 1998; Verdejo-García et al., 2010; Vitaro et al., 1997). In light of the

observation that inhibitory control deficits are found in these conditions, the question

emerges as to whether their biological determinants are shared with drug addictions.

Notably, people with morbid obesity exhibit, on average, lower striatal D2-like receptor

availability, as well as decreased metabolic activity within the prefrontal cortex (Volkow et

al., 2008; Wang et al., 2001). In addition, rats given extended exposure to high-sugar/fat

foods reveal reduced D2 receptor protein in the striatum, and these changes are further
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associated with escalating body weight changes (Johnson and Kenny, 2010). Although these

findings have not been causally linked to differences in inhibitory control, it is interesting to

note that in one study, poor performance on the stop signal reaction time task was positively

associated with the magnitude of obesity in children and was negatively associated with

weight loss following behavioral treatment (Nederkoorn et al., 2007). Future experiments

might directly examine the relationship between D2 receptors, inhibitory control, and

treatment outcomes in obesity.

The relationship between pathological gambling and biological markers of inhibitory control

is less consistent with that of substance dependence. For instance, although the propensity

for gambling-like behavior in rodents has been associated with D2-like receptor availability

(Cocker et al., 2012), a study of human pathological gamblers failed to find any group

differences in striatal D2-like receptor availability (Clark et al., 2012). Nevertheless,

pathological gamblers present altered activity in frontostriatal areas during a monetary delay

task (Balodis et al., 2012), possibly suggesting that there are alternative aberrations in the

inhibitory control circuitry. As more studies are conducted comparing the biological

underpinnings of substance dependence with addictions not involving drugs of abuse, more

will be able to be said about what the commonalities are, and further, what might distinguish

between them.

6. Conclusions

Over the past dozen years or so, the concept that inhibitory control abilities are crucial to

conceptual models of addiction has become well accepted in the field. Moreover, its

relationship to addictions – both as a susceptibility factor and mediator of the progressive

transition from use, to abuse, to dependence – has also been well established. Important

roles of dopamine D2-like and serotonin receptors have also been delineated. Nevertheless,

much work remains to be done. Only recently have genome-scale efforts begun to identify

the genes that likely influence inhibitory control abilities in animal models (Laughlin et al.,

2011), with similar efforts to identify novel loci for inhibitory control in humans as of yet

not reported. The identification of neuropharmacological targets for medicines that reliably

improve inhibitory control (Bari et al., 2009; Brigman et al., 2010; Floresco and Jentsch,

2011; Robinson et al., 2008; Seu and Jentsch, 2009; Seu et al., 2009) and potentially

effectively suppress drug-taking behaviors is just beginning, and the value of already

proposed molecules (e.g., atomoxetine) as candidate medications for addictions remains

unclear. Finally, the value of biomarkers related to dopamine D2-like receptor function,

either neuroimaging -based or proxy measures, in guiding intervention and prevention

strategies has not been fully explored. Accordingly, the opportunities are many for deeper

mechanistic and translational research into the molecular and systems neuroscience basis of

inhibitory control problems in addiction.
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• The inability to effortfully inhibit drug-seeking and –taking actions is central to

addictions.

• Impaired inhibitory control over motivated behaviors occurs as a consequence

of drug experience.

• Natively poor inhibitory control abilities predict addiction susceptibility.

• Dopamine and serotonin, acting alone and in concert, influence inhibitory

control.

• Improving inhibitory control may be an important new approach for treating

addictions.
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Table 1

Common Laboratory Measures of Inhibitory Control

Procedure Usual task setup Test of inhibition Species Key References

Stop signal
reaction time task

Choice reaction time procedure
involving making speeded
responses after presentation of
a “go” cue (often visual)

On a minority of trials, a second
stimulus is delivered after a
response is initiated by the “go”
cue. This is a “stop” command
that instructs cancellation of the
on-going response.

Rodents
Non-human primates
Human subjects

(Eagle et al., 2008;
Godlove et al., 2011;
Verbruggen and
Logan, 2008)

Go/No-go Simple reaction time task
involving alternative
presentations of a “go” cue or
“no-go” cue. Subject responds
rapidly only when the “go” cue
is presented.

“No-go” cues are given
infrequently, resulting in an
overall pre-potent tendency to
respond and a need to inhibit that
on “no-go” trials.

Rodents
Non-human primates
Human subject

(Eagle et al., 2008;
Iversen and Mishkin,
1970; Schoenbaum et
al., 2002)

Reversal learning Discriminated choice task
involving trial-by-trial
responses to concurrently
presented stimuli. Each
stimulus is differentially
associated with reinforcing
outcomes, and that which is
most often associated with the
largest size rewards tends to
attract the most behavior.

Once the task is well learned, a
switch in reinforcement
contingencies is made. Stimuli
initially reinforced at a high rate
are now reinforced at a low rate,
with the opposite occurring for
stimuli initially reinforced at a
low rate. Inhibition of the initially
trained response must occur to
enable new learning.

Rodents
Non-human primates
Human subjects

(Boulougouris et al.,
2007; Clarke et al.,
2007; Ersche et al.,
2011a; Groman et al.,
2011a; Izquierdo and
Jentsch, 2012)

Multiple choice
(e.g., 5-choice)
serial reaction time
tasks

Visual cues are presented in a
temporally and/or spatially
unpredictable manner, and a
speeded response must be
made in a manner congruent
with the cue’s instructional
value (e.g., cues may instruct
the spatial location of the
correct response)

Responses made during the inter-
cue intervals (before instructional
cues are given) reflect inability to
wait or to suppress pre-potent
actions

Rodents
Human subjects

(Bari et al., 2008;
Robbins, 2002)
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