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Abstract

The sympathoexcitatory effects of insulin are well-established, although the exact mechanisms by

which insulin stimulates the sympathetic nervous system are not completely understood. The

majority of research supports a primary role for the central nervous system in the gradual and

sustained rise in muscle sympathetic nerve activity (MSNA) in response to hyperinsulinemia; in

addition, recent studies in animals suggests carotid body chemoreceptors respond to increases in

systemic insulin levels. Intermittent activation of the carotid chemoreceptors, similar to that seen

in patients with sleep apnea, can result in sensory long term facilitation and may contribute to the

observed rise in baseline MSNA in this population. Consistent with this idea, insulin exposure

results in sustained increases in MSNA that persist even when plasma insulin levels return to

baseline. We propose the carotid chemoreceptors contribute to insulin-mediated

sympathoexcitation and the persistent rise in MSNA in patients with sustained hyperinsulinemia.

If the carotid chemoreceptors sense and respond to changes in systemic insulin levels, these organs

may provide a viable target for the treatment of disorders known to exhibit sustained

hyperinsulinemia and sympathoexcitation including, but not limited to, obesity, hypertension,

sleep apnea, metabolic syndrome, cardiovascular disease, and diabetes.

OBESITY, SYMPATHOEXCITATION, AND THE CAROTID

CHEMORECEPTORS

The increased prevalence of obesity worldwide has resulted in a large increase in obesity-

related disorders including hypertension, insulin resistance, sleep apnea, and type II

diabetes. Each of these disorders is associated with an increase in the activity of the

sympathetic nervous system, which has been shown to predict the development of

cardiovascular disease and subsequent complications [1-4]. The rise in activity of the
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sympathetic nervous system in obesity-related disorders may be due to a number of factors,

including increases in circulating leptin, insulin, free fatty acids, and inflammatory

mediators [5]. Additionally, heightened sympathetic nervous system activity in obese adults

may be secondary to obstructive sleep apnea, which has been linked to increased carotid

chemoreceptor activation due to repeated intermittent bouts of nocturnal hypoxia (i.e.

repeated desaturations during sleep) [6]. The purpose of this paper is to explore a novel

additional sympathoexcitatory mechanism: insulin-mediated sensitization and activation of

the carotid body chemoreceptors.

The carotid chemoreceptors are sensory organs located within the carotid body at the

bifurcation of the common carotid artery. The carotid bodies sense and respond to changes

in circulating oxygen and carbon dioxide pressures, temperature, and pH [7]. Activation of

the carotid chemoreceptors increases afferent nerve activity and results in increased

ventilation and reflex activation of the sympathetic nervous system. Activity of the

sympathetic nervous system in humans can be examined using microneurography – a

technique first described by Vallbo and colleagues [8]. Microneurography requires insertion

of a tungsten microelectrode percutaneously into a peripheral nerve containing post-

ganglionic sympathetic efferent nerve fibers directed toward skeletal muscle and the

resultant measure of muscle sympathetic nerve activity (MSNA) is highly related to whole

body sympathetic activity [9, 10].

SENSORY LONG-TERM FACILITATION

Whereas a single hypoxic exposure can increase activity of the sympathetic nervous system,

intermittent hypoxic stimuli lead to prolonged activation of the chemoreceptors via a

mechanism termed “sensory long term facilitation” [11]. In animal models, it has been

demonstrated that repeat, acute (15-30 second) exposures to hypoxia can lead to long-lasting

(~1 hour) activation of the carotid body and resultant increase in afferent activity [11-13]. In

support of this idea in humans, both acute sustained and/or intermittent asphyxia (~20 min)

results in significant increases in sympathetic activity (MSNA) that persist for at least 20

minutes after the stimuli are removed [14, 15] (Figure 1). This long-lasting effect of

chemoreceptor activation likely plays an important role in increased baseline levels of

sympathetic nerve activity in adults with sleep apnea, in addition to the effects of

sympathoexcitation on other conditions such as hypertension and cardiovascular disease

risk. Treatment of sleep apnea with continuous positive airway pressure (CPAP) to reduce

the number of hypoxic events occurring during sleep has been shown to reduce

chemoreceptor activity, baseline sympathetic activation, and cardiovascular morbidity/

mortality [16-19].

INSULIN-MEDIATED SYMPATHOEXCITATION

Insulin is released from pancreatic beta cells in response to increased blood glucose levels

(such as that observed after a meal). Increases in plasma insulin concentrations are known to

increase activity of the sympathetic nervous system directed toward skeletal muscle [20-24].

Taking into consideration the dose-dependent vasodilatory effects of insulin in the periphery

[25] and blood volume shifts to the mesenteric circulation, the rise in muscle sympathetic
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nerve activity (MSNA) with hyperinsulinemia contributes to the preservation of blood

pressure after a meal. Consistent with this concept, patients with autonomic failure exhibit a

reduction in blood pressure after intravenous infusion of insulin [26].

Despite this logic, the relationship between the rise in MSNA and plasma insulin levels may

not be linearly-related. In the 1990s, a number of studies examined the sympathoexcitatory

effects of insulin in humans. In the majority of studies, hyperinsulinemic euglycemic clamps

were employed and MSNA was measured with microneurography. In studies in which a low

dose of insulin was followed by a higher dose, the rise in MSNA in response to increases in

plasma insulin appeared to be dose-dependent [23, 24, 27, 28]. However, Vollenweider and

colleagues challenged this view, showing when low- and high-dose hyperinsulinemic

euglycemic clamps were conducted on separate days, a dose-dependent effect was not

observed [29]. To further examine this possibility, we completed a search of the literature

and compiled results from 8 studies that measured MSNA in humans during a

hyperinsulinemic euglycemic clamp [20, 21, 24, 29-33]. In support of Vollenweider and

colleagues, a dose-dependent rise in MSNA with hyperinsulinemia is not apparent (See

Figure 2).

INSULIN, SYMPATHOEXCITATION, AND THE CENTRAL NERVOUS SYSTEM

In addition to the apparent lack of a dose-response relationship between insulin and MSNA,

the rise in MSNA in response to a hyperinsulinemic euglycemic clamp is both gradual [20,

21, 24, 29], and sustained [30], such that MSNA remains increased even after plasma insulin

levels return to baseline (See Figure 3). The majority of research has focused on a role for

the central nervous system in the rise in sympathetic activity with hyperinsulinemia. Thus,

the gradual rise and fall in insulin-mediated sympathoexcitation, and potential lack of a

dose-response relationship, has primarily been attributed to the time needed for insulin to

cross the blood brain barrier [34-36] and the saturation of receptors needed to facilitate this

transfer [37, 38]. In support of this idea, an approximate 30-minute delay occurs between an

increase in systemic insulin levels and a rise in cerebrospinal levels of insulin in dogs [39,

40] and an increase in the concentration of insulin in peripheral lymphatic vessels mirrors

the rise in MSNA [41]. Once in the brain, insulin acts within the arcuate nucleus to increase

sympathetic activity via pathways in the paraventricular nucleus of the hypothalamus and

the rostral ventrolateral medulla [42-45]. The persistent rise in MSNA after plasma insulin

concentrations have returned to baseline [24] is also consistent with the half-life of insulin

within cerebrospinal fluid (~140 min; [39]) and changes in signaling pathways and genomic

events within the brain that unlikely to be rapidly reversed [46]. For more, see Reviews [25,

47]. Interestingly, without activation of insulin receptors within the arcuate nucleus, the

sympathoexcitatory response to acute insulin exposure is lost [48]. However, responses to

repeated or more prolonged elevations of insulin – commonly observed in hyperinsulinemic

conditions – may not rely on the same control mechanisms; this temporal distinction has not

been adequately examined.
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POSSIBLE ROLE FOR THE CAROTID CHEMORECEPTORS?

Despite the large body of knowledge supporting an important role for the central nervous

system in the rise in MSNA with hyperinsulinemia, sensors within the periphery (i.e. the

carotid bodies) may also contribute to insulin-mediated sympathoexcitation. Although clear

scientific evidence is limited, these ideas are supported by early research showing insulin

injected into the carotid artery of anesthetized dogs results in an increase in arterial blood

pressure that: a) is not observed when similar doses are given systemically and b) can be

abolished by ganglionic blockade [49]. More recent studies reported stimulation of breathing

with insulin [50, 51]; a response which was absent following carotid sinus nerve resection.

Furthermore, carotid bodies express insulin receptors and insulin activates the carotid body,

as evidenced by increased neurotransmitter release with insulin exposure [50].

Unfortunately, parallel data are not available in humans. The closest data available come

from Ward and colleagues (2007), who examined the effect of changes in glucose on

chemoreceptor sensitivity as measured by the ventilatory response to hypoxia [52]. Contrary

to their hypothesis, both hypo- and hyperglycemia augmented the hypoxic ventilatory

response (HVR), suggesting hypo- and hyperglycemia activate the carotid body.

Interestingly, both conditions were achieved using a hyperinsulinemic clamp and closer

examination of the results uncovered a potential dose-response relationship between insulin

and carotid body chemoreflex activity (HVR) (Figure 4; [52]) – however these results are

confounded by changes in plasma glucose levels and are thus difficult to interpret. Although

the relationship between hyperinsulinemia and carotid chemoreceptor activity were not

directly examined, such relationships suggest a potential link between hyperinsulinemia, the

carotid chemoreceptors, and sympathoexcitation in humans.

INSULIN-MEDIATED SENSORY LONG-TERM FACILITATION?

Despite the aforementioned evidence, the sustained rise in MSNA after systemic insulin

levels return to baseline remains perplexing. On one hand, this effect may be the result of a

prolonged half-life of insulin present within the central nervous system and/or insulin-

mediated changes in signaling pathways within the brain. On the other hand, the “recovery”

phase of MSNA after a hyperinsulinemic clamp is reminiscent of a prolonged effect of

carotid body activation previously attributed to “sensory long-term facilitation” (See above).

Interestingly, the magnitude of this “sensory long-term facilitation,” at least in animals,

appears to be independent of the severity of the stimulus (i.e. no dose-response); for

example, intermittent exposure to either 5% or 10% oxygen resulted in the same increase in

carotid body afferent activity [11]. Although primarily correlative at this time, these findings

are consistent with the lack of a dose-dependent effect of plasma insulin levels on reflex

increases in MSNA in humans (Figure 2). For more, see Review [53]. Taken together,

insulin – especially during repeated and/or more prolonged exposures - may work at very

similar locals under very similar conditions as that observed with intermittent hypoxia, thus

resulting in reflex increases in MSNA and contributing to increases in basal activity levels.

Furthermore, it may be this sustained effect of insulin at the level of the carotid

chemoreceptors which contributed to apparent dose-dependent increases in MSNA during
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two-step hyperinsulinemic euglycemic clamps (See section “Insulin-mediated

Sympathoexcitation”).

CLINICAL IMPLICATIONS

Plasma insulin levels fluctuate drastically throughout the day (See Figure 5); for example,

plasma insulin concentrations can increase 7-fold after a meal and remain elevated for

approximately 4 hours in healthy adults [54-56]. Consequently, periodic insulin exposures

mirror the intermittent exposures to hypoxia commonly observed in recurrent apneas (i.e.

sleep apnea) – including sustained increases in ventilation and carotid chemoreceptor

sensitivity [57]. Such fluctuations are likely exacerbated in insulin resistant adults where

post-feeding insulin spikes are dramatically increased [54, 58]. Furthermore, “snacking”

and/or irregular meals have been shown to result in higher peak insulin levels when

compared with regular feedings [59, 60]. As described above, a growing body of literature

suggests activation of the carotid chemoreceptors via intermittent hypoxia induces

functional plasticity (sensory long term facilitation) that persists after termination of the

stimulus.

Given the similarities in the responses to hypoxia and insulin, we speculate repeated and/or

prolonged exposures to high levels of insulin contribute to functional plasticity at the level

of the carotid chemoreceptor, which then act independently or in combination with known

central effects. Such relationships may contribute to increased baseline MSNA, and resultant

increases in cardiovascular disease risk. In support of this idea, hyperinsulinemia is

associated with increased cardiovascular, coronary, and all-cause mortality, independent of

other risk factors [61]. Interestingly, “snacking” has also been linked to increased risk of

type 2 diabetes [62] and cancer [63].

Altogether, it is reasonable to speculate fluctuations in systemic insulin may lead to very

similar sensory long term facilitation of the chemoreceptors and may provide an important

link between disorders of sympathoexcitation and cardiovascular disease risk such as

hyperinsulinemia, sleep apnea, hypertension, and the metabolic syndrome. Thus, it may not

be surprising:

• Insulin resistance is reversed with acute supplemental oxygen (which should “turn

off” the carotid body chemoreceptors) in patients with chronic obstructive lung

disease [64].

• Increased chemoreflex sensitivity and insulin resistance observed in adults with

metabolic syndrome both improve with CPAP (continuous positive airway

pressure) treatment [65].

• The number of apneic events during sleep (a possible measure of chemoreceptor

activity) is reduced very early after bariatric surgery (12 weeks; [66]), when

dramatic effects on insulin resistance are often observed prior to significant

reductions in weight.

• Carotid sinus nerve resection in rodents was recently shown to blunt diet-induced

insulin resistance and carotid body over-activation [50] and carotid body
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denervation is being considered as a potential therapeutic target for

sympathetically-mediated diseases in humans [67].

Taken together, these provocative data from both animals and humans support a potential

link between insulin, the carotid chemoreceptors, and sensitivity to peripheral stimuli.

SUMMARY

Provocative evidence from a variety of animal and human studies suggests the carotid

bodies are sensitive to insulin, although definitive data are lacking. We propose the gradual

rise and persistent increase in sympathetic activity in response to repeated and/or prolonged

increases in systemic insulin levels are mediated, in part, through activation of the carotid

chemoreceptors. To support and/or refute the proposed hypothesis, studies using direct

recordings of afferents exiting the carotid body chemoreceptors in response to changes in

insulin levels, in addition to measures of MSNA in humans are needed. It will be important

to examine both the time-course and the magnitude of insulin-mediated sympathoexcitation.

Most importantly, these findings must be translated to and studied in disease populations,

with the goal of identifying the carotid chemoreceptors as a viable target for the treatment

for disorders of sustained hyperinsulinemia (i.e. obesity, hypertension, metabolic syndrome,

type II diabetes) and their physiological consequences.
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FIGURE 1. Long-term facilitation
After acute exposure to intermittent asphyxia, the rise in MSNA persists even after subjects

return to room air breathing. Data adapted from (Xie et al 2000).
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FIGURE 2. Lack of a dose-response relationship between plasma insulin and MSNA
After combining results from 8 studies measuring MSNA in humans during 60-minutes of a

hyperinsulinemic euglycemic clamp, a dose-dependent rise in MSNA is not observed, such

that higher plasma insulin levels do not appear to result in greater sympathoexcitation (Data

adapted from: Vollenweider et al 1994; Vollenweider et al 1993; Vollenweider et al 1995;

Young et al 2010; Scherrer et al 1993; Anderson et al 1992; Anderson et al 1991; Hoffman

et al 1997).
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FIGURE 3.
The rise in MSNA in response to a hyperinsulinemic euglycemic clamp is both gradual and

sustained, such that MSNA remains increased after plasma insulin levels return to baseline.

Data adapted from (Anderson et al 1992).
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FIGURE 4.
The rise in chemoreceptor sensitivity, as measured by the ventilatory response to hypoxia,

mirrors the increase in plasma insulin during a hyperinsulinemic clamp. However, these

results are confounded by changes in plasma glucose levels and are thus difficult to

interpret. Data adapted from (Ward et al 2007).
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FIGURE 5.
Plasma insulin levels fluctuate drastically throughout the day in healthy, nondiabetic

individuals. Data adapted from (Jeppesen et al 1995). Chemoreceptor sensitivity, as

measured by the ventilatory response to hypoxia, increases significantly after a meal. Data

adapted from (Zwillich et al 1977).
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