
Emily R. Pfeiffer
Department of Bioengineering

Cardiac Biomedical Science and

Engineering Center,

University of California,

San Diego 9500 Gilman Drive,

La Jolla, CA 92093-0412

Jared R. Tangney
Department of Bioengineering

Cardiac Biomedical Science and

Engineering Center,

University of California,

San Diego 9500 Gilman Drive,

La Jolla, CA 92093-0412

Jeffrey H. Omens
Department of Bioengineering and Department of

Medicine, Cardiac Biomedical

Science and Engineering Center,

University of California,

San Diego 9500 Gilman Drive,

La Jolla, CA 92093-0412

Andrew D. McCulloch1

Department of Bioengineering and Department of

Medicine, Cardiac Biomedical

Science and Engineering Center,

University of California,

San Diego 9500 Gilman Drive,

La Jolla, CA 92093-0412

e-mail: amcculloch@ucsd.edu

Biomechanics of Cardiac
Electromechanical Coupling
and Mechanoelectric Feedback
Cardiac mechanical contraction is triggered by electrical activation via an intracellular
calcium-dependent process known as excitation–contraction coupling. Dysregulation of
cardiac myocyte intracellular calcium handling is a common feature of heart failure. At
the organ scale, electrical dyssynchrony leads to mechanical alterations and exacerbates
pump dysfunction in heart failure. A reverse coupling between cardiac mechanics and
electrophysiology is also well established. It is commonly referred as cardiac mechano-
electric feedback and thought to be an important contributor to the increased risk of ar-
rhythmia during pathological conditions that alter regional cardiac wall mechanics,
including heart failure. At the cellular scale, most investigations of myocyte mechano-
electric feedback have focused on the roles of stretch-activated ion channels, though
mechanisms that are independent of ionic currents have also been described. Here we
review excitation–contraction coupling and mechanoelectric feedback at the cellular and
organ scales, and we identify the need for new multicellular tissue-scale model systems
and experiments that can help us to obtain a better understanding of how interactions
between electrophysiological and mechanical processes at the cell scale affect ventricu-
lar electromechanical interactions at the organ scale in the normal and diseased heart.
[DOI: 10.1115/1.4026221]

Introduction

It is well known that the heart depends on electrical depolariza-
tion to trigger mechanical contraction, but mechanical perturba-
tions have also long been seen to affect cardiac electrophysiology
[1,2]. The process by which myocyte electrical activation leads to
mechanical contraction is known as excitation–contraction cou-
pling (ECC), while the process by which a mechanical alteration
influences cardiac electrical activity is referred to as mechanoelec-
tric feedback (MEF) (see Fig. 1). Both of these phenomena are
manifested at cellular and whole heart scales.

At the scale of the whole heart, ECC and MEF have been well
characterized, and are known to be altered in various diseases or
states of altered contractility, such as electromechanical dyssyn-
chrony. In the whole heart, abnormal sequences of ventricular
electrical depolarization adversely affect mechanical contraction
and are a major complication when pump function is compro-
mised by heart failure [3]. Extensive studies have also been con-
ducted to understand the cellular mechanisms of ECC and, to a
lesser extent, MEF. For example, it is now well recognized that
dysregulation of intracellular calcium cycling, which is central to
ECC, is a major cause of contractile dysfunction in heart failure,
regardless of the specific heart failure etiology [4].

Although ECC and MEF have been studied at length at the
myocyte and whole heart scales, our ability to integrate and trans-
late cellular and molecular mechanisms to in vivo physiological
and pathophysiological phenotypes is still limited and the problem

is inherently difficult. Ventricular mechanics in vivo are highly
nonhomogeneous, and arrhythmias depend not only on cellular
dynamics but on intercellular coupling, action potential propaga-
tion, and three-dimensional myocardial structure. Contributing to
the paucity of integrative understanding in this field is the compar-
ative scarcity of suitable homogeneous multicellular preparations
and high-fidelity measurement techniques for investigating tissue-
scale myocardial electromechanical interactions under well-
controlled and readily manipulated conditions. Here we review
the state of knowledge of cardiac ECC and MEF at the whole
organ and single cell scales, and we conclude by surveying prom-
ising preparations and techniques for investigating these electro-
mechanical interactions at the multicellular tissue scale.

Organ Scale: Cardiac Electromechanical Interactions

Whole heart studies of cardiac electromechanical interactions
have focused both on forward ventricular excitation–contraction
coupling and reverse coupling, or MEF. The former is more com-
monly known in this context simply as ventricular electrome-
chanics, and studies have focused both on the relationship
between electrical activation in normal sinus rhythm and the nor-
mal sequence of mechanical contraction as well as on how dys-
synchronous electrical activation can alter myocardial mechanical
and ventricular pump function. Mechanoelectric feedback studies
in the whole heart have focused primarily on the mechanisms by
which alterations in hemodynamic loading or focal mechanical
stimuli can modulate atrial or ventricular electrophysiology and
lead in some cases to arrhythmia [2].

Ventricular Electromechanics. The focus of most studies on
whole heart cardiac electromechanics has been on the complex
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spatio-temporal relationship between electrical activation
sequence and the pattern of mechanical shortening. In the normal
heart, the timing of mechanical activation roughly follows that of
the electrical activation, giving rise to a fairly synchronous con-
traction pattern [5]. In the dyssynchronously activated heart,
altered electrical conduction, due to ectopic ventricular pacing or
conduction defects such as bundle branch block, causes asynchro-
nous contraction in which early activated regions shorten against
lower than normal loads and late-activated regions are stretched
during systole due to the effects of the contraction at early acti-
vated regions. Here we review the normal electromechanics of the
heart and the effects of abnormal dyssynchronous electrical acti-
vation both in the structurally normal and failing heart.

Electromechanics in the Normal Ventricles. Myocardial con-
traction is initiated by electrical activation. In the normal heart,
pacemaker cells are located in the sinoatrial node (SAN), and acti-
vation of the ventricles is initiated with electrical impulses originat-
ing at the atrioventricular (AV) node and travel to the His bundle,
which then splits into the right and left bundle branches which leads
to the Purkinje fibers, located subendocardially [1]. Conduction ve-
locity is approximately four times faster in the Purkinje fibers than
in the normal myocardium [6]. Impulse conduction in the Purkinje
fibers takes place from base to apex, but exits the Purkinje system
near the apex at the subendocardium [7], causing activation of the
septum and LV and RV free walls to occur from apex to base and
endocardium to epicardium [8,9]. Owing to the speed at which the
impulse travels, normal ventricular activation is relatively synchro-
nous and causes normal myocardial contraction during systole to be
quite synchronous and efficient. The time for complete activation
of the ventricles is 62–80 ms, which corresponds to a QRS duration
of 70–80 ms in humans [1,10]. QRS durations in this normal range
are indicative of synchronously activated ventricles, whereas pro-
longed intervals are usually, but not always, associated with dys-
synchronous activation due to conduction block or ectopic
ventricular stimulation.

When ventricular electrical activation is normal, the timing of
mechanical activation roughly follows the spread of electrical
depolarization and correlates well with local electrical activation
time at a given site [11]. Even during normal sinus rhythm, re-
gional gradients in depolarization times contribute to mechanical
heterogeneity. The delay in the onset of myofiber shortening fol-
lowing local electrical depolarization is referred to as electrome-
chanical delay (EMD), and can be on the order of tens of
milliseconds [12]. One component of this delay is due to the time
from membrane depolarization to myofilament activation and ten-

sion development, a process that is described in more detail in fol-
lowing sections and referred to as cellular ECC. It is also evident
that EMD must be dependent upon loading conditions and there-
fore the specific activation sequence in the intact heart [12]. Ex-
perimental evidence has shown that epicardial EMD in the normal
heart differs between the base and apex in sinus rhythm, and this
difference can be altered with a change in activation sequence
[11].

Mechanical shortening in the fiber direction occurs at the sub-
endocardium first, and is delayed at the subepicardium, reflecting
the transmural sequence of activation [13]. Transmural mechani-
cal coupling can also dissociate depolarization from shortening
with epicardial segments starting to shorten during systole slightly
before the depolarization wave reaches them; as a result of endo-
cardial contraction and tissue tethering [14]. As electrical activa-
tion spreads from the LV apex towards the base, the onset of
longitudinal shortening at the subendocardium and circumferen-
tial shortening at the subepicardium occurs earlier at the apex
compared with the base, reflecting differences in both activation
time (regionally) and fiber orientation (transmurally). Overall,
these regional heterogeneities in mechanical function are small in
the normal heart, leading to comparatively synchronous myocar-
dial contraction and efficient pressure generation simultaneously
by the left and right ventricular chambers. The dependence of
EMD on activation sequence is of high importance under condi-
tions when electrical activation is dyssynchronous such as with
left bundle branch block (LBBB), when EMD has been shown to
be prolonged in the late-activated regions ultimately leading to
even greater mechanical dyssynchrony relative to electrical dys-
synchrony [15].

Electromechanics in the Dyssynchronously Activated Heart.
Proper ejection of blood from the heart requires relatively syn-
chronous contraction. Dyssynchronous contraction compromise
the coordination required to eject blood efficiently, leading to
reduced pump function and ultimately heart failure. Dyssynchrony
can arise from conduction system disorders such as left bundle
branch block (LBBB), which is the most common conduction
defect in patients with advanced heart failure [3]. The electrical
activation sequence is significantly prolonged during LBBB, and
can reduce left ventricular (LV) pump function substantially
[16,17]. Another cause of dyssynchrony is myocardial infarction,
where the infarct region has slowed or blocked conduction com-
bined with impaired contractility. If the infarct region is large
enough, it can lead to dyssynchrony and left ventricular dysfunc-
tion [18]. Discriminating the extent to which impaired mechanical
function in these conditions is attributable to contractile heteroge-
neity versus electrical asynchrony remains a challenging clinical
question.

Epicardial ventricular pacing (such as via a coronary venous
pacemaker lead) significantly prolongs QRS duration and has
been shown to induce differences in regional workload, which
ultimately leads to regional hypertrophy [19]. QRS duration is of-
ten doubled during ventricular pacing with respect to sinus rhythm
due to the slow conduction of the myocardium [1]. RV apical pac-
ing is a good experimental model of the dyssynchrony induced
due to LBBB, and the resultant alterations in QRS morphology of
the surface ECG [20] and patterns of asymmetric ventricular hy-
pertrophy [21] are similar.

Abnormal electrical activation gives rise to abnormal contrac-
tion patterns. Asynchronous activation during LBBB or ventricu-
lar pacing leads to opposite regions of the ventricles being
activated too early or too late, both electrically and mechanically,
relative to the timing of the pressure pulse. Contraction of early
activated regions stretches remote sites that have not yet been acti-
vated [22]. The stretching of late-activated regions by early acti-
vated shortening has been previously referred to as “prestretch”
[11,23,24] and can reach magnitudes of up to 20% in late-
activated regions [25]. Contraction in early activated regions is
also abnormal owing to interactions with the remote late-activated

Fig. 1 The relationship between excitation–contraction cou-
pling and MEF from the scale of the myocyte to the whole heart
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regions. Early activated regions undergo rapid early systolic short-
ening followed by minimal shortening later in systole, and some-
times even lengthening during systole [26]. These observations
show that not only the timing of contraction is altered by abnor-
mal electrical activation, but also the pattern and magnitudes of
contraction.

Studying dyssynchrony and abnormal electromechanics is of
particular importance in heart failure. One study showed that
approximately 50% of heart failure patients have significant me-
chanical dyssynchrony. The prevalence increases in the presence
of an electrical conduction defect, but mechanical dyssynchrony
by various measures is also common in patients with normal QRS
duration [27]. The use of biventricular ventricular pacing is often
effective in resynchronizing contraction and improving pump
function and reducing mortality in patients with dyssynchronous
heart failure, but a substantial fraction of candidates for this proce-
dure show no response to cardiac resynchronization. Hence, there
is a pressing clinical need for a better mechanistic understanding
of ventricular electromechanical dyssynchrony.

Cardiac Mechanoelectric Feedback. The well-described pro-
cess of electromechanical coupling can also work in reverse. In
other words, acute changes in mechanics of the ventricles can
affect cardiac electrophysiology. Blows to the chest, altered he-
modynamic loading, or regional changes in synchrony may have
the effect of altering myocardial stretch or pressure loading prior
to or during electrical activation. These abnormal mechanical
loading situations have been observed to disrupt or distort normal
cardiac excitation, and in some cases lead to life-threatening
arrhythmias.

Commotio Cordis. Classical studies in cardiac physiology first
identified MEF at the organ scale well over 100 years ago [28].
Reports of commotio cordis date to the 19th century and possibly
earlier. Commotio cordis is a rare cause of ventricular fibrillation
often resulting in sudden cardiac death initiated by a localized pre-
cordial impact that is not sufficiently strong to cause mechanical
damage to the heart or surrounding organs. As recorded in the US
Commotio Cordis Registry, the rate of survival has improved over
recent decades, associated with increased workplace safety and
bone health, such that incidence is now most common in youth
athletics. Survival of these events has been by faster response
times and availability of an on-site automated external defibrilla-
tor. There remains a greater risk of mortality when commotio cor-
dis occurs during noncompetitive rather than competitive sports,
or in African Americans [29,30]. A condition for fatality is that
the chest blow occurs during a vulnerable window preceding the
ECG T wave [31]. Recruitment of stretch-activated channels dur-
ing this period is thought to augment repolarization, increasing
dispersion of repolarization, and promoting ventricular tachycar-
dia [29,31], a mechanism supported by computational models
[32]. While perhaps the most dramatic, commotio cordis is by no
means the only pathophysiological example of MEF.

Mechanically Triggered Arrhythmias. Intrinsic mechanical
pulses and perturbations can trigger arrhythmias or extrasystoles,
and may be especially important in diseases where wall mechan-
ics become altered such as ischemia and heart failure. Transiently
increased hemodynamic loading of failing ventricles has been
observed to give rise to extrasystolic beats and ventricular tachy-
cardia [33,34]. In a positive counterexample, precordial thump or
precordial percussion offers a rapid though low efficiency method
for resuscitation of a victim of witnessed cardiac arrest, though
the window for benefit versus harm is small [35–38].

The Bainbridge Response. Changes in circulatory pressures
have a well-known effect on heart rate. First described in 1915,
the “Bainbridge response” describes an increase in heart rate
under increased venous, but not under arterial, pressure [39].
Increases in venous return are thought to be sensed via stretch
receptors in the left and right atria, and transmitted via the vagus

nerve to the autonomic nervous system, which rebalances vagal
and sympathetic stimulation to the SAN causing an increase in
heart rate [2,40]. Unloading below normal levels during hypoten-
sion, anesthesia, or hemorrhage can result in heart rate decrease
and is sometimes termed the “reverse Bainbridge response” [40].
However, the Bainbridge effect operates in counterbalance with a
slowing in heart rate following a rise in arterial pressure, mediated
by the baroreceptor and autonomic system. Perhaps due to this
counterbalance, the Bainbridge effect is known to be strongest in
the species of first discovery (dog). While rate increase is also
present in humans and other primates, the net effect is reversed in
small mammals [2,40]. Some reports suggest the baroreceptor
response can also dominate the Bainbridge response in humans
[41]. However, Bainbridge responses are thought to contribute to
“physiological” respiratory sinus arrhythmias, modulating blood
flow and promoting oxygen uptake [2].

Ventricular Repolarization. The Q-T interval of the electrocar-
diogram, a measure of the delay between ventricular depolariza-
tion and repolarization, has been observed to lengthen, and the T-
wave to flatten, when ventricular contraction occurs rapidly
against a reduced afterload, in animal tissue preparations and in
the human heart [42,43]. Commonly this affect is attributed to
changes in action potential duration that lead to dispersion of the
repolarization gradient, though the nature of these changes is
unsettled and is likely dependent on heart rate [44–48].

Myocardial Electrical Properties. Additionally, changes in
ventricular conduction dependent on hemodynamic load may also
contribute to electrocardiogram-perceived changes in ventricular
repolarization, by delaying the timing of depolarization globally,
or offsetting it within a region. Experiments in intact and perfused
rabbit hearts have shown conduction slowing with ventricular vol-
ume loading, a change which would increase apparent ventricular
repolarization time [48,49]. Experiments in a variety of tissue
preparations have yielded acceleration, deceleration, or biphasic
changes in conduction velocity under several modalities of tissue
stretch [47,49]. Such electrophysiological changes may contribute
to susceptibility to reentrant arrhythmia in tissue regionally
affected by disease or dyssynchrony [36,45,46,49,50]. Alterations
in ion currents may explain the conduction changes observed in
stretched tissue, although experiments showing no effect of
stretch-activated channel blockers in tissue suggest otherwise
[48,49]. Simulations based on these experiments suggest that this
slowing may be linked to increased cell membrane capacitance
with tissue stretch [49,51].

Cell Scale: Myocyte Electromechanical Coupling

The primary origins of cardiac ECC and MEF are in the myo-
cyte, though there is some evidence that fibroblasts are mechano-
sensitive and do influence action potential propagation. Myocyte
ECC is the process of the depolarization of the cell membrane
ultimately giving rise to a cellular contraction. Myocyte mechano-
electric coupling is the process of a cell experiencing mechanical
stretch that ultimately alters its action potential. We summarize
the main mechanisms of each in the following sections.

Myocyte Excitation–Contraction Coupling. At the cellular
level, the process of an electrical event leading to mechanical con-
traction has been termed ECC. The process is initiated by local
membrane depolarization leading to calcium-induced calcium
release from the sarcoplasmic reticulum, which increases the in-
tracellular free calcium available to bind and activate the myofila-
ments, ultimately initiating contraction. In order to fully
understand the electromechanics in the whole heart, it is important
to dissect the molecular mechanisms that give rise to this phenom-
enon at the cellular level.

Calcium-Induced Calcium Release. Mechanical contraction of
cardiac myocytes is initiated by electrical depolarization, and the
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key regulator that activates contraction in the myocyte is intracel-
lular calcium. Membrane depolarization during the action poten-
tial leads to the opening of the voltage-gated L-type calcium
channels [52]. Calcium entering the myocyte via L-type channels
localized primarily in the transverse-tubular membrane binds to
closely apposed ryanodine receptors on the membrane of the junc-
tional sarcoplasmic reticulum (SR), as seen in Fig. 2 [53]. This in
turn opens the ryanodine receptors stimulating a release of more
calcium from the SR [54]. This process is often referred to as
calcium-induced calcium release, as the relatively small influx of
calcium triggers the larger release of calcium from the SR. The
combination of calcium influx and release from the SR leads to a
rise in the intracellular calcium, which is referred to as the cal-
cium transient. Because the L-type channels and ryanodine recep-
tor clusters are only about 15 nm apart across a narrow dyadic
cleft between the T-system membrane and the junctional SR, the
magnitude of the calcium transient increases progressively with
higher sarcolemmal calcium current, allowing this calcium-
induced calcium-release mechanism to achieve a graded response.
The ATP-dependent sarco-endoplasmic reticulum calcium
ATPase (SERCA pump) resequesters cytosolic calcium into the
SR to restore diastolic levels, and most of the excess calcium that
entered via the L-type channels is extruded via the sodium–cal-
cium exchanger (Fig. 2). Because of differential spatial expression
of key proteins in this calcium cycling pathway, transmural heter-
ogeneities in the dynamics of the calcium transient and the time
delay between membrane depolarization and the onset of twitch
tension have been described [55]. In dogs, this results in a shorter
latency between depolarization and the onset of contraction in epi-
cardial myocytes than endocardial cells, which approximately off-
sets the timed delay between endocardial and epicardial
depolarization. Dysregulation of myocyte calcium cycling mecha-
nisms is a common cellular phenotype of the failing ventricular
myocyte, and there is intense interest not only in how these altera-
tions impair contractile function in heart failure, but also how they

may promote arrhythmias by causing cellular electrical instabil-
ities known as afterdepolarizations [56].

Myofilament Activation. The rise in the free intracellular cal-
cium during the calcium transient allows for calcium ions to bind
to the myofilament protein regulator troponin-C [53]. Cardiac
troponin-C contains two high-affinity calcium-binding sites and
one low affinity binding site (different from skeletal muscle
troponin-C which has two low affinity sites) [57]. The high affin-
ity sites are always calcium bound at normal physiological levels
of calcium, but it is the low affinity site that accounts for the
regulation by calcium and the activation of the sarcomere [58].
The binding of calcium to this low affinity regulatory site causes
the troponin-C to undergo a conformational change, which via
interactions with actin, troponin-I, and troponin-T ultimately
allows tropomyosin strands on the thin filaments to shift, exposing
the myosin binding sites on actin, allowing the S1 region of myo-
sin to bind to actin [59].

Myofilament Calcium Sensitivity and Cooperativity. After
strong binding of myosin to actin takes place, additional cross-
bridge binding is dramatically enhanced, a cooperative mecha-
nism that probably is a function of the movement of tropomyosin
into an even more favorable position [60,61]. The well-known
steady state force–pCa curves for cardiac muscle show a very
steep relationship between available calcium and force. This
steeply nonlinear relationship indicates that there is a cooperative
mechanism of myofilament activation taking place. The Hill coef-
ficient for cooperative calcium-dependent peak tension can be as
high as 5 to 9 in cardiac muscle.

Steady-state force–pCa curves show that the magnitude of con-
tractile force developed is highly dependent on the amount of free
calcium present, as well as sarcomere length. Studies have shown
that sarcomere length influences the affinity of troponin-C for cal-
cium [62]. There are many theories surrounding the length

Fig. 2 The first step in the initiation of contraction begins with an influx of sodium
ions, which depolarizes the membrane and opens the voltage-gated L-type calcium
channels. This causes an influx of calcium into the cell, some of which binds to ry-
anodine receptors (RyR) located on surface of the sarcoplasmic reticulum (SR),
which allows for a large scale release of calcium from inside the SR; a process
referred to as calcium induced calcium release. There is then an abundance of free
calcium in the cell that can bind to troponin (Tn), in particular troponin-C. This
binding causes tropomyosin (Tm) to shift, exposing the myosin binding site on
actin. Once the myosin head binds to actin, force is generated. At the end of the
crossbridge cycle, calcium is released from troponin-C and is then either pumped
out of the cell by the sodium-calcium exchanger (NCX) or resequestered into the
SR via the sarcoplasmic reticulum calcium ATPase (SERCA) pump. Resulting
changes in the mechanical context of the cell can alter the dynamics of conduction
of electrical excitation throughout the tissue and the duration of cell action poten-
tial, by modulating channels, junctions, and cell capacitances and resistances;
thus feeding back between cardiac mechanics and electrophysiology.
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dependence of myofilament calcium sensitivity, but the true
mechanism is not fully understood. Myofilament calcium sensitiv-
ity has also been shown to be dependent upon relatively quick
length changes, where quick release experiments gave rise to a
transient increase in intracellular calcium as some calcium is pre-
maturely displaced from the thin filaments [63]. This is one exam-
ple of a feedback mechanism in which a mechanical perturbation
affects intracellular calcium, and thus contractility; more of which
will be discussed in the following section.

Myocyte Mechanoelectrical Coupling. While organ-scale
examples of cardiac MEF have been documented and defined,
most are not clearly linked to cellular mechanisms outside the au-
tonomic nervous system. One source of this gap in understanding
is that cardiac electrophysiology arises from the collective behav-
ior of a population of cells situated in a dynamic mechanical and
electrical tissue environment. Electrical activation is achieved
through a sequence of ionic currents acting in concert, and altera-
tions in individual currents or ion channels are not easily distin-
guished, or understood in relationship to interacting currents.
Likewise for currents through cell–cell gap junctions and the elec-
trical source–sink interactions surrounding electrotonic loading of
passive tissues. The changing nature of cell and tissue electrical
properties within a mechanically, biochemically, and electrically
dynamic environment are also unclear. For these reasons, many of
these effects have been initially studied at the single-cell level or
within computational models in order to establish a foundational
understanding of their functions. Current understanding of some
of these components is summarized here.

Stretch-Activated Currents. Various ionic currents have been
proposed to be mechanosensitive in cardiomyocytes; thus produc-
ing stretch-sensitive electrophysiological responses, however the
effect of these currents in healthy and diseased cardiac function is
unclear. While nonspecific cationic, Kþ-selective, and Cl–selec-
tive mechanosensitive channels (MSCs) have been identified in
various preparations, most cardiac myocyte studies to date have
focused on the nonspecific cation-selective channels (nsMSCs)
[2,64]. The most specific blocking agent used to study these chan-
nels is GsMTx-4, a peptide derived from tarantula venom, which
is thought to embed in the membrane around nsMSCs such as
TRPC6 channels, reducing transmission of membrane tension and
mechanosensitive opening of the channels [65–69]. Also com-
monly used are the rare earth element gadolinium (Gd3þ), which
broadly affects cationic and anionic MSCs, and cationic antibiot-
ics such as streptomycin, though both have technical disadvan-
tages when compared with GsMTx-4 [2,64,67].

If TRPC6 channels are indeed mechanosensitive, their upregu-
lation in stretch and disease, and effects on Ca2þ handling may
prove to be important players in MEF [66,70,71]. Computational
simulations have suggested a role for nsMSCs in heart rate accel-
eration and deceleration due to stretch described above, and ex-
perimental evidence in SAN tissue using GsMTx-4 is in
agreement [2,72]. Computational models and experiments studies
suggest a role for nsMSCs in stretch-induced ectopic ventricular
contractions, repolarization shortening, and rate-dependent restitu-
tion of action potential duration [44,73–75].

Cell–Cell Coupling. Electrochemical communication between
cardiomyocytes occurs primarily through connexon channels
made up of connexin proteins localized at gap junctions usually
within an intercalated disk joining two cells via mechanoelectrical
couplings. These gap junctions afford low resistance current flow
between cells, with relative conductivity determined by the con-
stituent connexin isoforms, which are expressed with cell type and
tissue specificity varying throughout the atria, ventricles, and con-
duction system [76–80]. Cardiac conduction is thus dependent on
the integrity of mechanical junctions between cells, and altera-
tions in connexin expression due to disease [79,81–83] Connexon
mechanosensitivity in cardiac cells is unknown, although

increased conductivity with stretch has been shown in other cell
types [84]. Mechanical loading increases expression of gap junc-
tion proteins through hypertrophy processes, which can lead to an
increase in conduction velocity [85,86]. Alterations in cardiac
mechanics via electrical stimulation and heart failure have also
been observed to promote gap junction remodeling, increasing
susceptibility to arrhythmia [83,87,88].

Additionally, conductivity may be enhanced by field or electro-
tonic coupling throughout cardiac tissue. Conduction may be fos-
tered at the peri-nexus region surrounding gap junction plaques
through field coupling boosted by Nav1.5 channel enrichment
near connexins [89]. Models suggest that ephaptic or field
coupling to surrounding passive tissue could be important in prop-
agation of electrical signals through the myocardium, beyond
classical cable model representations [90–92]. These findings
underscore that changes in cell membrane configuration, observed
to occur with stretch, could play an important role in mechanosen-
sitivity cardiomyocyte electrophysiology [49,93–95]. An electro-
tonic effect of coupling between cardiomyocytes and cardiac
fibroblasts has been demonstrated, in experiments and in simula-
tions [96–99]. Both fibroblast-mediated slow conduction through
myocyte-free regions, and a role in MEF for mechanosensitivity
of cardiac fibroblast membrane potential have been suggested,
and both often labeled as arrhythmogenic [29,100–104]. Interest-
ingly, one of the proposed mechanisms for cardiac myofibroblast
alterations of cardiac conduction is via forces exerted by the myo-
fibroblasts on the cardiomyocytes, leaving open the possibility of
MEF within the cardiomyocytes [105].

Membrane Capacitance. Beyond affecting constituent channels
and junctions, changes in cell membrane configuration with
stretch may alter fundamental electrical properties such as capaci-
tance [93]. Although there have been few studies of mechanical
effects on myocyte membrane capacitance [106,107], indirect evi-
dence in intact tissue preparations has implicated changes in
membrane capacitance in stretch-induced changes in action poten-
tial conduction velocity, as described above [49]. There is some
evidence for membrane capacitance increase with membrane ten-
sion in other cell types [106,108]. Increased membrane capaci-
tance could be expected to lower excitability and slow conduction
of activation through the myocardium, promoting arrhythmia as
discussed above. However, a connection between this cellular
property and organ-level phenomena remains to be demonstrated.

The Need for Multicellular Tissue-Scale Experiments

The previous sections have discussed ECC and MEF at the cellu-
lar and organ levels. Studying these two phenomena at the cellular
scale helps elucidate the mechanisms involved, but this information
does not translate well from the single cell to the whole heart, sim-
ply due to the experimental conditions of single cell preparations.
Tissue level preparations can help translate the ECC and MEF dis-
coveries made in single cell experiments to the whole heart.

Understanding ECC at the cellular level provides functional
and molecular insight into muscle cell contraction, but the ulti-
mate goal is to relate these cellular mechanisms to observations at
the organ level. Experimental techniques have been designed in
an attempt to study the role of altered ECC in heart failure and
disease at the level of the single cell [109]. While cellular studies
like these lead to important new information as to the role of ECC
in heart failure, we cannot directly apply the mechanical corre-
lates at the single cell level to understand mechanical function in
the whole heart. There is no doubt that single cell studies provide
valuable insight to ECC, but the cellular environment in vivo is
very different. In the myocardium, cardiac myocytes are mechani-
cally and electrically coupled with surrounding cells. There is a
hierarchical three-dimensional extracellular matrix, and myocytes
interact with several other cell types in the myocardium. Cell me-
tabolism is certainly affected by the three-dimensional environ-
ment in vivo. When a cardiac myocyte is removed from its
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normal environment, cell electrical and mechanical functions are
significantly affected. This fact makes it very difficult to take
ECC mechanisms observed at the cellular level and apply them to
the electromechanics observed at the organ level. Tissue level
investigations of these mechanisms are needed to bridge this gap.
Such preparations allow the myocytes to be studied in an environ-
ment that more closely mimics how they are found in the heart,
but also allows for collection of data that is not possible in the
intact heart, in which tissue structure and regional stresses and
strains are highly nonhomogeneous.

Many physiologically interesting phenomenological observa-
tions of MEF have been made through studies of clinical and
in vivo responses, Langendorff-perfused intact hearts, and whole
muscle preparations, while in parallel, complex mechanisms are
gradually becoming known at the subcellular and single cell lev-
els. However, the specific cellular mechanisms for many organ-
level observations remain elusive, as do the role of particular cel-
lular mechanisms when in concert with the organ. Though there is
extensive knowledge and detailed mathematical models of the
electrophysiology of single cardiac myocytes in a wide variety of
species, arrhythmias are complex, whole-organ, spatio-temporally
dynamic phenomena that depend on multicellular interactions and
cannot be understood based solely on single cell data. Conversely,
the whole heart is three dimensional and inhomogeneous, and it is
not yet possible to simultaneously map three-dimensional
mechanics and electrophysiology throughout the intact heart,
much less to perturb them in a well-controlled manner.

The following sections summarize several different multicellu-
lar preparations that have been used for studying ECC and MEF.
These approaches promise to help better integrate the cellular and
molecular mechanisms of excitation–contraction coupling and
mechanoelectric feedback with the whole organ physiology of
ventricular electromechanical interactions.

Cardiomyocyte Tissue Cultures. One concern regarding single
cell experiments is that techniques for stretching isolated adult car-
diomyocytes are technically quite difficult, and coupling these tech-
niques with electrophysiological study present a difficult hurdle
[110]. Depending on the scientific question, there is interest in test-
ing isolated adult cells as singles, doublets, or as slices or strips of
tissue [88,111–113] Still, precise but population-level electrophysi-
ological studies of electrically coupled cells under precise and
physiological mechanical strain conditions remains challenging.

Over the years, improved techniques for microfabrication of
patterned surfaces and polymer chemistry have been put to work
to engineer culture conditions that closely resemble native myo-
cardium. While classical tissue culture presents a cell body/sub-
strate stiffness mismatch that typically has deleterious effects on
cell development and morphology, softer polymer substrates have
been found to optimize cardiomyocyte maturation in culture
[114–116]. However, soft substrates often preclude experiments
imposing prescribed stretch. Freestanding gel or polymer strip
platforms have been designed to study patterned or biologically
manipulated cardiomyocyte force generation [117–120]. Though
early cardiomyocyte culture work focused on larger and more ro-
bust rat cardiomyocytes, transgenic mouse models of human ar-
rhythmia phenotypes have motivated a shift to murine cell culture
[121,122]. Nonmammalian models of human cardiac disease are
also employed to study small numbers of cardiomyocytes under
near-native mechanoelectric conditions [123,124].

Working with neonatal cardiomyocytes, which are capable of
forming mechanoelectric junctions in culture, geometrical cues
presenting extracellular matrix protein have been found to guide
cells into anisotropic and aligned morphology similar to that of
developing myocardium [125–130]. Stretch devices have been
designed which give options for studying micropatterned cardio-
myocytes under physiological biaxial loading conditions

Fig. 3 Combined apparatus for biaxial stretch of micropatterned neonatal cardio-
myocytes and optical mapping of cell membrane potential permits study of conduc-
tion through multicellular preparations. (a) Diagram of optical mapping and
micropatterned stretch equipment; (b) representative map of electrical activation,
spatial scale 2 mm; (c) example stretch experiment result, showing that conduction
in the longitudinal and transverse directions of the micropatterned cell culture
slows with biaxial stretch, scale 2 mm; and (d) Example activation map in a trans-
genic mouse model of arrhythmia associated with mechanoelectric junctions, in
collaboration with Dr. Farah Sheikh, UCSD.
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[85,131–133]. When combined with optical methods for mapping
changes in membrane potential as in Fig. 3, these techniques per-
mit precise measurement with the capability to observe changes in
conduction (slowing) across aligned, uniformly and precisely
stretched, multicellular preparations [134]. The length scale of the
micropatterned cell culture permits study of arrhythmogenic
mechanisms, including those associated with proarrhythmic sub-
strate such as reentrant spiral waves [Fig. 3(d)]. These experimen-
tal setups allow for direct evaluation of mechanoelectric
mechanisms at the multicellular level, giving insight into cell-
level function and its role in overall cardiac MEF.

Engineered Cardiac Tissue. Engineered cardiac tissue (ECT)
is a relatively new and emerging technology that can be used to
study both the mechanical and electrical properties of the myocar-
dium at the tissue scale. This method allows for the study of neo-
natal cardiomyocytes at the tissue scale, which was previously not
feasible in intact preparations such as trabeculae or papillary
muscles, due to the small size of neonatal hearts. ECTs initially
utilized cardiomyocytes from embryonic chick hearts [135,136]
and neonatal rat hearts [125]. Recently, the source of cardiomyo-
cytes was expanded to include neonatal mouse hearts, which
allows access to the multitude of gene-targeted mouse models of
heart disease [137]. Mechanics studies performed using ECTs
have shown that they exhibit the Frank–Starling mechanism [136]
as well as a positive force–frequency relation [135], both of which
are observed in more traditional trabeculae and papillary prepara-
tions. These preparations have also been shown to propagate elec-
trical impulse and produce calcium transients that are very
representative of what is measured in traditional intact and whole
heart preparations [125,138]. However, a key disadvantage to
using ECT preparations to study mechanics is that they still pro-
duce comparatively low active tension values, generally less than
1 mN/mm2 [136], whereas trabeculae and papillary muscles easily
produce in excess of 20 mN/mm2 [139,140]. These low active ten-
sion values raise some questions regarding how closely these
preparations mimic healthy intact tissue. There are also concerns
with the extracellular matrix structure, cell architecture, and cell–
cell junctions that need to be addressed in these engineered
tissues.

Isolated Muscle Preparations. The best preparations for
detailed measurements of cardiac muscle mechanics are isolated

trabeculae and small papillary muscles, frequently from rodents
[141]. Experimental setups designed to focus on isolated muscle
mechanics usually consist of five main components: (1) A muscle
chamber that allows for perfusion of the tissue with the desired so-
lution; (2) a transducer to measure force produced by the muscle;
(3) a servomotor to control the length of the muscle; (4) a laser
directed at the muscle to measure sarcomere length; and (5) a pho-
todiode array to measure the diffraction pattern produced by the
laser. Figure 4 shows an example layout of a computer controlled
muscle mechanics system. These setups measure force directly
via the force transducer, which can be converted to tension by
measuring the cross-sectional area of the muscle. Overall muscle
length and length change are monitored via the servomotor, which
comes equipped with a displacement transducer. The sarcomeres
in the isolated tissue act as a grating and diffract the incident laser
light into bands, which can be analyzed to determine sarcomere
length [141]. The size and uniformity of the preparation are criti-
cal so that strains in the central portion of the preparation are rela-
tively homogeneous, oxygen delivery is not limited by high
diffusion distances and sarcomeres can be detected by laser
diffraction.

Setups often include components to allow for the measurement
of free intracellular calcium. The change in free intracellular cal-
cium after activation is referred to as a calcium transient. To mea-
sure calcium transient in intact muscle preparations, two
additional pieces of equipment are needed: (1) An excitation light
source that emits light at the desired wavelength to excite the cal-
cium indicator, and (2) a photomultiplier tube (PMT) or a CCD
camera to measure the fluorescent intensity emitted by the fluoro-
phore [142]. Fura-2 is a popular calcium indicator which allows
for quantification of free intracellular calcium in a ratiometric
fashion [143]. With the ability to measure calcium transients
simultaneously with force and sarcomere length, a whole new cat-
egory of experiments is possible that can bridge the gap between
cellular ECC experiments and observations of electromechanics
in the whole heart [144].

To investigate the effects of altered electrical activation relative
to the timing of passive mechanical state of the local tissue, the
altered strain pattern that is observed in dyssynchronous hearts
can be imposed on papillary muscles or trabeculae preparations.
Studies in the past have put two papillary muscles in series and
electrically activated them in a dyssynchronous manner to mimic
dyssynchrony [145]. This study was a good way to roughly mimic
dyssynchrony, but did not provide precise control over the strains
imposed on the muscles. A computer controlled setup with a high

Fig. 4 Layout of a computer-controlled system designed for
measuring cardiac muscle mechanics. The system is capable of
measuring force, calcium transients, sarcomere length (in tra-
beculae), muscle length, and local muscle strain. The high-
speed servomotor performs very precise stretches.

Fig. 5 (a) Measured strain in a mouse papillary muscle due to
a 20% prestretch with a timing in relation to activation (vertical
line) that is similar to (b) measured strain in the late activated
region of a ventricularly paced dog heart
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speed servomotor to precisely control strains imposed on the mus-
cle allows for more control over the timing and magnitude of
stretch in muscle relative to the time of electrical activation (Fig.
4). The prestretch that is observed in late-activated regions of dys-
synchronous hearts (either due to LBBB or ventricular pacing)
can be imposed on papillary muscles to determine the effects of
this stretch, as seen in Fig. 5. This experiment utilized topical
markers on the papillary muscles to measure and control regional
strain in order to realistically simulate local prestretch in late-
activated regions on the whole heart. These measured muscle
strains were combined with force and calcium measurements
using the system outlined in Fig. 4. The results from these experi-
ments showed that the prestretch induced by dyssynchrony alters
force production in the muscle, as well as the mechanical work
performed, and this difference is amplified depending upon the
timing of stretch. Calcium transients can be then analyzed to give
insight into the role of alterations to cellular ECC mechanisms.
Experimental setups like these allow for electromechanics
observed in the whole heart to be studied in much more intricate
detail with measures and control that are not available in whole
heart preparations. For example, they will allow the mechanisms
contributing to the deactivating effects of prestretch on myofila-
ment force development to be dissected. It is likely that different
mechanisms govern the responses to prestretches that are early
with respect to the stimulus timing compared with later ones.

Ventricular Slice and Wedge Preparations. Other prepara-
tions that are used to study the myocardium at the tissue level are
the ventricular slice and wedge. Ventricular wedge preparations
have provided a wealth of knowledge regarding electrophysiology
and arrythmogenesis, and have been shown to be a valid preclini-
cal model [146]. These preparations keep the entire ventricular
wall intact, which allows for determination of transmural electro-
physiological heterogeneities that is not possible in many other
preparations [147]. Studies were originally performed using ca-
nine ventricles, but have more recently been expanded to include
human tissue [111,148]. Ventricular slice preparations have also
been performed using human tissue, and consist of a very thin
slice of tissue that is suitable for multicellular studies. Slice prepa-
rations provide stable electrical activity and have shown conduc-
tion velocities similar to that of the whole heart [111]. While this
novel and highly promising approach provides an ideal framework
for studying electrophysiology, using both optical and electrical
methods, it has not yet been used for investigating mechanics or
electromechanics, though this should be feasible.

Conclusions

The sequence of electrical activation in the whole heart has
been shown to give rise to a relatively uniform contraction wave-
front in the normal heart. This uniform contraction can be dis-
rupted due to conduction disturbances such as LBBB or MEF,
ultimately leading to dyssynchronous activation and contraction.
It is known that dyssynchronous activation alters the elctrome-
chanics of the heart, but the mechanisms involved in this altera-
tion are not completely understood. At the level of the single cell,
ECC has been studied as a means to give insight to the electrome-
chanics taking place at the whole heart scale, and MEF has been
investigated in the context of component ion channels response to
cell membrane tension. At this point in time, it is fairly well
understood how electrical excitation gives rise to mechanical con-
traction via calcium induced calcium release. However, studies at
the cellular level lack the important cell–cell and cell–ECM
mechanoelectrical interactions that are present in intact tissue.
The lack of the ability to simulate dyssynchrony to study how it
alters ECC, and the ability to apply precise mechanical loads to
cell populations in order to understand MEF hinders progress to-
ward identifying cell-scale mechanisms for organ-scale phenom-
ena. Engineered cardiac tissue and ventricular wedge preparations
are extremely useful for studying the electrophysiology of the

myocardium, but require the ability to reliably study the mechan-
ics to draw insight into MEF. Multicellular preparations with
capability for biaxial stretch can provide this level of precision
and show promise in identifying mechanisms of MEF. Tissue
level preparations are the ideal model for studying dyssynchrony
and its effect on ECC. Intact tissue preparations such as trabeculae
and papillary muscles have been used for decades, but provide the
ideal model for studying ECC and in particular the effects of dys-
synchrony on ECC, due to their ability to produce valid mechanics
and calcium data. These preparations in modern computer con-
trolled tissue level systems are also rugged enough to withstand
the physiological stretch seen in dyssynchrony. These and other
novel approaches to measuring cardiac electromechanics will help
bridge the gap in knowledge between what is well known at the
cellular level, and how this information can be translated to the
whole heart.
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