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Abstract

Ultrasound is among the most widely used non-invasive imaging modalities in biomedicine1, but 

plays a surprisingly small role in molecular imaging due to a lack of suitable molecular reporters 

on the nanoscale. Here we introduce a new class of reporters for ultrasound based on genetically 

encoded gas nanostructures from microorganisms, including bacteria and archaea. Gas vesicles are 

gas-filled protein-shelled compartments with typical widths of 45–250 nm and lengths of 100–600 

nm that exclude water and are permeable to gas2, 3. We show that gas vesicles produce stable 

ultrasound contrast that is readily detected in vitro and in vivo, that their genetically encoded 

physical properties enable multiple modes of imaging, and that contrast enhancement through 

aggregation permits their use as molecular biosensors.
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Contrast-enhanced ultrasound has been an active area of research and development for over 

40 years4, with conventional ultrasound contrast agents formulated as lipid- or protein-

stabilized gas microbubbles. The partial pressure gradient between a microbubble’s gas 

interior and surrounding media, which is inversely proportional to its radius, limits most 

microbubbles to sizes larger than one micron and leads to gas escape, bubble fragmentation 

and collapse after in vivo administration5, 6. Although microbubbles have been very 

successful in clinical imaging of the blood pool and related physiology7, and have recently 

been proposed as potential cell-internalized labels8, several factors limit their range of 

applications in molecular imaging. For example, microbubbles of micron size are typically 

limited to imaging targets within the vasculature. In addition, microbubbles typically have a 

short half-life compared to the in vivo dynamics of immune, stem and other cells5, 7, 9. 

Furthermore, none of the solid10, liquid11, hollow12 or phase-change13 contrast agents 

proposed as microbubble alternatives have so far become widely adopted due to limitations 

in echogenicity, stability or ease of synthesis. As a result, important studies in oncology, 

immunology, regenerative medicine and other biomedical areas remain dominated by 

nanoparticle reporters designed for optical, magnetic resonance and nuclear imaging14.

We hypothesized that nanoscale reporters with novel properties for molecular 

ultrasonography could be derived from natural biological structures. In particular, we 

considered gas vesicles (GVs), genetically encoded gas nanostructures formed by certain 

bacteria and archaea as a means to control buoyancy for optimal access to light and 

nutrients2, 3. GVs have cylindrical or biconical shapes, with maximal diameters of 45–250 

nm and typical lengths of 100–600 nm varying between genetic hosts 2, 3. These 

nanostructures interact with gases through a fundamentally different mechanism than 

microbubbles. Whereas microbubbles trap pre-loaded gas, GVs exclude water but permit gas 

from the surrounding media to freely diffuse in and out of their 1–10 attoliter interior 

through a 2 nm protein shell2 (Fig. 1a). As a result, no pressure gradient exists between the 

inside and outside of GVs, permitting them to be inherently stable despite their nanometer 

size. Although they were discovered over 100 years ago15 and have been well-characterized 

biophysically2, GVs have yet to be substantially exploited as a nanotechnology3. We 

hypothesized that GVs could serve as nanoscale molecular reporters for ultrasound imaging, 

and furthermore that their genetically encoded structural properties, such as collapse at 

specific hydrostatic pressures, could enable new imaging modes beyond those available with 

microbubbles.

To test this hypothesis, GVs from Anabaena flos-aquae (Ana) and Halobacterium NRC-1 

(Halo) (Fig. 1, b–c), representing two genetically distant sources3, were purified through 

tonic cell lysis and centrifugally assisted floatation and imaged in gel phantoms using a 

scanning single-element ultrasound imaging system operating at 4.8 MHz, 8.6 MHz and 17 

MHz (for sample preparation and imaging details, see Methods). GVs from both species 

produced robust contrast relative to buffer controls at optical densities (OD) ranging from 

0.25 to 2.0 (Fig. 1d–g), corresponding to nanostructure concentrations of 150 pM to 1.2 nM 

(Ana) or 5 pM to 40 pM (Halo), and gas volume fractions of approximately 0.01% to 0.1%. 

GV echogenicity in this configuration was detectable for over one week (Supplementary 

Fig. 1). Contrast was strongest at the highest frequency, with OD 2.0 Ana GVs producing 
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27.0 ± 4.1 greater scattering than buffer controls (Fig. 1f). The balance of scattering and 

attenuation differed between Ana and Halo GVs. Whereas Ana GVs produced backscatter 

fairly uniformly along the axial dimension (from top to bottom in Fig. 1d), Halo GVs at 

higher concentrations produced acoustic attenuation, manifesting as reduced signal beneath 

the gas vesicles in the gel phantom (Fig. 1e, Supplementary Fig. 2).

GVs can be collapsed by rapidly increasing the hydrostatic pressure past a species-specific 

critical point ranging from 40 kPa to over 700 kPa 2, 16 (Fig. 1b–c). GVs that were 

hydrostatically collapsed prior to loading into the phantom failed to show ultrasound 

contrast, confirming the echogenic role of their gas compartments (Fig. 1, d–e).

Non-linear imaging modes relying on harmonic signals have been used to improve the 

contrast specificity of microbubble-enhanced ultrasound17. In particular, harmonic 

backscatter is thought to arise from oscillations in microbubble radius18 in response to 

incident pressure waves. We tested whether harmonics could also be detected from GVs. 

Transmitting at 6 MHz, we observed substantial second and third harmonic signals in Halo 

GVs at 12 MHz and 18 MHz compared to polystyrene microspheres, a linear scattering 

reference material (Fig. 2a). Ana GVs did not produce harmonic signals at 6 MHz 

(Supplementary Fig. 3). Images formed by processing Halo GV signals through band-pass 

filters centered at the second and third harmonics showed 3.7-fold and 4.6-fold greater 

contrast enhancement in GV-containing wells relative to the linear scatterer than did images 

processed at the transmit frequency (Fig. 2b, c). To further explore GV-specific contrast 

enhancement, we took advantage of pressure-induced GV collapse by testing its application 

in situ at ultrasound frequencies. Halo and Ana GVs were imaged before and after a 

disruptive scan at 8.6 MHz in which the transducer output was set to produce a peak 

pressure of 650 kPa – above the critical collapse level of both species of GVs (70–150 kPa 

for Halo and 440–605 kPa for Ana)16 (Fig. 2d). The GV signal was thereby mostly 

eliminated, enabling the generation of subtraction images in which the signal from Halo and 

Ana GV wells relative to polystyrene was boosted by factors of 10 and 22, respectively. 

(Fig. 2d, e). Such subtraction images can be used to increase the specificity of contrast 

information relative to background scattering19.

The fact that GVs from different species have distinct critical collapse pressures16 raised the 

further prospect of distinguishing multiple populations of GVs in the same sample through 

“serial collapse” imaging. In this paradigm, contrast originating from GVs with a low 

collapse pressure is identified by its disappearance upon the application of pressure pulses 

with amplitudes above their critical point but below that of other GVs. The remaining 

contrast is attributable to GV species with higher collapse pressures. To test this paradigm 

with our two species of GVs, we prepared imaging phantoms with wells containing Halo 

GVs, Ana GVs or a combination of both (Fig. 2f). In an initial image, both populations of 

GVs produce contrast (Fig 2f, top), but after low-pressure collapse at 300 kPa, contrast in 

the Halo GV well is eliminated and contrast in the mixed well is reduced (Fig 2f, middle). 

After high-pressure collapse at 650 kPa, contrast in the Ana GV well and the mixed well is 

also eliminated, leaving only background (Fig 2f, bottom). Halo GV contrast can now be 

inferred by subtracting the second image from the first image (Fig 2g, top) and Ana GV 

contrast can be calculated by subtracting the third image from the second image (Fig 2g, 
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bottom). An overlay correctly shows the mixed well as containing both types of GVs (Fig. 

2h).

Because GVs are smaller than the wavelengths typically used in ultrasound, we further 

hypothesized that assemblies of GV nanoparticles would produce enhanced scattering 

compared to un-aggregated solutions, as previously shown with perfluorocarbon droplets11, 

potentially enabling GVs to serve as biomolecular sensors analogous to aggregation-

dependent nanoparticle reporters for magnetic resonance imaging (MRI)20. To test this 

possibility, we functionalized the surface of Ana GVs with biotin and exposed them to 

various quantities of free streptavidin. In the absence of streptavidin, or at streptavidin 

concentrations sufficient to saturate surface biotins, GVs are expected to remain 

unaggregated; however, at intermediate concentrations, streptavidin is expected to mediate 

GV clustering (Fig. 3a). The formation of aggregates (~1 µm) in response to streptavidin 

was confirmed by TEM (Fig. 3d), and at higher magnification it was also possible to discern 

individual streptavidin molecules on the surface of GVs at the expected relative densities 

(arrows in Fig. 3d). When nanoparticle assemblies were imaged in ultrasound, the 

intermediate streptavidin concentration was detected by a two-fold increase in contrast (Fig. 

3b, c). Ana GVs were chosen for functionalization because their greater resistance to 

collapse (compared to Halo GVs) allows easier handling during repeated purifications.

Next, to test the feasibility of using GVs expressed inside cells as intracellular reporters or 

genetic labels, we imaged intact Ana cells and compared the resulting contrast to GVs that 

were released from the same quantity of cells through hypertonic lysis (Fig. 3e–g). The 

intact cells exhibited a 12-fold stronger signal, indicating that intracellular GVs have the 

potential to serve as genetically encoded reporters or dynamic indicators of cellular integrity. 

The quantity of GVs recovered after lysis (815 ± 124 µL gas volume per g of dry cell pellet, 

N=4) was greater than previously measured intracellular GV contents (~350–500 µL/g)21, 22, 

suggesting that the observed difference in contrast between intact and lysed cells is unlikely 

to arise from GV destruction during lysis.

Finally, to demonstrate that GVs are capable of producing ultrasound contrast in vivo, we 

performed subcutaneous and intravenous injections of Halo GVs into live anaesthetized 

mice, choosing Halo GVs for their robust non-linear signals (Fig. 2a). We first injected the 

GVs or a buffer control subcutaneously in the lower abdomen of anesthetized CD-1 mice, 

and acquired second-harmonic images (transmitting at 6 MHz) using our single-element 

apparatus. We observed robust enhancement on the GV side (Fig. 4a, b, d), but not on the 

control side. To confirm that GVs were the source of the observed contrast, we applied 

ultrasonic pulses at a supra-collapse pressure (650 kPa), resulting in contrast disappearance 

(Fig. 4c, d). Regions of interest containing GVs exhibited 60 ± 14% stronger backscattered 

signals than buffer-injected controls (p = 0.008); this difference disappeared after collapse (p 

= 0.23). Images from five animals are shown in Supplementary Fig. S4. In addition, we used 

a commercial high frequency small animal ultrasound scanner operating at 18 MHz to image 

the dynamics of Halo GVs (50 µL, OD 6.0) injected into the tail vein of severe-combined 

immunodeficient (SCID) nude mice. Five seconds after the start of the injection (at a rate of 

0.6 mL/min), robust scattering was observed from the inferior vena cava in non-linear 

contrast images (Fig. 4 e, h, i and Supplementary Movie S1). Then, as expected for 
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unfunctionalized nanostructures, GV contrast accumulated in the liver, reaching a steady 

state after approximately 50 seconds (Fig. 4 f, h, j and Supplementary Movie S1). 

Application of a high-power burst from the transducer completely eliminated the 

accumulated contrast (Fig. 4 g, h, i, j and Supplementary Movie S1). Under these conditions, 

GVs were detectable in vivo when injected at concentrations as low as OD 1.5 in the inferior 

vena cava (Fig. 4k), and OD 3.0 in the liver (Fig. 4l); contrast increased with dosing above 

these levels.

No acute toxicity was observed in the intravenously injected mice. The animals’ heart rate 

and breathing remained normal during and after imaging (Supplementary Fig. S5), and no 

significant decrease in five veterinary health measures (activity, weight, food intake, posture 

and hydration) was observed immediately or 24 and 48 hours after GV administration 

(Supplementary Table S2). GVs taken up by the liver appeared to be degraded within 60 

minutes of uptake (Supplementary Fig. S6) consistent with other protein nanostructures 

cleared by this organ, e.g. bacteriophage23. However, when GVs were injected 

subcutaneously, occupying a tissue that lacks rapid nanoparticle clearance and protein 

degradation, they produced stable contrast for at least two hours (Supplementary Fig. S7).

Our findings establish GVs as a promising new class of molecular reporters for 

ultrasonography. Their ability to produce stable contrast at sub-nanomolar reporter 

concentrations may enable future applications of ultrasound in imaging studies that, to date, 

have been dominated by nanoparticle reporters for other modalities such as MRI and 

fluorescence14. These concentrations represent gas contents (< 1 µL gas / mL solution) 

similar to or smaller than those of typical formulations of microbubbles, which contain 

approximately 103 times more gas per particle19. Furthermore, several of the demonstrated 

acoustic properties, including response at high frequencies (up to the measured 18 MHz), 

ability to produce harmonic signals (in Halo GVs) and controlled acoustic collapsibility in 

situ, are especially advantageous for high-resolution contrast-enhanced imaging24. Future 

work is needed to determine how these properties are influenced by the specific size, shape, 

elasticity, gas diffusivity and collapse-resistance of these nanostructures. Some insights may 

be gained by refining existing microbubble theories, which predict peak responses at 

frequencies > 18 MHz for contrast agents with submicron size and relatively high 

stiffness18, 25–27. In addition, differences in the physical properties of GVs obtained from 

distinct species, such as sharply tuned collapse pressures and harmonic scattering, may 

enable new detection schemes, as shown here with serial collapse imaging of GVs from Ana 

and Halo.

Application-specific reporters can be generated by functionalizing the surface of GVs 

through bioconjugation, as shown here with clustering-based analyte (streptavidin) detection 

by biotinylated Ana GVs. The nanometer dimensions of these structures may enable the 

labeling of targets outside the bloodstream, for example tumours with increased vascular 

permeability28, to be explored in future studies. As with other nanoscale imaging agents, 

PEGylation or other surface treatments may be necessary to increase circulation time, reduce 

clearance by organs such as the liver and decrease immunogenicity29. Future work is also 

needed to demonstrate the safety of GVs for potential clinical and pre-clinical applications, 

including ones that may require repeated administration.
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Intriguingly, the intracellular detectability of GVs suggests that they could in the future be 

developed as reporter genes for bacterial or mammalian cell tracking, potentially enabling 

longer-term monitoring than recently demonstrated with microbubbles8. Indeed, gene 

clusters encoding GVs have already been heterologously expressed in Escherichia coli 30. 

Furthermore, genetic sequence control over the size, shape and collapse pressures of GVs in 

their native hosts3 could assist with the optimization of GV properties for future use as 

either injectable or encoded reporters.

Finally, we note that GVs’ well-defined molecular structures, anisotropic shapes, hollow 

interiors, gas permeability, optical scattering, buoyancy, chemical reactivity, controlled 

collapse and genetic encoding could conceivably make them useful in various other 

nanotechnology applications.

Methods

Additional details are provided in the Supplementary Information.

Gas vesicle preparation

Anabaena flos-aquae (Ana) was cultured in Gorham’s media at room temperature under 

office fluorescent lighting. Halobacteria NRC-1 (Halo) was cultured with shaking at 37°C 

in ATCC medium 2185, under ambient light. GVs were isolated from Ana and Halo using 

hypertonic and hypotonic lysis, respectively, and purified by repeated centrifugally-assisted 

flotation (Supplementary Fig. S8). Pre-collapsed GVs were prepared through the application 

of hydrostatic pressure in a capped syringe.

The concentration of GVs was estimated based on pressure-sensitive optical density at 500 

nm (OD500,PS)2. The relationship between OD500,PS and protein concentration was 

determined empirically using a total protein assay. Literature-based estimates of molecular 

weight31–33 were used to calculate molar concentrations. Gas volume fractions were 

estimated using gas volumes of 8.4 µL/mg and 12.3 µL/mg for Ana and Halo GVs, 

respectively32, 33.

For experiments comparing intact and lysed cells, Ana cultures (cell OD600nm ~ 2) were 

mixed 50:50 with either water or 50% sucrose for 60 minutes before imaging. GVs release 

was measured using OD500,PS and compared to dry cell pellet weight.

Bio-functionalization and aggregation

Ana GVs were biotinylated using Sulfo-NHS-LC-Biotin and purified by 3X repeated 

floatation. For aggregation experiments, biotinylated GVs were mixed with streptavidin at 

indicated molar ratios for approximately 30 minutes before imaging.

In vitro ultrasound imaging

Imaging phantoms were prepared from 1% agarose in water. 2X concentrated GV samples 

were mixed 1:1 with melted 1% agarose, and 100uL of the mixture was quickly loaded into 

phantom wells. The same procedure was used to load polystyrene microspheres (0.83% final 

w/v, 4.78 µm). Imaging was performed using a home-built imaging setup. A 5 MHz, 10 
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MHz or 20 MHz single element transducer (6.3, 6.3 and 3.2 mm active areas, respectively; 

25.4 mm focal distance) was mounted on a computer-controlled 2D translating stage, 

immersed in water approximately 20 mm above the sample. A programmable pulse 

generator and radio frequency amplifier drove transducers at specified frequencies with 

sinusoidal pulse trains of approximately 1 µs. The pre-amplifier function of a pulse-receiver 

with high-pass and low-pass filtering at 5 MHz and 75 MHz, connected to an oscilloscope, 

was used to collect ultrasound signals and record them using MATLAB (Mathworks, 

Natick, MA). In situ GV collapse was obtained by repeated pulsing at indicated pressures at 

8 or 8.6MHz.

Image analysis

MATLAB was used to process raw time-domain data into two-dimensional (B-mode) 

images. If multiple neighboring lines perpendicular to the B-mode image were acquired, 

they were averaged. Regions of interest were defined manually in the axial dimension and 

automatically in the lateral dimension. Processing and scaling parameters are listed in 

Supplementary Table 1. Colour maps used in the images are shown in Supplementary Figure 

S9. Power spectra represent squared absolute values of fast Fourier transforms of raw time-

domain signals.

In vivo imaging

For imaging of subcutaneously injected GVs (Fig. 4a–d) female CD-1 mice under isoflurane 

anesthesia were depilated above the lower abdomen and injected subcutaneously with 150uL 

Halo GVs (OD 6) on one side and 150uL PBS on the other side of the abdomen. An 

ultrasonic transducer was coupled through a column of ultrasound gel above the injected 

region and scanned or used to apply destructive pulses as described above.

Intravenously injected GVs were imaged in SCID nude mice using the VisualSonics Vevo 

2100 high frequency ultrasound scanner operating in non-linear contrast mode, with the 

MS250 transducer set to 18 MHz and 2% power. The mice were maintained under 

isoflurane anesthesia on a heated imaging platform. Breathing and heart rate were monitored 

by built-in sensors. During infusion experiments, images were acquired continuously at a 

frame rate of 15frames/sec for approximately 100 seconds. 50 µL of Halo GVs in PBS were 

infused approximately 10 seconds after the start of the experiment at a flow rate of 0.6 mL/

min. After 65 seconds, a burst pulse was applied to collapse the GVs. ROIs were analyzed 

using Vevo Lab software. Smoothed infusion time course curves were generated using 

locally weighed scatterplot smoothing. AUC values were obtained from raw data normalized 

to the pre-infusion baseline. Halo GVs remaining in the liver following intravenous injection 

were imaged as described above, with the additional collection of images during 30-second 

windows at 15, 30, 45, 60 and/or 75 minutes after injection. In subcutaneous injection 

experiments, 100 µL OD 6.0 Halo GVs were injected subcutaneously on the right side of the 

abdomen and 100 µL PBS was injected contralaterally.
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Veterinary evaluation

Animals were evaluated by a veterinarian on a 15-point scale comprising three points each 

for activity, weight, food intake, posture and hydration. The veterinarian was blinded to the 

injection group.

TEM

TEM images were obtained on a Philips/FEI (Hillsboro, OR) Tecnai 12 microscope 

operating at 120kV. GV samples (OD 0.1) were deposited on a carbon-coated formvar grid 

and stained with 2% uranyl acetate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Gas vesicles produce ultrasound contrast
a, Diagram of a gas vesicle: a hollow gas nanocompartment (solid shading) surrounded by a 

gas-permeable protein shell (ribbed shading). b, TEM images of intact (left) and 

hydrostatically collapsed (right) Ana GVs. c, TEM images of intact (left) and collapsed 

(right) Halo GVs. All scale bars 200 nm. d, Ultrasound images of a gel phantom containing 

PBS buffer, Ana GVs at optical densities ranging from OD 0.25 to 2 (concentrations of 150 

pM to 1.2 nM) or collapsed Ana GVs (OD 2.0). Images were acquired at multiple 

frequencies, as indicated. e, Ultrasound images of a gel phantom containing PBS buffer, 

Halo GVs at optical densities ranging from OD 0.25 to 2 (concentrations of 5 to 40 pM) or 

collapsed Halo GVs (OD 2.0). Conversion between OD, molar concentration and gas 

volume fraction is described in the Methods. f, Total backscattered signal relative to PBS at 

each frequency and Ana GV concentration (N=4 per sample). g, Total backscattered signal 

relative to PBS at each frequency and Halo GV concentration (N=4 per sample). Detailed 

image acquisition and analysis parameters are provided in Supplementary Table S1; colour 

maps for ultrasound images in Supplementary Fig. S9. The size of each field of view is 

indicated in the lower right corner of the image. All error bars represent ± SEM.
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Figure 2. Non-linear imaging and genetic diversity enable enhanced contrast specificity and 
selective disruption imaging
a, Power spectrum of signal backscattered from Halo GVs (black) and 4.78 µm polystyrene 

(PS) microspheres (red) in response to 6 MHz transmitted pulses (peak amplitude 98 kPa, 

labeled “Transmit” in the figure), Each point on the spectrum represents an average of 48 

points from 3 samples (16 points per sample). The orange, green and blue highlights 

correspond to frequency bands used to generate the images in (b). b, Ultrasound images of 

Halo GVs and PS microspheres acquired with 6 MHz transmission and band-pass filtered 

around 6, 12 and 18 MHz. c, Ratio of total backscattered signal from Halo GVs and PS 

microspheres after filtering at the indicated frequencies (N=4). d, Ultrasound images of 

Halo GVs, Ana GVs and PS microspheres at 8.6MHz acquired before (Pre) and after (Post) 

destructive collapse with 650 kPa insonation, and the difference (Diff.) between these 
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images. e, Ratio of total backscattered signal from GVs and PS microspheres in pre-collapse 

and difference images (N=4). The concentrations used in (a)-(e) were OD 0.5 Halo GVs, 

OD 2.0 Ana GVs and 0.83% w/v polystyrene. f, Ultrasound images of a phantom containing 

wells with PBS, a mixture of Ana and Halo GVs, or each type of GVs on its own (all GVs at 

OD 1.0 in PBS), acquired at 8.6 MHz. Top: before collapse. Middle: after collapse at 300 

kPa. Bottom: after collapse at 650 kPA. g. Top: difference between the top and middle 

images in (f), Bottom: difference between the middle and bottom images in (f). h. Overlay 

of the two images in (g). Detailed image acquisition and analysis parameters are provided in 

Supplementary Table S1; colour maps for ultrasound images in Supplementary Fig. S9. The 

size of each field of view is indicated in the lower right corner of the image. All error bars 

represent ± SEM.
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Figure 3. Gas vesicles act as biomolecular sensors and report cellular integrity
a, Illustration of predicted aggregation interactions between surface-biotinylated GVs 

(hexagons with gray arrows) and streptavidin (SA) at different SA:GV ratios. b, 17 MHz 

image of OD 1.0 biotinylated Ana GVs mixed with the indicated ratio of SA. c, Integrated 

signal intensity relative to phantom background corresponding to the SA:GV conditions in 

(b) (N=4 per condition). d, TEM images of Ana GVs incubated with SA at the indicated 

molar ratios on the top right hand corner of each panel. At the higher magnification (right), 

arrows indicate apparent SA molecules on the GV surface. Scale bars 2 µm (left) and 40 nm 

(right). e, Illustration of GVs (black hexagons) confined inside intact cells (orange) or 

released following lysis. f, Ultrasound image (17 MHz pulses) of Ana cells treated with 

water (intact) or with 25% sucrose (lysed). g, Integrated signal intensity relative to phantom 

background for intact and lysed cells (N=4 per condition). Detailed image acquisition and 

analysis parameters are provided in Supplementary Table S1; colour bars for ultrasound 

images in Supplementary Fig. S9. The size of each field of view is indicated in the lower 

right corner of the image. All error bars represent ± SEM.
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Figure 4. Gas vesicles produce ultrasound contrast in vivo
a, Overlay of second harmonic image (6 MHz pulses) in green on a grayscale broadband 

anatomical image of mouse lower abdomen injected subcutaneously with 150 µL OD 6.0 

Halo GVs on the right side and 150uL PBS on the left side. b–c, Second harmonic 

ultrasound image before (b) and after (c) GV collapse with destructive insonation (650 kPa). 

Dashed outlines show regions of interest (ROI) used to quantify signals. d. Total back-

scatted second harmonic signal from ROIs covering GV-injected (orange) and PBS-injected 

(blue) tissues, before and after collapse (N=5). e–g. Non-linear contrast images acquired 

using a high-frequency ultrasound scanner system (operating at 18 MHz and 2% power) of 

SCID nude mice infused intravenously with 50 µL OD 6.0 Halo GVs. The images show 

contrast at 4.5 seconds (e) and 64 seconds (f) after the start of infusion, or after the 

application of a burst pulse (g). The locations of the inferior vena cava (IVC) and liver are 

indicated with labels. h. Time course of the smoothed average non-linear signal in the IVC 

(blue) and liver (orange) during infusion. i. Mean average signal intensity in the IVC before 

(pre) during (peak) and after (steady) infusion, and after the burst pulse (post) (N=5). j. 
Mean average signal intensity in the liver before (pre) and after (steady) infusion, and after 

the burst pulse (post) (N=5). k–l. Dose-response relationship of 50 µL Halo GVs infused at 

OD 0 – 6.0 determined from the area under the curve (AUC) of average contrast in the IVC 
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(k) and liver (l) (N=5). Detailed image acquisition and analysis parameters are provided in 

Supplementary Table S1; colour maps for ultrasound images in Supplementary Fig. S9. The 

size of each field of view is indicated in the lower right corner of the image. All error bars 

represent ± SEM.
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