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Prefailure and Failure
Mechanics of the Porcine
Ascending Thoracic Aorta:
Experiments and a Multiscale
Model
Ascending thoracic aortic aneurysms (ATAA) have a high propensity for dissection,
which occurs when the hemodynamic load exceeds the mechanical strength of the aortic
media. Despite our recognition of this essential fact, the complex architecture of the
media has made a predictive model of medial failure—even in the relatively simple case
of the healthy vessel—difficult to achieve. As a first step towards a general model of
ATAA failure, we characterized the mechanical behavior of healthy ascending thoracic
aorta (ATA) media using uniaxial stretch-to-failure in both circumferential (n¼ 11) and
axial (n¼ 11) orientations and equibiaxial extensions (n¼ 9). Both experiments demon-
strated anisotropy, with higher tensile strength in the circumferential direction
(2510 6 439.3 kPa) compared to the axial direction (750 6 102.6 kPa) for the uniaxial
tests, and a ratio of 1.44 between the peak circumferential and axial loads in equibiaxial
extension. Uniaxial tests for both orientations showed macroscopic tissue failure at a
stretch of 1.9. A multiscale computational model, consisting of a realistically aligned
interconnected fiber network in parallel with a neo-Hookean solid, was used to describe
the data; failure was modeled at the fiber level, with an individual fiber failing when
stretched beyond a critical threshold. The best-fit model results were within the 95% con-
fidence intervals for uniaxial and biaxial experiments, including both prefailure and fail-
ure, and were consistent with properties of the components of the ATA media.
[DOI: 10.1115/1.4026443]
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Introduction

ATAA are dilatations of the arterial wall that result primarily
from a weakening in the middle smooth muscle layer, or media,
of the artery [1–3]. Aneurysm dissection and rupture pose serious
risk of mortality and are the primary concerns for patients with an
ATAA [1–4]. Cystic medial degeneration (which can be caused
by disease, injury, or hereditary condition [2,3]), weakens the aor-
tic wall, allowing for the formation of aneurysms and subsequent
dissections. Aneurysm growth and dissection is further driven by
increased hemodynamic loading within the media [5]. Ascending
aortic dissection, the most prominent failure mode, occurs when
the hemodynamic stresses within the media exceed the capacity of
its collagen and elastin constituents allowing blood to pass into
the medial lamella and peel it apart (delaminate) [6]. Ultimately,
this tear can propagate axially along the length of the aorta, either
proximally or distally, and in the absence of clinical intervention,

may lead to further complications such as ischemia, aortic regur-
gitation, cardiac tamponade, aortic rupture, and death [1].

Ascending aortic aneurysms have an incidence rate of 10.4 per
100,000 person-years [7], with significant risk of dissection or
rupture [7]. Clinically, ATAA management balances the risk of
aneurysm rupture with the risk of surgery-related complications
and death [2,3]. Risk of rupture is correlated with aneurysm diam-
eter [2,7]; aneurysms greater than 6 cm in diameter exhibit a sig-
nificantly higher risk of rupture [2]. Thus, for patients without
valvular disorders, current guidelines indicate surgical interven-
tion for ATAA diameters greater than 5.5 cm and monitoring for
those less than 5.5 cm [2].

In spite of clinical guidelines and what is known about the
pathogenesis of aneurysms, dissection and rupture occur in a sig-
nificant number of patients whose aneurysms are less than 5.5 cm
in diameter [8], suggesting that a better understanding of the dis-
section process is needed. Experimental studies have investigated
the mechanical failure of aortic media [6,9,10], but only a few the-
oretical models have attempted to emulate this response [11–13].
The most notable work to date, by Gasser and Holzapfel [12],
employs constitutive FE modeling with two independent continu-
ous and cohesive zones to model the fiber network and ground
matrix, respectively. While the Gasser–Holzapfel model is
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capable of describing the mechanical behavior of the aorta, it fails
to capture complex fiber-fiber and fiber-matrix interactions or
address failure at the microscopic scale. A model employing
microscale mechanics and structure to determine the macroscale
response would have potential to incorporate greater anatomical
detail and could be applied to a broader range of conditions. This
work represents an initial attempt to apply such multiscale con-
cepts to the mechanics of the ATA.

The objectives of this study were (1) to characterize the prefai-
lure and failure response of healthy porcine ascending aorta tissue
under uniaxial and biaxial loading and (2) to describe that
response with a multiscale, FE damage model. The model has
been shown to be effective for prefailure and failure behavior of
collagen gels [14] and has been applied to prefailure behavior of
decellularized arterial wall [15].

Methods: Experiment

ATA from adolescent male swine (�6 months old,
88 6 11.5 kg) were collected following in vivo atrial ablation
studies. Immediately upon harvesting, specimens were stored in
1% phosphate-buffered saline solution (PBS) at 4 �C overnight.
All experiments were performed within 24 h of tissue dissection.

A ring from the ascending aorta was cut distal to the aortic
valve and proximal to the brachiocephalic trunk (Fig. 1(a)). The
ring was cut open at its superior edge to obtain a flat, rectangular
tissue sample, and the intima, adipose tissue, and adventitia were
removed (Fig. 1(b)). Then, the rectangular tissue specimen was
cut into dog-bones (uniaxial) and/or cruciforms (biaxial), both ax-
ially and circumferentially aligned, for mechanical testing. Sam-
ples were immersed in 1% PBS at room temperature during
mechanical testing. Verhoeff’s stain was used to texture the lumi-
nal surface of the media for optical displacement mapping
(Figs. 1(c) and 1(d)). Once prepared, the sample was subjected to
uniaxial or biaxial testing.

Uniaxial Extension to Failure. Rectangular tissue strips
(�20 mm� 5 mm) with the long axis in either the circumferential
(CIRC) or axial (AXI) orientation were cut. A 5 mm circular bi-
opsy punch was used to create a dog-bone shape (Fig. 1(c)). Sev-
eral samples in both orientations were obtained from a single
aorta. Images of each sample were taken to determine its initial
unloaded dimensions.

Mechanical testing was conducted on a computer-controlled,
uniaxial testing machine (MTS, Eden Prairie, MN). Samples were
placed in a custom rig. Samples were extended at a rate of 3 mm/
min until failure, and force was measured using a 5 N load cell.

The deformation of the tissue’s luminal surface was recorded
(�157 pixels/mm) at a rate of one image per 5 s.

The force measured was divided by the undeformed cross-
sectional area at the failure point in the neck in order to calculate
the first Piola–Kirchhoff Stress. Image analysis and strain tracking
was performed per our previous studies (e.g., Ref. [16]) to deter-
mine the local Green strain. Samples that did not fail in the neck
region of the dog-bone (�28% of samples) were not included in
the analysis. Peak tensile stress was evaluated at the point of
failure.

Equibiaxial Extension. Biaxial samples were created by cut-
ting a cruciform shape from an approximately square
(�20� 20 mm) section of tissue such that the CIRC and AXI
directions remained parallel to the arms. An unloaded biaxial sam-
ple is shown in Fig. 1(d).

The biaxial testing method was similar to that of previous stud-
ies (e.g., Ref. [16]) with a slight preload (�0.1 N) applied to each
cruciform arm. Samples were loaded onto a biaxial tester (Instron,
Norwood, MA) with four 5 N load cells using a custom rig. Each
sample was preconditioned with nine equibiaxial extensions to
40% grip strain. Following preconditioning, an experimental equi-
biaxial extension was performed at a strain rate of 3 mm/min to
40% grip strain, a subfailure load in contrast to the failure loading
for uniaxial samples. During this extension, images of the tissue’s
speckled luminal surface and the forces at each grip were
recorded.

Again, local Green strain was determined using image analysis
and strain tracking per our previous studies [16]. Forces in the
axial and circumferential arms were divided by the respective
undeformed cross-sectional areas in order to calculate the first
Piola–Kirchhoff stress.

Methods: Model

The multiscale model (Fig. 2, Refs. [14,15,17]) was made up of
elements at three scales: the finite element (FE) domain at the
millimeter (mm) scale, representative volume elements (RVE) at
the micrometer (lm) scale, and the fibers with radii at the

Fig. 1 (a) Porcine aortic arch. Black dotted lines demarcate
ascending aortic ring. White star symbolizes a marker used to
keep track of tissue sample orientation. (b) Ascending aortic
ring with intima, adventitia, adipose, and loose connective tis-
sue removed. Axial and circumferential directions shown with
white arrows. (c) Undeformed, typical uniaxial sample in CIRC
orientation with speckling prior to loading. Arrow indicates ori-
entation and direction of pull. (d) Undeformed, typical biaxial
sample with speckling prior to loading. Arrows indicate orienta-
tion and direction of pull.

Fig. 2 Synopsis of multiscale model. Uniaxial or biaxial geo-
metries are developed into millimeter sized finite element
meshes. Each element consists of eight Gauss points that dic-
tate its stress-strain response. Each Gauss point consists of
representative volume elements (RVE) that consist of a nano-
scale fiber network in parallel with a nearly incompressible neo-
Hookean matrix. Deformation of the macroscale structure
causes the fiber network to stretch and reorient to reach force
equilibrium. Fibers that stretch beyond a critical value are con-
sidered failed and their modulus of elasticity is reset to a near-
zero value.
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nanometer (nm) scale. Each FE element contained eight Gauss
points, and each Gauss point was associated with an RVE. Each
RVE was comprised of a discrete fiber network in parallel with a
nearly incompressible neo-Hookean component to represent the
nonfibrous material (matrix) [15]. The matrix and fiber network
were functionally independent, with the sole exception that fiber
network failure dictated simultaneous matrix failure. Stresses
developed by the network and the matrix were additive (Table 1).
Matrix material was considered homogenous throughout the
model; however, each element was assigned a unique set of fiber
networks, and new networks were generated for each iteration.

The macroscale and microscale stress and strain were coupled
as described previously [18], and the corresponding governing
equations are outlined in Table 1. In brief, displacements applied
to the macroscale model were passed down to individual RVEs.
Pre-oriented Delaunay networks within the RVE stretched and
rearranged in response to the displacements, generating net forces
on the boundary network nodes. From these net forces, a volume-
averaged stress was determined for each Gauss point within the
element. The macroscopic displacement field was updated until
the overall Cauchy stress balance was satisfied. Rigid boundary
conditions were placed at the edges of the grip while the rest of
the surface was free to move. Model simulations were run at the
Minnesota Supercomputing Institute on 32-core parallel process-
ors, with clock times averaging 4–6 h per simulation.

Model Specification and Parameter Estimation. Table 2
summarizes the key parameters of the model. The orientation of
the fiber network, which plays a critical role in the mechanical
response, was described by an orientation tensor X. The compo-
nents of X correspond to the degree of alignment in the coordinate
directions, with the trace of X equal to 1 by construction (further
details in Ref. [15]). Previous studies have shown that collagen
fibers within the arterial media have strong preferential orientation
in the circumferential direction (Xhh) while some percentage of
fibers are mainly oriented in the axial direction (Xzz) and even
smaller percentage in the radial direction (Xrr) [19–23]. Based on
those studies, the average orientation for collagen fiber networks
in the media [Xhh Xzz] was extrapolated to be [0.62 0.37] [20].
The initial network orientation tensor components [Xhh Xzz Xrr]
were, therefore, specified to be [0.6, 0.3, 0.1] 6 [0.039, 0.040,
0.006]—an orientation state close to that measured in Ref. [20]
and with a small amount of alignment in the r direction to

maintain the integrity of the network. A single network was used
to represent the combined contribution of the collagen and elastin
components, with a volume fraction of 5% [15]. Fiber radius was
set to 100 nm to replicate fiber geometry reported for elastic
lamellae in arterial walls [24,25]. The matrix was modeled as
nearly incompressible with a Poisson’s ratio, v, of 0.49.

Four model parameters—fiber small-strain Young’s modulus
Ef, critical fiber failure stretch kcrit, matrix shear modulus G, and a
nonlinear fitting parameter, ß—were regressed to the experimental
data. The model was fit up to the maximum experimental stress,
rupture and 40% strain, for uniaxial and biaxial experiments,
respectively, while not including post rupture or unloading condi-
tions. A value of 31.4 kPa was used as an initial guess and an
upper bound for the matrix shear modulus based on the work of
Holzapfel [26]. Fitted parameters were chosen to minimize the
total sum of squared error between the model and experimental
force curves for both the uniaxial and biaxial configurations. Both
simulations were repeated for ten iterations. Each iteration used
unique randomly selected networks that were generated using the
same network criteria, Table 1.

Statistical Analysis

Unless otherwise specified, all p-values were calculated using
unpaired two-tailed t-tests with Bonferroni correction and assum-
ing equal variances (GraphPad Prism v. 5.03). A p-value less than
0.05 was deemed significant. All values are reported as mean
695% confidence intervals.

Results

Uniaxial Extension to Failure. Uniaxial samples from both
CIRC (n¼ 11) and AXI (n¼ 11) orientations were loaded to fail-
ure. The stress-strain response was nonlinear, characteristic of
many tissues (Fig. 3) [27]. As expected, anisotropic behavior was
observed in the tensile strength of the tissue. Peak stress was sig-
nificantly (p< 0.001) higher in the CIRC versus AXI orientation
(Fig. 4(a); 2510 6 979 kPa versus 750 6 228 kPa). Model simula-
tion results showed similar anisotropy (p< 0.001) (Fig. 4(a);
2362 6 10.3 kPa versus 958 6 3.6 kPa) when using the parameters
(Table 2) that were regressed to the combined uniaxial and biaxial
data sets. In comparing experimental and model results, no statis-
tically significant difference in the CIRC direction (p¼ 0.74) was

Table 1 Governing equations applied within the model, as well as the scale at which each equation and its parameters are applied

Equation Description Scale Parameters

rij; j ¼
1

V

þ
@V

ðrL
ij � rijÞuk;jnkdS

Macroscale Volume-Averaged Stress Balance [16] Tissue r: macroscale averaged Cauchy stress
V: RVE volume

rL: microscale stress
u: RVE boundary displacement

n: normal vector to RVE boundary

rij ¼
1

V

ð
rL

ij dV ¼ 1

V

X
bc

xifj
Volume-Averaged Stress of RVE [16] Network bc: boundary for all RVE cross links

x: boundary coordinate
f: force acting on boundary

Ff ¼
Ef Af

ß
eßeG � 1
� � Fiber Constitutive Equation [15,17–19] Fiber Ff: fiber force

and Ef � 0 when kf > kcrit Ef: Young’s modulus of fiber at infinitesimal strain
Af: fiber cross-sectional area

eG: fiber Green strain
ß: fitting parameter for fiber nonlinearity

kf: fiber stretch
kcrit: fiber stretch at failure

rm
ij ¼

G

J
Bij � dij

� �
þ 2Gv

J 1� 2vð Þ dij ln Jð Þ Matrix Governing Equation [4] Matrix rM: matrix Cauchy stress
G: shear modulus

J: deformation tensor determinant
B: left Cauchy–Green deformation tensor

v: Poisson’s ratio
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observed. For the AXI direction, the tensile strength predicted by
the model was within the 95% confidence interval for the experi-
ments, but there was statistical significance (p¼ 0.046) due to the
tighter confidence intervals for the model.

The media on the inner curvature of the arch is typically thicker
than the outer [28], likely because the vessel remodels to balance
the higher circumferential wall stresses caused by the curvature
[29]. To verify that this remodeling does not affect the failure
mechanics of the tissue, we compared the peak stress and strain of
samples taken from the inner and outer curvature. Regional analy-
sis found no significant difference in peak stress between uniaxial
samples taken from the interior versus exterior of the aortic arch
for either the CIRC or AXI orientations (p-values ranged form
0.10 to 0.28). No significant difference in peak stretch was

observed between interior and exterior AXI uniaxial samples;
however, a significant difference (p¼ 0.04) was observed for
CIRC uniaxial samples. Samples near the exterior of the arch
exhibited only 9.6% larger peak stretch than those from the
interior.

No significant difference was noted in experimental peak
stretch between the CIRC and AXI directions (Fig. 4(b);
1.99 6 0.07 versus 1.92 6 0.16, p¼ 0.36); however, model results
between the two directions was significant (Fig. 4(b);
1.98 6 0.003 versus 2.05 6 0.003, p< 0.001). In comparing the
experimental and model results, there was no statistically signifi-
cant difference in peak stretch for either the CIRC (p¼ 0.74) or
AXI (p¼ 0.07) orientation.

The averaged experimental stress-stretch curves for both the
CIRC and AXI orientations are shown in Fig. 5 along with the
best-fit model curves. The specified and regressed model parame-
ters of Table 1 allowed the model to match the experimental pre-
failure and failure results to within the 95% confidence intervals
for both orientations.

The neck region of the simulated uniaxial samples (both CIRC
and AXI) experienced the largest strains and stresses (not shown),
as expected, and also the largest degree of fiber reorientation
(Figs. 6(a) and 6(b)). Fibers within the neck region were analyzed
for their mean fiber orientation tensor X. As the simulated uniaxial
sample is stretched, fiber alignment changes from its initial orien-
tation tensor [Xhh Xzz Xrr] � [0.6 0.3 0.1] and steadily increases
along the direction of stretch.

Equibiaxial Extension. Biaxial samples (n¼ 9), as with uniax-
ial samples, exhibited a nonlinear stress-strain response, charac-
teristic of biological tissues (Fig. 3(b)) [27]. As all samples
exhibited similar nonlinear behavior, it is reasonable to consider
the mean response (Fig. 7(a) dotted lines). The tissue showed sim-
ilar directional dependence under equibiaxial loading as under
uniaxial loading. At peak extension, the stress ratio (CIRC to
AXI) was 1.44. The 95% confidence intervals for the two orienta-
tions overlapped each other (Fig. 7(a) shaded area).

The biaxial model (Fig. 7(b) solid line) was in good agreement
with the experiments. Stresses in the CIRC direction were slightly
overpredicted but remained well within the 95% confidence inter-
val (Fig. 7(b)).

Similar to the uniaxial simulations, regions with higher strains
had greater changes in fiber rotation and fiber stretch (Fig. 8).
However, regions with the largest strain, the arms, are not the
region of interest (Figs. 8(a) and 8(b)). Figure 8(c) depicts an ele-
ment from the central region of the biaxial sample, showing the
change in its fiber orientation. Even at 40% strain, in-plane fiber
orientation of the elements in this region showed little change.

Fig. 4 (a) Peak tensile strength of ascending aortic samples
for both uniaxial experiment (solid, n 5 11) and model (diagonal
lines, n 5 10). (b) Peak stretch of ascending aortic samples for
both uniaxial experiment (solid, n 5 11) and model (diagonal
lines, n 5 10).

Table 2 Values for parameters used within the model, as well as justification for parameter values. The last four parameters in the
table (shown in bold) were regressed to the combined uniaxial/biaxial data set.

Symbol Description Value Justification

X Network Orientation Xhh¼ 0.6, Xzz¼ 0.3 Extrapolated from structural histology [20]
Xrr¼ 0.1

Af Cross-sectional area 31,416 nm2 Elastin fiber radius 100 nm [24,25]
U Fiber volume fraction 0.05 Based on Ref. [17]
� Poisson’s ratio 0.49 Nearly incompressible [15]
wu, lu, tu Uniaxial undeformed dimensions Width¼ 5.00 mm Measured in experiment

Length¼ 13.0 mm
Thickness: 1.5 mm

wb, lb, tu Biaxial undeformed dimensions Width¼ 6.00 mm Measured in experiment
Grip-to-Grip Length¼ 15.0 mm
Thickness: 1.5 mm

Ef Fiber modulus of elasticity 2.51 MPa Fit to data

kcrit Lambda critical fiber failure 2.17 Fit to data

G Matrix shear modulus 1.7 kPa Fit to data

ß Non-linearity fitting parameter 2.35 Fit to data

Fig. 3 (a) Typical measured uniaxial grip stress versus grip
strain response in the CIRC orientation. (b) Typical measured
equibiaxial grip stresses versus grip strain.
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Fitted Model Parameters. The model parameters (fiber small-
strain Young’s modulus Ef¼ 2.51 MPa, critical fiber failure
stretch kcrit¼ 2.17, matrix shear modulus G¼ 1.7 kPa, and the
nonlinear fitting parameter ß¼ 2.35) were regressed to the experi-
mental data from both the uniaxial and biaxial experiments.

Discussion

This study investigated tensile properties of the porcine ascend-
ing thoracic aorta using uniaxial and biaxial extensions. Subse-
quently, we applied a multiscale model to emulate the ex vivo
testing results. Garc�ıa-Herrera et al. [30] performed uniaxial tests
using young (25 6 3 years), healthy, human ascending aortic tis-
sue and observed similar anisotropic behavior, peak stretch, and
tensile values. Their reported values of 2180 6 240 kPa for CIRC

Fig. 5 First Piola–Kirchhoff stress as a function of stretch ratio for the experiment
(dots with 95% confidence interval) and model (solid blue line). Colored dots repre-
sent the mean experimental stress and error bars depict the 95% confidence interval.
The red square indicates the mean peak tensile strength and stretch, and the sur-
rounding dotted black box indicates the 95% confidence interval for the peak experi-
mental stress and stretch with (a) being experimental and model results in the AXI
orientation and (b) being experimental and model results in the CIRC orientation.

Fig. 6 (a) Model circumferential Green strain Ehh along the axis
of pull plotted over the deformed model mesh at given sample
stretches (k). A representative neck region RVE network is
shown and its corresponding fiber orientation tensor. (b) Model
axial Green strain Ezz along the axis of pull plotted over the
deformed model mesh at a given sample stretch (k). A represen-
tative neck region RVE network is shown and its corresponding
fiber orientation tensor.

Fig. 7 (a) Mean first Piola–Kirchhoff stress as a function of
grip strain for the biaxial experiment (dashed purple line for AXI
and dashed green line for CIRC, n 5 9) with 95% confidence
interval (purple and green shaded areas, respectively). The
striped shaded area represents overlap of the 95% confidence
interval of the two orientations (p < 0.05). (b) Mean biaxial model
first Piola–Kirchhoff stress as a function of grip strain (solid
purple line for AXI and solid green line for CIRC, n 5 10) com-
pared to mean experimental results (dashed purple and green
lines, respectively, n 5 9).

Fig. 8 (a) Model equibiaxial Green strain Ehh plotted over the
deformed model mesh at various sample stretches (k). (b)
Model equibiaxial Green strain Ezz plotted over the deformed
model mesh at various sample stretches (k). (c) A sample center
region RVE network is shown and its corresponding fiber orien-
tation tensors for the stretches depicted in (a) and (b).
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and 1140 6 100 kPa for AXI [30] are similar to our reported ten-
sile values (2510 6 979 kPa and 750 6 228 kPa for CIRC and
AXI, respectively). Vorp et al., however, observed no significant
difference in tensile strength between AXI and CIRC oriented
human specimens [31], possibly due to older subjects (51 6 6
years). Peak stretch at failure showed no significant difference
between the CIRC and AXI cases and was similar to values
reported by Garc�ıa-Herrera et al. [30] (2.35 6 10 versus
2.00 6 0.1 in CIRC and AXI, respectively) and to our values
(1.92 6 0.16 and 1.99 6 0.07 for AXI and CIRC, respectively).

An equibiaxial study by Nicosia et al. [32] on healthy, porcine
aortic root wall showed similar directional dependence with
stresses at 30% strain, approximately equaling 50 kPa and 90 kPa
in the AXI and CIRC directions, respectively, comparable to our
results of 58.4 kPa and 76.2 kPa. Unlike the results presented by
Nicosia et al., which remained linear up to 40% strain [32], our
results were pronouncedly nonlinear. The experimental results are
consistent with other studies [30–32]. Having confirmed that our
experimental data are consistent with previous studies, we will
focus on the model for the remainder of the discussion.

The advantage of a multiscale model is to link observed macro-
scale properties to changes in microscale structure (Table 1 and
Fig. 2). The model was able to capture the anisotropic response in
both the uniaxial and biaxial simulations, in agreement with our
experimental results. It is important to note that our study, similar
to other studies, is however limited in that physiological strain
rates are higher than those used; thus, the model should be seen as
approaching the quasi-static limit. The model demonstrated
smaller confidence intervals (for both peak tensile strength and
peak stretch) relative to experimental results, suggesting the
method to model fiber failure could be modified to increase var-
iance. Variance could be increased by using a stochastic element
for fiber failure or introducing more variability in the model net-
works. A stochastic failure model would be consistent with the
wide range of failure lengths seen for fibers such as collagen,
where kcrit can range from 1.2 to 1.7 [33].

In-plane fiber rotation (in the area of interest) was more preva-
lent in uniaxial than biaxial simulations (Figs. 6 and 8). Fibers in
the uniaxial CIRC simulations were predominately aligned in the
direction of pull and, therefore, could only stretch and not rotate
at the onset of macroscale strain. Fibers in uniaxial AXI simula-
tions were predominately aligned perpendicular to the direction of
pull; therefore, when macroscale strain was applied, fibers first
rotated and then extended. The rotation of fibers resulted in lower
forces for the same amount of macroscale strain in uniaxial AXI
results. The model permits for free rotation of fibers, which over-
estimates a fiber’s capacity to rotate, as in vivo obstacles such as
neighboring fibers and matrix are not taken into account in fiber
rotation.

An important simplification of the tissue microstructure in the
model was that a single, idealized network of uniform-diameter
fibers was employed in parallel with a neo-Hookean component to
account for all structural contributions including collagen, elastin,
extracellular matrix, cells, and interstitial fluid. Even with this
simplification, the complex mechanical response was still cap-
tured by the model. We had expected the neo-Hookean compo-
nent to dominate at low strain, representing elastin, while the fiber
network would dominate at high strains, representing collagen.
Therefore, initial model fiber parameters were chosen to simulate
collagen, but those values led to vastly overpredicted forces (data
not shown). When fiber model parameters were fit to the experi-
mental data, the resulting values (Table 2) described the behavior
of elastin more closely than collagen, suggesting that elastin plays
a dominant role dictating behavior in the tissue. A previous study
also indicated that intrinsic elastic properties dictate distensibility
of the aorta [34]. In addition, a collagen-based fiber network
would not be able to achieve a stretch of 2.0 since collagen fibers
have a kcrit closer to 1.4 [17], while elastin can reach stretches up
to 3 [35]. Histological evidence supports a large elastin contribu-
tion as studies have shown more elastin than collagen exists in the

ascending aorta (by dry weight 35% elastin, 22% collagen [19]).
Hence, our fitted kcrit value of 2.17 represents the combined effect
of the two proteins. Our fitted value (2.51 MPa) of small strain
Young’s modulus is within the range of values reported for elastin
(estimated 0.3–10 MPa) in vessel walls [26,36,37].

We have investigated the biomechanical tensile properties of
the aortic media in the circumferential and axial orientations,
which are relevant to rupture of the vessel, but dissection of
ATAA also depends on the strength of the tissue in the shear and
radial tension [38]. Fitting the model to data from different experi-
ments is an important test, and it will be valuable in the future to
examine how the model behaves under different loading configu-
rations (e.g., inflation, shear, peeling) that better represent failure
as seen in ATAA and to determine whether the model can have
predictive in addition to analytical value. To properly investigate
the radial and shear loading conditions the simplified microstruc-
tural organization of this model will need to be revised/expanded.
Currently, the model does not consider the concentric, circumfer-
ential layers of elastin, collagen, and smooth muscle, which form
the medial lamellae [39]. Unlike the current study, which consid-
ers the failure of the fibers within the lamellae, a study with radial
and shear loading would involve the failure of the connections
between the lamellae. Therefore, the lamellae’s structure is an
essential component in modeling dissection of ATAA, and a two
fiber network model, similar to Lai et al. [14], that models colla-
gen and the elastic lamellae separately could provide better
insight.

In spite of the simplifications, the good agreement between the
model and the experiment, for both prefailure and failure behavior
in uniaxial and biaxial tests, indicates a high potential for use in
the more complex geometry, architecture, and loading configura-
tion that arise in ATAA.
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