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Synopsis

Although the majority of patients with Hodgkin lymphoma (HL) are cured with primary therapy,

patients with primary refractory disease or relapse after initial treatment have poor outcomes and

represent an unmet medical need. Recent advances in unraveling the biology of HL have yielded a

plethora of novel targeted therapies. This review provides an overview of the data behind the hype

generated by these advances and addresses the question of whether or not clinically these targeted

therapies offer hope for patients with HL.
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Introduction

Classical Hodgkin lymphoma (HL) represents ~ 10% of all lymphomas diagnosed annually

in the developing world. In 2013, approximately 9000 cases of HL were diagnosed in the

US 1. With a median age of 38 years, and at least 40% of patients under age 35 at the time of

diagnosis, it is the most common lymphoma affecting young patients 2. Over the past 30

years valuable lessons learnt about late effects of therapy, specifically cardiovascular and

second cancer risk, have led to treatment modifications of radiation dose and field size as

well as alkylator exposure, which have led to significant risk reduction of competing causes
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of death 3–5. As a result of these advances more than 75% of patients are cured with

contemporary frontline therapy 6,7.

For patients who relapse after attaining an initial complete remission (CR), or have primary

refractory disease, the standard treatment approach is salvage chemotherapy followed by

autologous stem cell transplant (ASCT) with ~ 50% cure rate 8. Several studies show that

achieving a CR prior to ASCT is one of the most important factors in determining long-term

outcome post ASCT 9,10. Other pre-transplant prognostic factors include: duration of initial

remission, extent of disease at relapse, and constitutional symptoms 11–14. In an international

collaborative effort from 5 countries, data on 756 patients with relapsed HL with a minimum

of 1 year follow-up post-transplant were pooled 15. The overall median post-progression

survival (PPS) for patients relapsing after ASCT was 1.3 years. Seventy-one percent of

relapses occurred within 1 year after ASCT, and were roughly equally distributed in the

periods: <3 months (22%), >3 and <6 months (22%), and >6 and <12 months (27%). The

median PPS for these periods were 0.55, 1.6, 1.68, and 2.26 years for time to relapse after

ASCT respectively (p<0.0001). 15. Allogeneic stem cell transplantation (alloSCT) can

induce durable remissions in some of these patients; however its utility is limited by the

challenges of finding an available stem cell donor, and achieving adequate disease control

prior to transplantation 16. Therefore novel treatments to increase the CR rate pre SCT, or

significantly prolong remission duration post SCT, have been sought.

The recent approval in 2011 of brentuximab vedotin, an antibody drug conjugate (ADC)

targeting CD30, has been the first major advance in the management of HL after several

decades and offers considerable hope to patients with refractory disease or relapse after

SCT 17. Better understanding of the biology of HL has led to exploration of several other

potential targets as therapeutic options. This review provides an overview of HL tumor

biology in the context of the development of novel targeted therapies. We discuss four broad

categories of targeted therapies either approved or under investigation: 1) therapies targeting

HRS cell surface receptors, 2) therapies targeting reactive immune cells in the tumor

microenvironment, 3) adoptive immunotherapy, and 4) therapies targeting signaling and

intracellular survival pathways (Tables 1 and 2). While some of the agents discussed below

are highly active as single agents, many others demonstrate modest single agent activity.

Moving forward the challenge will be how to develop rational combinations of these novel

agents within the context of current paradigms of care to achieve enhanced efficacy with

minimal toxicity.

Emerging Targets in the Biology of Hodgkin Lymphoma

Classical HL is a B cell lymphoid neoplasm, characterized by Hodgkin Reed Sternberg

(HRS) cells. The malignant HRS cells represent only a small fraction (0.1–1,0%) of the total

cellular population and exist within an inflammatory microenvironment that supports tumor

growth and suppresses immune surveillance 18–22. HRS cells grow poorly both in vitro and

in vivo murine models without microenvironment support, underscoring its role in HL

growth and survival 19,23. The cross talk between the HRS cells, the peritumoral cells in the

tumor microenvironment, and secreted cytokines, propagates HRS cell growth, proliferation,

and evasion of immune regulation.
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HRS cells express many surface receptors including CD15, CD30 CD40, CD80, and CD25

(the alpha chain of the IL-2 receptor)24. Additionally up-regulation of the programmed death

ligand-1 (PDL-1) on HRS cells induces anergy in peritumoral T cells, which themselves

express PD-1. High expression of PD-1 by peritumoral lymphocytes has been reported to be

an independent predictor of inferior overall survival (OS) 25,26. Galectin-1 (gal-1)

expression inhibits infiltration of CD8+ effector cells, expression of TNF-related apoptosis

inducing ligand (TRAIL), and Fas ligand induced apoptosis of cytotoxic T lymphocytes

(CTLs) 27,28. HRS cells further shape their microenvironment by secreting

immunosuppressive cytokines and chemokines, such as the chemokine thymus and

activation-regulated chemokine/CCL17 (TARC), CCL5, and CCL22. These in turn, attract T

helper 2 (Th2) and regulatory T (Treg) cells to the tumor microenvironment, as well as

interleukin-7 (IL-7), which then induce differentiation of naïve CD4+ T cells towards

FoxP3+ Treg cells 29–31. In fact, high serum levels of the chemokine TARC at diagnosis

have been associated with an inferior clinical outcome 32. Tumor associated macrophages

(TAM) induce signal transducer and activator of transcription (STAT) mediated suppression

of T cell surveillance and cell directed cytotoxicity. Increased numbers of CD68 and CD163

expressing TAMs are also associated with inferior survival in newly diagnosed HL patients

treated with standard therapy, as well as in patients following ASCT 33. Cumulatively the

tumor microenvironment induces T cell exhaustion and deficient anti-tumor immunity,

which plays a key role in propagating a permissive milieu for HL growth. While many of the

dots of this complex network have been connected, it is still unclear how they all fit together

or what is the logical road map for treating relapsed and refractory HL. At a conceptual level

targeted therapies can be broadly classified as targeting: 1) HRS cell surface receptors, 2)

the tumor microenvironment, 3) cell-mediated immunity (adoptive immunotherapy) and 4)

signalling pathways. Figure 1 displays selected novel agents in the context of their targets.

Targeting Molecules Expressed on HRS Cell Surface

Receptors highly expressed on the HRS cell surface, with low to absent expression on

normal tissues, are optimal for targeted therapy. Trials evaluating these targets are

summarized in Table 1 and 2.

Targeting CD30

CD30 is highly expressed on HRS cells, and nearly absent on normal tissue, making it an

optimal target of directed therapy. It is a 120-KDa type I transmembrane glycoprotein

belonging to the tumor necrosis factor (TNF) superfamily and induces signaling pathways

that promote HRS cell proliferation 34. The most successful targeted therapy developed to

date in HL has been brentuximab vedotin, an ADC directed against the CD30 receptor.

Early clinical studies targeting CD30 with naked antibodies SGN-30 (cAC10), and

MDX-060 did not demonstrate meaningful anti-tumor activity largely attributed to

suboptimal antigen binding, and neutralization of anti CD30 antibodies by soluble

CD30 35–37. In an effort to increase cytotoxicity, a valine–citrulline peptide linker to

monomethyl auristatin E (MMAE), a synthetic analogue of the naturally occurring

antimitotic agent dolastatin 10, was added to the chimeric antibody cAC10 (SGN-30)

creating the ADC brentuximab vedotin. Robust anti-tumor activity reported in two phase I
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clinical trials led to a lot of hype regarding this agent 38,39. These data were subsequently

confirmed in a phase II pivotal trial of 102 patients with heavily pretreated HL who had

relapsed after ASCT 17. Overall treatment was well tolerated and ≥ grade 3 events or dose

limiting toxicities (DLT) included neutropenia (20%), thrombocytopenia (8%), peripheral

sensory neuropathy (8%) and anemia (6%). The response rate in this heavily pre-treated

population was striking with an overall response rate (ORR) of 75%, and a CR rate of 34%.

The median progression free survival (PFS) was 5.6 months, with a median duration of

response (DOR) of 20.5 months 17.

These compelling data, led to FDA approval of brentuximab vedotin in 2011 for patients

with relapsed/refractory HL who have failed ASCT, or two chemotherapy regimens. Data

also suggest that brentuximab vedotin is active as a retreatment strategy with an ORR of

57% 40. Recently, two retrospective analyses suggest that brentuximab vedotin also provides

a potential bridge to successful alloSCT 41,42. The combination of brentuximab vedotin with

donor lymphocyte infusion has been shown to induce both anti-tumor immunity and

sustained clinical responses in 4 patients with early relapse post alloSCT 43. Ongoing trials

are evaluating brentuximab vedotin as a maintenance strategy for high risk patients after

ASCT, and for relapsed disease in combination with chemotherapy or immune based

therapies such as ipilimumab (Table 2).

The development and subsequent approval of brentuximab vedotin is a clear example of a

novel therapy that has moved well beyond hype and offers hope for patients with relapsed

and refractory HL. As a logical next step, trials evaluating its role in the frontline setting are

ongoing (Tables 1 and 2). Preliminary results of a phase I trial evaluating the combination of

brentuximab with adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD) has been

reported 44. Unfortunately, 44% (11/25) of patients experienced significant pulmonary

toxicity, including two deaths on study. Subsequently with modification to exclude

bleomycin (AVD), 7 of the 11 patients completed treatment without further toxicity.

Notably, no pulmonary toxicity was observed in an expanded AVD-brentuximab cohort and

preliminary results report a PET/CT CR of 96% 44. These data have led to a phase III

frontline trial for patients with untreated advanced HL evaluating the activity of ABVD

versus brentuximab-AVD. Other frontline trials include a phase I trial of ABVD followed by

6 cycles of brentuximab vedotin for patients with untreated stage I and II non-bulky HL, and

a randomized trial of brentuximab vedotin in combination with etoposide,

cyclophosphamide, adriamcyin, procarbazine, prednisone and brentuximab (ECAPP B)

versus etoposide, cyclophosphamide, adriamcyin, doxorubicin, dacarbazine and

brentuximab (ECADD B) in patients with high risk advanced stage HL. These combinations

of brentuximab vedotin with standard therapy or other targeted agents continue to offer hope

that in the future there may be novel treatment platforms which are well tolerated with

possibly superior activity.

Other Cell Surface Targets

CD80 is a costimulatory molecule highly expressed on HRS cells and inhibits antigen-

specific T cell lymphoproliferation and interferon-gamma secretion 45. Galiximab, a

primatized IgG1 monoclonal antibody against CD80, has high affinity binding for CD80,
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and induces antibody dependent cytotoxicity (ADCC) 46. In a phase II clinical trial in

patients with relapsed and refractory HL galiximab was well tolerated but had disappointing

activity, with an ORR of 6.9% and a median time to progression (TTP) of 1.6 months 46,47.

CD40 is widely expressed on B and T cells and a member of the tumor necrosis factor

receptor (TNFR) family which induces cell proliferation, survival, secretion of cytokines,

and activation of both the classical (canonical) and alternative (non-canonical) pathways of

nuclear factor Kappa B (NFκB) signaling 48. Lucatumumab (HCD122) targets both CD40+

HRS cells, and Th2/Treg signaling and has been investigated in HL (59). A phase II trial

reported an ORR of 16%, all partial responses (PRs) in 18 patients with relapsed/ refractory

HL 49. The therapy was generally well tolerated and reversible asymptomatic hepatotoxicity

was the primary DLT.

Agents that have been investigated but are not currently in development include antibodies

to the TRAIL protein, and CD25, the alpha chain of the IL-2 receptor. A phase I trial of the

TRAIL-R2 antibody AMG655 in combination with bortezomib or vorinostat was suspended

due to poor patient accrual. A clinical trial of the anti CD25 immunotoxin RFT5-SPMT-dgA

had significant toxicity due to vascular leak syndrome and disappointing results, with only

13% of patients achieving a PR 50. A monoclonal antibody targeting IL-13 (TNX-650) is

currently under investigation, however to date no clinical data have been reported.

In summary, while there has been considerable hype based on the biologic rationale of using

antibodies to target differentially expressed cell surface receptors, none have matched the

efficacy of brentuximab vedotin. More insightful science and combination strategies are

required to truly translate to hope in the clinical setting.

Targeting the Tumor Microenvironment

Monotherapies targeting only the HRS cells are limited in their efficacy due to the major

role of the microenvironment in regulating HRS function and survival 19.

Strategies targeting tumor-microenvironment interactions aim to disrupt its cellular

components, or activate peritumoral T and NK cells to induce anti-tumor responses.

Encouraging pre-clinical data of agents in development include: immunomodulatory drugs

(lenalidomide) monoclonal antibody directed targeting of peritumoral CD20+ B cells

(rituximab, almentuzumab), bispecific antibodies, such as AFM13 which simultaneously

targets CD30 bearing HRS cells and CD16 on natural killer cells, selective inhibition of

colony-stimulating factor-1 (CSF1R) a growth factor for tumor-associated macrophages

(TAMs), the anti-CTLA-4 antibody ipilimumab, and the checkpoint inhibitors targeting

PD-1 and anti-PDL-1 51,52. Ongoing trials are outlined in Table 2.

Lenalidomide is an immunomodulatory and anti-angiogenic agent, with a putative

mechanism of activating cytotoxic T lymphocytes (CTLs) and NK cells against HRS

cells 53. The safety and efficacy of lenalidomide as a monotherapy has been investigated in

several studies. In a multicenter phase II study, 36 patients with relapsed HL were treated

with 25 mg/day of lenalidomide on days 1–21 of a 28 day cycle. The ORR was 19% with

moderate grade 3–4 hematologic toxicity noted;neutropenia (47%), leukopenia (29%),
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anemia (26%), and thrombocytopenia (18%) 54. A smaller study of 15 patients reported

similar results for toxicity, as well as efficacy with an ORR of 13%. Seven additional

patients had stable disease. The median TTP was 3.2 months55. Cumulatively, these studies

suggest that lenalidomide has modest single agent activity in relapsed HL. There is hope that

efficacy may be enhanced by combinations with chemotherapy or other HRS targeting

agents with trials ongoing (Table 2).

AFM13, a bispecific tetravalent human antibody construct that simultaneously targets CD30

and CD16 on natural killer (NK cells), has been evaluated in a phase I clinical trial in

relapsed/refractory HL. Patients were heavily pretreated with a median of 6 (range 3 –11)

prior therapies. Of the 28 patients enrolled, 9 had received previous brentuximab vedotin,

and 14 were refractory to prior therapy. AFM13 was safe and well tolerated. The most

frequent adverse events included: infusion-related reactions (headache, fever, fatigue and

myalgia) in 33% of patients. Moderate clinical activity (2 patients achieved PRs, 14 patients

SD) was demonstrated and more mature follow-up is needed to discern potential 56.

While HRS cells rarely express CD20, the tumor microenvironment is rich in CD20

expressing B cells, and a study suggests that circulating clonotypic B cells may be the HL

tumor initiating cells 57. Some studies suggest that these B cells deliver survival signals to

HRS cells, and suppress T cell activation via IL-10 production 58. In contrast, other studies

report that the presence of CD20 expressing B cells in the tumor microenvironment is

associated with improved survival 59,60. Nonetheless, targeting CD20 with the monoclonal

antibody rituximab has been actively investigated. In a pilot study 22 patients with relapsed/

refractory HL were treated with single agent rituximab. The ORR was 22% and included

PRs, as well as CRs 61. Interestingly, 6 of 7 patients with CD20 negative HRS cells

experienced resolution of B symptoms, suggesting a possible role for CD20+ B cells in

mediating the systemic cytokine response 61. Therefore it is unclear whether the activity of

rituximab is due to a direct effect on HRS cells (that are occasionally CD20-positive), or a

depletion of supporting B cells and peritumoral CD20+ cells. These encouraging single

agent data provided the rationale to investigate rituximab in combination with

chemotherapy. The safety and efficacy of rituximab and gemcitabine was investigated in 33

patients with relapsed HL. The ORR was 48% independent of HRS cell CD20 expression;

however, the median failure free survival (FFS) was only 2.7 months 62. Two phase II trials

have evaluated rituximab in combination with ABVD. In the first trial, 78 patients with

newly diagnosed HL were treated with weekly rituximab for 6 weeks, and standard ABVD

for 6 cycles 63. The combination was well tolerated with neutropenia, fatigue, and nausea

the most frequent treatment related adverse events. At 68 months the event free survival

(EFS) and OS, were 83% and 96% respectively. These results were superior to ABVD alone

when compared to institutional historical data. A second phase II study reported similar

results with a 3 year EFS and OS of 83% and 98% respectively 64. Interestingly, in this

study circulating clonotypic B cells were associated with a greater frequency of relapse.

Other ongoing studies are evaluating the contribution of rituximab to first line augmented

bleomycin, etoposide, adriamycin, cyclophosphamide, vincristine, procarbazine, and

prednisone (BEACOPP) for patients with advanced untreated HL (HD18), and in

combination with ABVD as frontline therapy for patients with advanced stage poor risk HL

(Table 2).
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In summary while there is reasonable hype about the rationale to target CD20, results of

randomized controlled trials are required before the question of hype versus hope can be

definitively answered.

CD52 is another cell surface receptor highly expressed on peritumoral B cells.

Almentuzumab a humanized monoclonal anti-CD52 antibody binds to CD52 purportedly

inducing cell lysis via antibody dependent cell-mediated cytotoxicity (ADCC) 65. A phase II

study investigating the efficacy of single agent almentuzumab in relapsed/refractory HL was

terminated due to slow patient accrual, and data has not been reported to date. The efficacy

of the combination of almentuzumab with etoposide, prednisone, vincristine,

cyclophosphamide, and adriamycin (EPOCH) chemotherapy in relapsed/refractory HL is

currently under investigation (Table 2).

Direct immune based approaches, which reverse the anergy of peritumoral T cells and

stimulate anti-tumor cytolytic activity, represent another novel strategy against relapsed/

refractory HL. The association of high expression of TAMs with a short PFS, led to

significant hype for evaluating their inhibition with compound PLX3397, a selective

inhibitor of CSF1R (a growth factor for TAMs). Unfortunately, despite the inhibition of both

CSF1R and Kit, in a phase II trial of 20 heavily pretreated HL patients PLX3397 had only

modest activity, with an ORR of 5% and a median PFS of 56 days 66. Therefore the role of

CSF1R in HL lymphoma biology needs to be better understood before these strategies move

from hype into hope.

Lastly, immune activating strategies such as the combination of the anti-CTLA-4 antibody

(ipilimumab) with brentuximab vedotin, and the anti-CD27 antibody (CDX1127) are being

investigated. Checkpoint inhibitors against PD-1 expressed on peritumoral T cells, or PDL-1

expressed on HRS cell surface are also undergoing active investigation (Table 2).

In summary, it is too early in development to discern whether the data from agents targeting

reactive immune cells in the tumor microenvironment, as summarized in this section, will

translate to hope. Results of ongoing clinical trials over the next few years will help shed

some light on the efficacy of these agents both in terms of a response rate and durability.

Adoptive Immunotherapy in HL

Adoptive immunotherapy allows the generation and transfer of T cells engineered ex vivo to

target and attack tumor cells in the host, as well as immune activation of the tumor

microenvironment. In relapsed/refractory Epstein Barr virus positive (EBV+) HL, an

adoptive approach using ex vivo expansion of viral EBV antigen specific CTLs produced

striking results albeit in a small number of patients 67,68. In this pilot study, 83% (5 of 6)

patients with relapsed EBV+ HL had a clinical response, of which 4 achieved CRs sustained

for more than 9 months. Other trials of adoptive immunotherapy, i.e. targeting EBV-HL

through MAGE antigen, or genetically engineered T lymphocytes expressing a chimeric

CD30 antigen receptor, are ongoing but have not reported data to date 69,70. Only time will

tell if these innovative strategies will constitute a new domain of hope or not.
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Targeting Downstream Signaling and Intracellular Survival Pathways

Several drugs target constitutively activated downstream signaling pathways that drive HRS

cell proliferation, and enhance tumor cell survival. Epigenetic changes in HRS cells

modulate B cell silencing, immune escape, and the transcription of genes underlying cell

proliferation and survival 71. The acetylation state of proteins are modified by the opposing

effects of both histone acetyltransferases (HATs) and histone deacetylases (HDACs). There

are currently 4 classes of HDACs: classes I and IV are constitutive nuclear proteins that

regulate cell proliferation, class II HDACS regulate genes that promote cell growth and

shuttle between the nucleus and the cytoplasm, and class III HDACSs regulate chromatin

structure 72. Increased expression of HDACs relative to normal tissues has been observed in

HL, and in at least one study correlated with poor treatment outcome 73.

Histone deacetylase inhibitors (HDACI) modulate cellular processes and signaling pathways

that are dysregulated in cancers 74,75. HDACI target tumor cells and their interaction with

their local microenvironment through multiple epigenetic mechanisms including chromatin

condensation and acetylation of histones affecting gene expression. Treatment of HL

patients with HDACI decreases the secretion of the inhibitory cytokine CCL17 (TARC) in

vitro 76. Currently, two broad classes of HDACIs are under investigation in HL: pan HDAC

inhibitors that inhibit HDAC class I and II (i.e. vorinostat, and panobinostat), and selective

HDACIs that preferentially inhibit class I HDACs (mocetinostat and etinostat).

Vorinostat, mocetionostat, and panobinostat have been investigated as monotherapies in

relapsed/refractory HL. In a phase II study of oral vorinostat the ORR was only 4% 77. More

promising reports have been reported for panibinostat in a phase II trial of 129 HL patients,

all of whom had failed ASCT. The primary toxicities were hematologic. Grade 3–4

toxicities included 79% thrombocytopenia (79%), 21% anemia (21%) and neutropenia

(21%). The ORR in this heavily pre-treated patient population was 27% (23% PR, 4% CR),

with a median DOR of 6.9 months, and an estimated 1-year OS rate of 78%. The median

PFS was ~ 6 months and 52 patients (40%) had PFS greater than 24 weeks 78. Responses

were associated with a decrease in serum Tarc levels 78,79.

Mocetinostat has been evaluated in a phase 2 trial in relapsed/refractory HL. Significant

toxicity was seen at the 110mg dose including grade ≥ 3 myelosuppression, fatigue,

pneumonia, and in 4 patients pleural effusions (3 ≥ grade 3). The drug was better tolerated at

the reduced dose of 85mg with an ORR of 21% 80.

Cumulatively, these data suggest that HDACI have activity, however the hematologic

toxicity profile will likely make combination strategies with chemotherapy challenging.

Currently the optimal HDACI strategy to move these drugs from the hype category to the

hope category remains unclear.

HRS cells constitutively express NF-κB, in part as a result of somatic mutations in pathway

members and regulators, as well as other anti-apoptotic proteins, which inhibit both the

intrinsic and extrinsic pathways of apoptosis 21,23. Bortezomib, a reversible proteasome

inhibitor of NFκB signaling, enhances apoptosis through down regulation of the anti-

apoptotic molecules XIAP and c-FLIP and has a putative role as a chemotherapy sensitizing
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agent 81. Although bortezomib demonstrated anti-proliferative activity in vitro, a phase II

clinical trial in relapsed/refractory HL failed to demonstrate meaningful clinical activity 82.

The evidence for synergy between cytotoxic chemotherapy and bortezomib in non-Hodgkin

lymphoma led to the evaluation of the combination of bortezomib and chemotherapy in

relapsed/refractory HL. In a phase I trial of ifosfamide, carboplatinum and etoposide (ICE)

in combination with bortezomib (BICE) given on days 1 and 4 of standard infusion, the

ORR for 12 patients was 69% but significant myelosuppression was seen 83. A second study

combined bortezomib given twice weekly (days 1, 4, 8, 11) in a 3 week cycle at a dose of 1

mg/m2 with gemcitabine 800mg/m2 on days 1 and 8. This combination had significantly

lower activity (ORR 22%) with higher toxicity (grade 3 transaminitis) than the BICE treated

patients, and was not pursued further. A study targeting NFκB with MLN4924, a small

molecule inhibitor of neddylation 8, has recently been terminated due to slow accrual, and

no data has been reported to date.

Other constitutively activated pathways in HRS cells include: Janus kinase-signal transducer

and activator of transcription (JAK-STAT), and the phosphatidyliositol 3-kinase pathway

(PI3K/AKT/mammalian target of rapamycin (MTOR) pathway). Inhibitors of JAK2

inhibitors suppress STAT phosphorylation in HL cells lines, and downregulate the

expression of PDL-1 in vitro 84, however a phase I trial of the JAK2 inhibitor SB1518 did

not have significant clinical activity, despite a tolerable safety profile 85.

Inhibition of MTOR has a myriad of in vitro effects including enhancement of apoptosis,

cell cycle arrest, and autophagy 86,87. The clinical activity of the MTOR inhibitor

everolimus was evaluated in a phase II trial in patients with relapsed/refractory HL. The

ORR of this heavily pretreated patient population was 47%, with 8 patients achieving a PR,

and one a CR. The median TTP was 7.2 months, with 4 responders remaining progression

free at 12 months 88. Overall the therapy was reasonably well tolerated except in four

patients who experienced grade ≥ 3 pulmonary toxicity. A synergy between targeting

MTOR and other inhibitors of downstream signaling, such as PI3K and HDAC, has been

suggested by in vitro data, and this combination is currently being evaluated. In a phase I/II

study of the combination of everolimus with the HDACI panobinostat, the ORR for 13 HL

patients was 46% 89. Combinations of everolimus with immunomodulatory agents, such as

lenalidomide, as well as with PI3K inhibitors are currently under investigation.

Conclusion

Advances in HL biology over the past few years have yielded a plethora of novel targets and

an unprecedented opportunity to develop newer therapies. These targeted therapies offer the

potential to increase cure rates in patients with relapsed and refractory HL, along with the

hope of decreasing long-term toxicity. The approval of brentuximab vedotin clearly offers

new hope to patients with relapsed and refractory disease, and may have promise as frontline

therapy. Currently there are many novel targeted therapies under clinical investigation in

HL, and many more waiting to move from bench to bedside. Although these advances are

exciting, it is unlikely that one size will fit all, or that any single therapy or therapeutic

platform will be curative for all patients. The challenges ahead are to identify strategies that

offer maximal tumor eradication with minimal systemic toxicity, and to identify subsets of
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patients with the highest likelihood of efficacy to a particular therapy. To accomplish this,

more robust methods of risk stratification incorporating both clinical and biologic factors to

identify patients at the highest risk of therapy failure are needed. This gap needs to be

addressed before the full potential of novel targeted therapies can be realized and the hope of

customized targeted therapies will then surpass the hype.
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Key Points

• HL patients with primary refractory disease or relapse after transplant have poor

outcomes and represent an unmet need.

• Therapies derived from an understanding of HL biology can be broadly

classified as targeting: the Hodgkin Reed Sternberg cell surface receptors, tumor

microenvironment, cell mediated immunity, and intracellular signaling

pathways.

• Brentuximab vedotin, an antibody-drug conjugate targeting CD30, now FDA

approved, offers substantial hope for improving outcomes in the treatment of

HL.

• Other therapies in development need longer follow-up to realize their potential.

Diefenbach and Advani Page 16

Hematol Oncol Clin North Am. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Objectives

1. Review recent advances in HL biology

2. Review development of novel targeted therapies in the context of HL biology

3. Review results of clinical trials with targeted therapies
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Figure 1.
Selected Novel Agents in the Context of the Biological Targets
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