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Spectral Characterization of
Hierarchical Modularity in
Product Architectures1

Despite the importance of the architectural modularity of products and systems, existing
modularity metrics or algorithms do not account for overlapping and hierarchically em-
bedded modules. This paper presents a graph theoretic spectral approach to characterize
the degree of modular hierarchical-overlapping organization in the architecture of prod-
ucts and complex engineered systems. It is shown that the eigenvalues of the adjacency ma-
trix of a product architecture graph can reveal layers of hidden modular or hierarchical
modular organization that are not immediately visible in the predefined architectural
description. We use the approach to analyze and discuss several design, management, and
system resilience implications for complex engineered systems. [DOI: 10.1115/1.4025490]

1 Product Architectures and Their Modularity

One important architectural property of products and complex
engineered systems is their modularity. A module is a component
or subsystem in a larger system that performs specific function(s)
and emerges as a tightly coupled cluster with elements sharing
dense intramodule interactions and sparse intermodule interac-
tions. Modular products carry some advantages over their inte-
grated counterparts [1,2] including ease of redesign and
redevelopment, component re-use in other products [3], adaptabil-
ity over the product life-cycle [4], and lowered production and
related costs [5]. Modules within products can form the basis for
the platform for a family of products [6–8] and the organizational
structure of the design team [9]. As such, there is a general prefer-
ence for modular products in industry [10]. Understanding the
structural modularity of products and complex engineered systems
is important because it helps us to understand the sets of functions
performed specifically by each module and the functions that can
only be performed by interactions between modules. This knowl-
edge can inform several optimization criteria relevant to the
design of these systems and subsystems, such as decisions on
architecture or energy, material, or information flows in the
system.

2 Research Gaps in Modularity Identification

In this paper, we focus on identifying the hierarchical-
overlapping organization of modularity in products and systems,
and its related implications for mechanical design. While research

exists on developing modularity metrics for product architectures
[1,11–16] and characterizing the topological characteristics of
modular organization in networks [17,18], the issue of identifying
hierarchical and overlapping organization of modules in product
architecture is yet to be resolved. We discuss three limitations in
current approaches to identify modularity in product architectures
specifically, and networks more generally.

2.1 Naturally Existing Hierarchy in Product Architecture.
First, it is well-known that product architectures contain hierar-
chies at multiple scales of hierarchical organization, often charac-
terized and predefined at the subsystem and component levels. For
example, the systems architecture of a spaceship or aircraft con-
tains entire subsystems that are systems in their own right. Hier-
archical modularity, at least for some product families, has been
shown to be a manifestation of a power-law functional relation-
ship between the clustering coefficients of individual nodes and
the centrality of respective nodes [17,18]. Yet, existing modularity
identification techniques assume predefined hierarchies, as is the
case in hierarchically based design optimization formulations
such as Analytical Target Cascading [19], and/or they then oper-
ate recursively to each defined hierarchical level. As we demon-
strate through this paper, an explicit predefined assumption of
hierarchical levels and modular boundaries (and design compo-
nents, inputs, outputs, and variables at that level) may hide other
naturally occurring or possibly emergent and unintended embed-
ded hierarchies resulting from interactions between subsystems,
components, or parts [20]. Therefore, a modularity finding tech-
nique must have the capacity to reveal naturally existing scales of
hierarchical organization in the product architecture without any a
priori knowledge or assumptions about the levels of organization.

2.2 Naturally Existing Modular Overlaps in Product
Architecture. Second, most modularity identification techniques
make an essential a priori assumption about the characteristics of
the modules [1,11,15,16]: modules do not overlap—they are
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strictly partitioned. Hence, these techniques cannot account for
overlapping modules. If a system has naturally overlapping mod-
ules (such as one component that performs multiple functions,
interdisciplinary design teams with shared experts, etc.), then a
technique that defines and detects modules as disjoint sets will
never discover overlapping structure. The degree to which mod-
ules or components within modules are allowed to interface with
each other can affect the degree to which a final designed product
architecture is integral or modular or whether a component can be
included into one subsystem and another. In most circumstances,
the component and module interfaces are important design deci-
sions, and the degree to which modules share interfaces (or modu-
lar overlap) can have wide ranging effects on performance,
production, and design [21]. This requirement for strict partition-
ing is similar to the engineer having to make an explicit choice as
to which subsystem a component belongs [22] and obfuscates the
situation when a component has multiple significant spatial or
functional dependencies such that it should be attributed to
multiple subsystems.

2.3 False Positives for Modularity of Product
Architectures. Lastly, even without the consideration of hierarch-
ical and overlapping modularity, research in quantitative metrics
of modularity in product architectures have produced conflicting
and inconclusive results. H€oltt€a and de Weck proposed the Singu-
lar Modularity Index (SMI) as a metric for assessing modularity
from a functional perspective [12], but a later paper compared the
SMI to other metrics [13] and concluded that Whitney Index and
Change Cost were more useful metrics. Alternatively, Wang and
Antonsson [14] proposed an information-theoretic measure of
modularity. Part of the lack of agreement among these metrics
stems from the difference between defining modularity from the
component level [e.g., Ref. [15]] versus the module level and the
connectivity of components within the module [e.g., Ref. [12]]. At
a component level, Sosa recommended centrality as a measure of
component modularity [15]. At a subsystem level though, the
same authors developed a metric of modularity based on cross-
boundary interfaces [16].

Beyond the lack of agreement on a single metric, one weakness
of these metrics is their graph-theoretic validity: the above modu-
larity metrics would ascribe nonzero modularity to a system even
if there were no modularity in the system, such as in a random
graph, which is neither an integral system nor a modular system.
The SMI for a random graph implies a modular network because
the SMI is nonzero. For example, for a random graph with 64
nodes and a probability of connection between nodes of 0.1, the
SMI is 0.43. Conversely, Wang and Antonsson’s [14] information
theoretic measure can not be calculated, since it assumes the exis-
tence of modularity, whereas there is none other than by chance in
a random graph.

3 Research Question and Paper Summary

An open question thus revolves around an appropriate metric to
provide integrated insights into the natural modularity of a given
system (system modularity) or of a set of components (component
modularity) at any desired level of abstraction (instead of prede-
fined levels) and the associated method for finding modules, since
these two problems go hand-in-hand. The manner in which
modularity is defined and the associated metric directly affects
the modules within the system that can be identified [1]. The lack
of a uniform metric for modularity can result in methods for
identifying modules in product architecture yielding divergent
results [23].

In this paper, we use findings from the study of complex net-
works to develop such a metric and method. It has been long
known that product architectures can be represented as graphs or
equivalent component-based design structure matrices. In parallel,
the field of complex networks in physics in the last decade has
produced concentrated research on the identification of naturally

existing modularity (including hierarchical-overlapping modular-
ity) in artificial and biological complex systems. For an exhaustive
review of algorithms, see Ref. [24]. It is also known that modular
networks exhibit particular topological properties, such as having
a high clustering coefficient [17,18]. Principal to the work
reported in this article is finding modularity given no predefined
subsystems or component modules a priori. The main contribution
of this paper is a new spectral technique to detect modules in the
system. In our recent work, we have extended some classical
results on the identification of modularity and hierarchical modu-
larity in complex networks [25,26]. Specifically, we have derived
two principal findings by using and extending classical spectral
approaches to modularity identification [24] and graph classifica-
tion [27] that are relevant to the problem being addressed in this
paper. First, we have developed an algorithm for detecting natu-
rally existing hierarchical and overlapping modules in complex
networks [25]. Second, we have shown that modular and hierarch-
ical modular graphs can be clearly distinguished from other
graphs having no modularity using spectral fingerprints of their
graph adjacency matrix [26]. Thus, the spectra of a graph can
itself be a powerful metric for measuring modularity. We briefly
state these results in this paper, apply, demonstrate, and verify the
results on synthetically produced modular and hierarchical modu-
lar networks, and then apply and discuss the findings for studying
the hierarchical modularity of a Pratt and Whitney aircraft
engine [16].

In summary, using idealized graph models, we show that their
eigenvalue spectra can formally identify the absence, presence,
and type of modularity. Then, we examine the spectrum of a
Pratt-Whitney aircraft engine [16] and explain its hierarchical-
overlapping modular organization with reference to idealized
models. Finally, through the aircraft engine example, we discuss
new design insights into hierarchical modularity in product archi-
tectures and the role of highly connected “overlap” or hub compo-
nents that can critically affect system redesign, resilience and
safety, and maintenance.

4 Method and Approach

We define an idealized system as a graph model with prede-
fined properties that characterize the limits within which real
world systems lie. Real world engineering systems are neither per-
fectly hierarchical nor perfectly modular. Neither are they com-
pletely regular nor completely random. However, randomness,
regularity, and degrees of modularity and hierarchy are organizing
properties that all systems contain to varying degrees. Using ideal
models to characterize the degree of randomness, modularity, or
hierarchical modularity can therefore establish a generalized and
objective way of characterizing modularity in a real world system.
Our method is based on comparing the eigenvalue spectra of a
graph or matrix representation of real world systems to idealized
models [26–28]. The role of using singular value decomposition,
and in general graph spectra, to characterize modularity has
received significant attention in research [12,24–26,29,30], and
this work extends concepts on the relation between the spectral
properties of graphs and their topological configuration.

We discuss four idealized graph models and synthesize net-
works using the models: random, regular, modular, and hierarchi-
cal modular. We will show that these idealized models can be
distinctly classified or “finger-printed” according to their eigen-
value spectra, the set of eigenvalues of the graph. The spectra will
then become the basis for a metric to classify the modularity of a
real–world system.

We note here that singular values have been previously used in
to define a modularity index [12], which we diverge from in three
ways. First, our approach does not require an approximation or
error computation with reference to an idealized exponential func-
tion, as used by H€oltt€a and de Weck [12]. Second, in our method,
product modularity can be classified according to a spectral signa-
ture with reference to random, regular, modular and hierarchical
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modular graph models. Thus, the modularity signature rests on
assessment of multiple parameters (randomness, modularity, and
hierarchy), instead of a single numeric parameter which can only
measure a single attribute. Third, spectra serve as the basis for
optimally decomposing networks into modules, including identifi-
cation of module overlaps and hierarchy. The work by H€oltt€a and
de Weck did not take hierarchy and overlaps into account and can-
not be used to optimally decompose a system in the form as
presented.

We examine the spectrum of each idealized graph model and
present an accompanying algorithm based on the work in Ref.
[25] that provides a computationally fast and efficient way to
identify the hierarchical-overlapping modules in a system.

4.1 Product Architecture as a Graph and Its Adjacency
Matrix. We define a system as a graph S¼ (C, E), where
C ¼ fc1; c2;…; cng is a set of components in the system, and E is
a set of edges that describe any design relationship between two
components; i.e., edges can represent spatial proximity, energy,
material, or information interactions between components. We do
not differentiate between component, module, and subsystem defi-
nitions in this representation. The level of granularity for a
description of a system can be made arbitrarily large or small,
depending on the product architecture and design task. The main
idea behind this is that a modularity metric and modularity detec-
tion algorithm must be able to identify the modularity characteris-
tics for any arbitrary system, even if hierarchical levels and
module boundaries are not specified explicitly. In many design
phases, this is exactly what the design decision is: where should
an engineer place the module boundaries?

The graph S can be represented in matrix form, such as a
Design Structure Matrix (DSM). S can also be represented equiva-
lently as an adjacency matrix that can be binary or weighted. In a
binary adjacency matrix, Aij¼ 1 if an edge (design relationship)
exists between nodes i and j, and Aij¼ 0 otherwise. The weighted
adjacency matrix takes the form Aij¼wij if an edge exists between
nodes i and j, where wij is a numerical weight assigned to the
edge, and 0 otherwise. If the edges are undirected, then A is sym-
metric. A symmetric matrix (undirected graph) will have eigen-
values that are all real. We study the eigenvalue decomposition of
A, and the analysis presented in the paper is primarily for binary
(unweighted) undirected representations. Although the analysis, in
principle, can be extended to weighted counterparts, in this paper,
we work with undirected binary graphs because: (a) they are the
most commonly used class in modeling complex networks; (b) the
aeroengine product architecture example we study was repre-
sented in binary form by the original authors [16]; and, (c) includ-
ing weighted versions would considerably extend the analysis and
demonstration of our approach and constitutes an altogether sepa-
rate study.

4.2 Idealized Graph Models and Spectra. We examine four
idealized graph models and show that the pattern of eigengaps,
i.e., the gaps between successive eigenvalues in their spectra, can
uniquely fingerprint their modularity characteristics.

4.2.1 Non-Modular Graph Models and Spectra: Random and
Regular Ring Lattice Graphs. An Erd€os-R�enyi uncorrelated ran-
dom graph is a graph of N nodes where the probability for any
two pairs of vertices in the graph being connected is the same, p,
and these probabilities are independent variables [24]. Thus, the
random graph is defined in terms of a binary adjacency matrix,
where each matrix entry is 1 (edge) with probability p and 0 (no
edge) with probability 1� p. The entries in the adjacency matrix
of the graph have a common expectation (mean) value of p with a
variance of r2. The main classically known results about the
spectrum of an uncorrelated random graph that are of relevance in
the present work relate to the distribution of its eigenvalues [27].
First, as the number of nodes N grows, the principal eigenvalue
(the largest eigenvalue k1) grows much faster than the second

eigenvalue with limN!1ðk1=NÞ ¼ p with probability 1, whereas
for every e> 1/2, limN!1ðk2=NeÞ ¼ 0. The same relationship
holds for the smallest eigenvalue kN. For every e> 1/2,
limN!1ðkN=NeÞ ¼ 0. Thus, the largest eigenvalue k1 scales as pN

and the other eigenvalues k2;…; kN scale as r
ffiffiffiffi
N
p

. Simply
described, the spectrum of a random graph typically shows one
large eigenvalue, followed by other eigenvalues after a large gap.
Random graphs form one extreme graph model, which, by defini-
tion, do not have a modular structure except by chance. No modu-
lar structure, except for what occurs through chance, should be
revealed using any module detection algorithm. It would be incor-
rect to ascribe any positive modularity to this graph using any
metric. Fig. 1(a) shows the binary adjacency matrix for a 64 node
random graph. As expected, no modular structure is visible. The
typical eigenspectrum for a random graph is illustrated in
Fig. 2(a): there is one large eigenvalue separated from the bulk
distribution of eigenvalues.

A regular graph Greg¼ (N, d) is defined with N nodes, with
each node having a degree d [24]. A ring lattice also has no modu-
lar structure, because each node symmetrically has the same num-
ber of neighbors. In a ring lattice, each node is connected to
exactly d/2 nodes before and after it. Figure 1(b) shows the regular
graph matrix with a thick spine filled along the diagonal and two
triangular portions at two ends.

We note here a point of difference with [12], wherein the
authors propose this structure to be perfectly modular. However,
we note that this regular graph structure shows that components in
the system are locally connected to their immediate neighbors,
and that there are no system-level distant connections or preferen-
tial, dense, localized connections. This organizing principle, of
itself, will not produce a modular structure. To prove this more
formally, we note that any cut in the graph at any point, i.e., delet-
ing edges between two nodes, will simply produce a long chain
like structure instead of a ring structure. In contrast, a single cut in
a modular graph (discussed below) will produce at least two dis-
tinct modules. A regular ring lattice graph has a typical stepped
spectrum (for the detailed formulae for spectra of regular graphs,
refer to Ref. [31]): pairs of equal eigenvalues, then a large eigen-
gap, followed by a pair of equal eigenvalues again, and so on
(Fig. 2(b)). The number of degenerate eigenpairs varies as the size
of the graph and the node degree is varied, decreasing with
increasing node degree.

4.2.2 Modular Graph Models and Spectra. As opposed to ran-
dom and regular graphs, which have no modular structure, a graph
with modules will have a characteristic property: the number of
intramodule edges will be much higher than the number of inter-
module edges. The widely accepted definition of a module [24] is
that the actual number of edges existing within a module should be
much higher than the expected number of edges derived from an
equivalent random graph model with the same number of vertices
and similar degree distribution but with no modular structure.

To relate modular and hierarchical modular graphs with the
nonmodular graph models, a typical stochastic block model is
used to generate modular and hierarchical modular networks, as
presented in Ref. [26]. We briefly review the model construction
steps here. We start with an unperturbed modular network G(N,m)
with N nodes and m equally sized disconnected modules that are
random networks (as defined in Sec. 4.2.1) of size s and nodes
connected with probability p using the random network model
described in the previous section. The adjacency matrix A for this
network has m random blocks on the diagonal, with 1 s signifying
the presence of an edge and 0 s signifying the absence of an edge.

Now, this ideal modular network is perturbed with block matri-
ces of size s, each of which represents a random network of s
nodes and probability of connection pq, where q is a numeric pa-
rameter that sets a level of decrease in probability of an edge
between two nodes. That is, the entries of the perturbation matri-
ces are 1 (edge) with probability pq, and 0 (no edge) with
probability 1� p. These perturbation matrices P are placed in the
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off-diagonal positions of the perturbed adjacency matrix A, with
A0 ¼ Aþ P, where A0 has the block form

A0 ¼

A P … P

P A … P

… … … …

P … A P

P P … A

2
66664

3
77775 (1)

As we have proven in Ref. [26] by using and extending
classical results from random matrix theory [27,32], the mean
values of the eigenvalue spectrum of the perturbed modular net-
work A0 is

SA0 ¼
spþ ðm� 1Þspq sp� spq Oðr

ffiffiffiffi
N
p
Þ

1 m� 1 N � m

� �
(2)

The largest eigenvalue of the perturbed matrix has a mean
expected value of spþ (m� 1)spq and the next m� 1 largest
eigenvalues have a mean expected value of sp� spq. All the other
eigenvalues are bounded by a radius of r

ffiffiffiffi
N
p

with a mean value of
0, where r is the standard deviation of the entries in A0. Thus,
exactly m eigenvalues are well separated from the bulk distribu-
tion of eigenvalues around the origin.

Figure 3(a) shows the spectrum of a 64 node modular graph
with 4 modules. Note the 4 large eigenvalues, showing that the
optimal number of modules in the system is 4, which is the correct

Fig. 1 Network models: (a) 64 node random graph with p 5 0.29 and average degree 5 18; (b)
64 node regular graph with degree 5 18; (c) typical 128 node Newman-Girvan modular network
[24]; (d) finding the 4 modules in the network in (c); (e) typical hierarchical modular graph from
Ref, [26] with 3 hierarchical levels
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solution. Fig. 1(c) shows the modular network’s original adja-
cency matrix, and Fig. 1(d) shows the 4 modules as detected using
the eigenspectrum in Fig. 3(a) and the module detection algorithm
presented later in this paper. In contrast, a random network of the
same size and degree distribution shows only 1 large eigenvalue.

4.2.3 Hierarchical Modular Graph Models. In hierarchical
modular graphs, the underlying structural theme is a “modules
nested inside modules” approach. The probability of there being
an edge inside the lowest level (smallest) module is the highest,
and progressively decreases as the level of hierarchy increases.

We follow the typical stochastic block model form for con-
structing a hierarchical network, similar to the method described
above for modular networks and as presented in Ref. [26]. A hier-
archical modular network is constructed by recursively placing
random matrix blocks with decreasing levels of connectivity
between nodes in hierarchical levels in a block diagonal form. We
consider, as before in Sec. 4.2.2, the matrix

A0 ¼ A P

P A

� �
(3)

where A is a binary random network of size s and edge probability
p, and P is a random network of size s and edge probability pq.
Here, the parameter q sets the level of decrease in connectivity
between the various levels of hierarchy.

That is, q is a numeric parameter that is varied to define the
connectivity of the first level hierarchy of off-diagonal networks

or embedded modules represented by P. For example, if q¼ 0.5,
then the connectivity in P is 50% of the connectivity in A. If
q¼ 1, the network will no longer be hierarchical, but will simply
be a random network of size 2 s with connection probability p
(since, in this case, p¼ pq). It is clear from the formulation that
the lower the value of q, the stronger the hierarchical modular
structure, and higher the value of q (to 1), the weaker the hierarch-
ical modular structure.

We now define the second level of perturbation A00 as

A00 ¼ A0 P

P A0

� �
(4)

where A0 is the matrix defined in Eq. (3) and P is a random net-
work or matrix of size 2 s and edge probability pq2. Note here the
second hierarchical level: A0 already has the first level of hierar-
chy built in as described previously, with the first level off-
diagonal blocks having connectivity pq and the diagonal blocks
having connectivity p, with pq< p. Now, the second level off-
diagonal blocks, represented by matrix P, have connectivity pq2

with pq2< pq< p. In general, the matrix P defines each successive
level L of perturbations of increasing size (s, 2 s, 4 s,…,N/2) and
decreasing probability of connection (pq; pq2;…; pqL�1), produc-
ing an extra level of hierarchical modular structure with each per-
turbation level. Figure 1(e) shows an example hierarchical
network adjacency matrix with 3 hierarchical levels.

We have proven in Ref. [26], using results from random matrix
theory [27,32], that in general, for L hierarchical levels, the
expected values of the largest eigenvalues (those separated from
the bulk of the eigenvalues) of a hierarchical network AL, along
with their algebraic multiples, are

Fig. 2 Spectra of random and regular models: eigenvalues
arranged in descending order for (a) the random graph in
Figs 1(a) and 1(b) the regular graph in Fig. 1(b)

Fig. 3 Spectra of modular and hierarchical modular networks:
(a) A 64 node modular network with 4 modules (black) com-
pared to 64 node random network, p 5 0.1 (grey). (b) A 1024
node network with nested modules at 5 hierarchical levels with
only the first 100 eigenvalues shown. Lines are for visual pre-
sentation only.
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SpðELÞ ¼

s pþ pq
XL�1

i¼0

ð2qÞi
" #

1

s pþ pq
XL�2

i¼0

ð2qÞi
" #

� ð2qÞL�1

( )" #
1

… …

s pþ pqð1� 2qÞ½ � 2L�2

s p� pq½ � 2L�1

2
6666666666664

3
7777777777775

(5)

In general, for all hierarchical networks, the spectrum in Eq. (5)
has a clustered, stepped form, with eigenvalues clustered in
groups and successive large gaps between these groups. These
gaps reveal the hierarchical organization of the network.

Figure 3(b) shows the spectrum of a 1024 node hierarchical
modular graph. As is clearly seen, there are clusters of eigenval-
ues organized on a number of levels. Note the large eigengaps in
Fig. 3(b) corresponding to the hierarchical levels, showing 2 mod-
ules at the highest level, followed by 4, 8, 16, and 32 modules at
subsequent, lower-hierarchy levels. This corresponds exactly with
the actual hierarchy in the idealized network. The capability of
the eigenvalue spectrum to reveal hierarchical modularity can
help to resolve the problem the granularity of system decomposi-
tion and the influence of this modeling choice on the degree of
modularity detected [33]. Modules associated with low-level
decompositions would appear as modules associated with higher-
level decompositions assuming that the modeler includes the
relations between the higher levels of decomposition (major
subsystems/modules) and the lower level counterparts.

Thus, we have shown that the eigenvalue spectrum of modular
and hierarchical modular networks uniquely shows the optimal
number of modules in these idealized systems.

4.2.4 Spectra of Hierarchical and Modular Networks With
Unequal Sized Modules. In the idealized models presented above,
the module sizes were all equal. In this section, we show that the
results are valid even if the module sizes are dissimilar, as it is
almost certain that real world networks have a distribution of mod-
ule sizes rather than a single module size. We generated modular
and hierarchical modular networks of various sizes with dissimilar
module sizes and found that the spectra can successfully capture
the same information as discussed above about the size and the
number of modules, as long as the probability parameters chosen
for the random blocks ensure a sufficiently strong modularity
structure [26]. We present some detailed demonstrations below.

We first show the results for the simplest idealized case: a graph
with fully connected modules on the diagonal (i.e., each node is
connected to all the other nodes in its own module). For an ideal-
ized model having m modules of sizes s1; s2;…; sm and respective
multiplicities m1;m2;…;mm, the spectrum is

SM ¼
s1 s2 … sm �1

m1 m2 … mm n� ðm1 þ…þ mmÞ

� �
(6)

For example, the spectrum for a perfectly modular 160 node net-
work with m¼ 5 modules and the following module size distribu-
tion: M¼ {16, 32, 16, 32, 64}, as shown in Fig. 4(a), is

SM ¼
64 32 16 �1

1 2 2 155

� �
(7)

which is simply the union of the 5 distinct spectra of the individ-
ual modules. Thus, there are five eigenvalues that are separated
from the rest. Their respective values show the module sizes and
their respective multiplicities correspond with how many modules
of that size are present in the network.

In the next step, we produce an unperturbed modular network
using the stochastic block model/random matrix approach
introduced previously. The results are shown in Fig. 4(b), with the

network having five modules with connection probability p¼ 0.6
and sizes 16, 32, 16, 32, 64. The spectrum, marked in crosses,
shows the same eigenvalue pattern, but the eigenvalues scale as
pN (mean values around which the eigenvalues fluctuate: 1 large
mean eigenvalue at 64� 0.6¼ 38.4, 2 large mean eigenvalues at
32� 0.6¼ 19.2, and 2 large mean eigenvalues at 16� 0.6¼ 9.6).
Further, we now introduce perturbation or intermodule connection
probability of 0.1. The spectrum, marked in circles, continues to
echo the same pattern, though as the intermodule connectivity
increases, the eigenvalues move away from the means, showing
larger randomness in structure.

Finally, as shown in Fig. 4(c), we generate a hierarchical net-
work with three hierarchical levels, and unequal module sizes. At
the coarsest level is a 256 node network, at the next level three 64
node sub-networks further divide into 32 node finest level net-
works, and a 64 node subnetwork divides into four 16 node finest
level subnetworks. There are three hierarchical levels: the coarsest
level has 4 modules, the second level has seven modules, and the
finest level has ten modules. The spectrum fingerprints this: there
are ten large eigenvalues, and three gaps signifying three hierarch-
ical levels.

Next, we show that this finding can be used in an algorithm to
reveal the hierarchical-overlapping modularity of a system. Spe-
cifically, we demonstrate the algorithm using the unequal modules
hierarchical network example just discussed, Fig. 4(c).

4.3 Module Identification. The module identification
method is based on a generalization of a technique that we devel-
oped to reformulate design optimization problems into feasible
and tractable subproblems [29] and further refined to address the
problem of modularity detection in complex networks [25,26].
We briefly review it here. It is similar to the family of spectral
graph partitioning problems in complex networks [24], but we do
not impose the strict partitioning assumption. Instead, we allow
nodes to be part of multiple modules.

The method contains three aspects. First, the Eigen Value
Decomposition (EVD) of the adjacency matrix is computed as
A ¼ VDVT . If A has N nodes, then V is the N�N orthonormal
matrix of its eigenvectors and D is an N�N diagonal matrix of its
eigenvalues, with the eigenvalues arranged in a decreasing order.
Now, the connectivity of each node with other nodes is expressed
as a vector in space as a linear combination of an eigenvector
component times the corresponding eigenvalue as

ai ¼ ½vi1k0; vi2k1;…viNkN�1� (8)

as in Ref. [25]. Thus, connectivity is now expressed as a function
of position in space.

Second, we perform a dimensionality reduction on the original
adjacency matrix by preserving the k largest eigenvectors and
eigenvalues to produce a reduced approximation of the node vec-
tors as

a
ðkÞ
i ¼ ½vi1k0; vi2k1;…vikkk� (9)

Using the results presented in Sec. 4.2, k is chosen as follows:

(1) Plot the indexed spectrum of the system’s adjacency matrix
A by arranging its eigenvalues in decreasing order.

(2) Compare the plot to the spectrum of a random graph of the
same size and average node degree; if the two correspond,
there is only one principal eigenvalue sharply separated
from the rest, and there is no modularity.

(3) For a system with modularity, there will be a large gap
between the kth and kthþ 1 eigenvalues. Retain this k (or
kþ 1) as the number of values and vectors to compute an
optimal approximation of the system; this k value is also
the number of modules in the system.

(4) For a system with hierarchical modularity, eigenvalues will
be clustered in groups, with large gaps between these
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groups. Identify these indices k where large gaps occur
between successive values. Each k value corresponds to the
number of modules at a specific hierarchical level in the
system.

Preserving the k largest vectors implies we are searching for k
modules. A real world engineering system will not have a spectra
that is as clear as the idealized models. As we will show in Sec. 5,
the Pratt and Whitney aeroengine model spectra shows aspects of
randomness and hierarchical modularity present together. Thus,
the above procedure can provide a heuristic to select the number
of modules (actual number of subsystems) during system decom-
position, a parameter that is left for the user to choose a priori by
many system decomposition algorithms.

The dimensionality reduction step is essential to identify redun-
dancy in the adjacency matrix. In an adjacency matrix, each of the
N nodes is a separate dimension. However, all N dimensions are
not needed to calculate modularity as the number of modules will
always be lower than N. In a module, two nodes with many com-
mon neighbors or the same set of neighbors are likely to fall in the
same module, while two nodes that do not share common neigh-
bors are likely to fall in separate modules. If two nodes have
exactly the same set of neighbors, then there are dependent rows
and columns in the matrix. If they share many common neighbors,
then their vertex vector representations will share high dot prod-
ucts. In either case, this redundancy in the matrix means that there
is a lower number of dimensions that can be used to represent the
modular organization of the system. This redundancy in the graph
matrix is used to compute a linear least squares, optimal, lower
dimensional approximation of the original matrix by retaining the
k largest eigen (singular) vectors and eigen (singular) values.
These, when arranged in decreasing order, capture the relative in-
formation content that each orthogonal dimension contains about
modular organization.

Finally, to find the modules, dot products are computed
between all the k reduced vector representations of nodes, result-
ing in a dot product or cosine matrix. The higher the cosine
between two node vectors, the higher the probability that they
belong to the same module. The lower the cosine, the higher the
probability that they belong to different modules. With the cosine
matrix suitably reordered to reveal the highly connected groups of
nodes along the block diagonal (We provide an algorithm for reor-
dering in Ref. [25]), we can identify the modular hierarchical-
overlapping organization in the network. Fig. 5 shows the
reordered cosine matrices after performing the modularity

identification using k¼ 4, 7, 10, respectively, for the hierarchical
network shown in Fig. 4(c). Note that when k¼ 4, the coarsest
hierarchical arrangement is visible, when k¼ 7, the second hier-
archical level is visible, and when k¼ 10 the finest hierarchical
level is visible.

5 Results: Aeroengine System Analysis

In this section, we present detailed results on applying the
method to study the hierarchical modularity properties of a Pratt
and Whitney aircraft engine [16]. Prior knowledge of the existing
system modules allows us to verify the validity of our approach.
The engine has 54 components forming 8 subsystems: Fan System
(FS), Low Pressure Compressor (LPC), High Pressure Compres-
sor (HPC), Combustion Chamber (CC), High Pressure Turbine
(HPT), Low Pressure Turbine (LPT), Mechanical Components
(MC), and Externals and Controls (EC). We create a binary,
unweighted design dependency adjacency matrix based on the
DSM used in Ref. [16]. We think of each component as a node in
a graph, with an edge existing between nodes i and j if, by reading
across rows of the equivalent adjacency matrix, node i depends on
node j for functionality. Equivalently, node j needs to feed into
node i for functionality. The purpose is to identify the modular
and integrative subsystems, based on the design dependency data,
and also to study the presence or absence of hierarchy in the sub-
system interactions. Figure 6(b) shows the unweighted symmetric
adjacency matrix for the engine. The average node degree for the
aeroengine model is 10.5.

For the study, we compare this system to other idealized sys-
tems of similar size and varying complexity. We generated five
model networks: (a) a random network of 54 components with av-
erage node degree 10; (b) a regular network of 54 components
with node degree 10; (c) a perfectly modular network of 54 com-
ponents, with module sizes corresponding to the real engine, but
the nodes fully connected to each other within a module and shar-
ing no dependencies with any other module; (d) a modular net-
work of 56 nodes, with average node degree 10, and with 8
modules of 7 nodes each, using our modular network generation
model; and (e) a hierarchical modular network with 64 nodes at
the highest level, 2 modules of 32 nodes at the mid level, and 4
modules of 16 nodes at the lowest level, using our hierarchical
modular network generation model. We fingerprint the aeroengine
network topology by superimposing the spectra of the model net-
works with the spectrum of the aeroengine, similar to Ref. [34], as

Fig. 4 Spectra of networks with unequal modules: (a) Inset: Perfect modular network with 5 modules of sizes 16, 32, 16, 32, 64;
Spectrum shows 1 eigenvalue of 64, 2 eigenvalues of 32, and 2 eigenvalues of 16. (b) Left inset: Unperturbed random block mod-
ular network, 5 modules with connection probability p 5 0.6, and sizes 16, 32, 16, 32, 64; Spectrum (crosses) shows the same
eigenvalue pattern with 1 large eigevalue, followed by 2 large eigenvalues, followed by 2 large eigenvalues, but the eigenvalues
scale as pN; Right inset: Perturbed random block modular network, with intermodule connectivity pq 5 0.1 and same module
sizes as left inset; Spectrum (circles) continues to echo the same pattern, though as the intermodule connectivity increases,
the eigenvalues move away from the means, showing larger randomness in structure; (c) Inset: Hierarchical modular network of
3 levels, with unequal module sizes: at the coarsest level is a 256 node network, at the next level three 64 node subnetworks fur-
ther divide into 32 node finest level networks, and a 64 node subnetwork divides into four 16 node finest level subnetworks;
There are 3 hierarchical levels, and the finest level shows 10 modules; Spectrum fingerprints this hierarchical modular organiza-
tion: there are 10 large eigenvalues, and 3 gaps signifying 3 hierarchical levels.
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the model networks are generated using the same average node
degree and number of nodes as the aeroengine. Since the largest
eigenvalue and the distribution of eigenvalues is classically
known to be bounded and characterized by the node degree char-
acteristics, these comparisons are structural and not merely visual.

The analysis of the modularity fingerprint of the aeroengine
spectrum revealed previously unidentified levels of organization
in the system. The comparison of the spectra of these model net-
works with the spectrum of the aeroengine network showed that
the aeroengine spectrum was closest to the hierarchical network
[model (e) above]. The first few largest eigenvalues appear in
clusters with large eigengaps, shown in Fig. 6(a), but a large gap
between the first and the second eigenvalue shows a high degree
of randomness [model (b) above]. Thus, overall, the aeroengine
architecture shows the presence of hierarchical modularity,
accompanied by a high degree of intermodular interaction that
takes the system towards a random architecture.

Although the accepted and known modular structure of the
aeroengine contains 8 modules, the spectrum shows large gaps af-
ter the 2nd, 4th, and 6th eigenvalues, suggesting 2 modules at the
first hierarchical level, 3-4 modules at the next, and 5-6 modules
at a third level of hierarchy. We varied the k value from 2 to 8 and
performed modularity analysis of the aeroengine using the algo-
rithm described in Sec. 4.3.

Our first main finding was that at k¼ 8, both the original dot
product matrix and the reordered cosine matrix show that the pre-
defined 8 subsystems do not emerge as clearly separated modules.
Instead, there are high amounts of overlaps between subsystems.
Figure 6(b) plots the network of 54 subsystems with the 8 prede-
fined systems plotted as 8 modules. As is evident, even visually,
there is a high density of interaction between them, and the mod-
ules are not at all obvious.

To understand the hierarchical organization in detail, Figs. 6(c)
and 6(d) show the network plots resulting from the application of
the algorithm defined in Sec. 4.3 using k¼ 2 and k¼ 3, respec-
tively. The results clearly show that due to high interaction
between two or more modules, the actual number of modules in
the system is lower than the 8 known modules [16]. At the highest
hierarchical level, k¼ 2, the FS, LPC and HPC systems emerge as
a large integrated module, and the other systems emerge as
another integrated module, Fig. 6(c). Note now the sparse interac-
tion between the CC-LPT-HPT systems and the tightly coupled
FS-LPC-HPC systems.

At the next hierarchical level, k¼ 3, the FS, LPC, and HPC sys-
tems continue to emerge as a large integrated module (module 1),
while the LPT and HPT emerge as another module (module 2),
and the CC, EC and MC systems emerge as a third module (mod-
ule 3), Fig. 6(e). This shows that the larger integrated module of
the previous hierarchical level breaks into two at this level. Addi-
tionally, many of the individual components from these systems

show clear overlaps [for further details, see discussion on hubs,
and Fig. 7(b)]. For example, specific components from the LPC,
HPC, FS, and CC systems appear in overlaps between modules,
and components from the EC and MC systems appear in all three
modules, establishing them as strongly integrative. As the k value
is further increased to k¼ 8, these 3 large subsystems break into
smaller subsystems. However, at k¼ 8, the 8 predefined subsys-
tems are not retrieved. The 8 modules that emerge are finer granu-
larity distinctions of these three large modules. This clearly shows
that the predefined subsystems and their interactions may lead to
unidentified and emergent levels of organization in the system.

5.1 Design, Management, and System Safety Implications.

5.1.1 Hierarchical Organization Affects the Engineering
Design Team Structure. Instead of simply classifying a certain
system as modular or integrative, our results show that subsystems
can be hierarchically organized and have overlaps with other sub-
systems. Defying a coarse decomposition, some modular subsys-
tems share nodes (components) with other modular subsystems.
This arrangement, revealed by our module finding method, can be
used to organize and better manage and plan design team organi-
zation and interaction. For example, the data and the analysis
clearly show that the FS, LPC, and HPC subsystem design teams
need to be tightly integrated even though they are purportedly
modular subsystems, and the LPT design team needs to be tightly
coupled to both the CC and the HPT design teams, even though
all three subsystems are purportedly separate subsystems.

It is worth noting here that when Sosa et al. [15] analyzed the
superposition of the design interface matrix of the aeroengine
(physically meaningful interfaces) with the design team interac-
tion matrix (team interactions based on the product architecture),
they found a large number of anomalies where (a) existing design
interfaces were not supported by team interactions, and (b) there
were team interactions planned with no design interfaces between
two components. On analyzing the distribution of these, we identi-
fied that out of the total 220 (100%) entries in the matrix where an
existing design interface was unsupported by a team interaction,
65 (about 30%) of these entries occur between the Fan-LPC-HPC
subsystems, and 26 (about 12%) of these entries occur between
the CC-LPT-HPT subsystems, with 47 entries occurring between
MC and all other subsystems, and 92 entries between the EC and
all other subsystems. These analyses clearly show that the missing
entries, i.e., team interactions that should have existed as per the
physical product architecture, are not distributed evenly across the
entire system. Forty two percentage of these are concentrated
within two larger level subsystems: the FS-LPC-HPC and CC-
LPT-HPT. Similar findings have been reported by other, very
recent studies on product architecture modularity and distributed-
ness in other related contexts [35,36].

Fig. 5 Performing module identification for hierarchical networks using the spectral algorithm. Reordered cosine matrices
shown for hierarchical network of Fig. 4(c), with (a) k 5 4, (b) k 5 7, and (c) k 5 10. k values correspond to the largest gaps in the
spectrum, and at each k value the hierarchical organization of nodes at the three hierarchical levels is shown.
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This finding has important management implications. For any
complex engineering system, if there are unidentified emergent
hierarchical levels of organization, then identifying and making
such organization explicit can guide the manner in which team
interactions are planned. For example, in the aeroengine example,
it is clear that the larger level hierarchical FS-HPC-LPC cluster
and the CC-LPT-HPT cluster can be better managed by having
members of both design teams solely support the interfaces. The
existence of product design team “hubs” would also reduce errors
and defects in complex product design and development projects
while increasing the capacity of the product development process
to recover from changes to individual tasks [18].

5.2 Hub Components as Modular Overlaps Affect System
Design, Safety and Resilience. Hubs are defined as high degree
centrality components that play critical integrative and

coordinating roles in the system. Hubs have been classified to be
of two types [37]: provincial and connector. Provincial hubs are
high degree nodes within a single module that share most connec-
tions with other nodes from the same module. Obviously, they do
not fall in an overlap between multiple modules. Connector hubs
are high degree nodes that are connected to nodes from multiple
modules; i.e., they fall in overlaps between modules. Thus, con-
nector hubs are responsible for making the system more integra-
tive, and less modular.

The detection of hubs is related to the issues of system safety
and resilience or tolerance to ‘attacks’ on the hub nodes [18,38].
There may also be a trade–off between system quality [39] and
tolerance to attack. Clearly, if a provincial hub fails, there is high
chance of a module failure in the system, but if a connector hub
fails, there is a high chance of systemic failure. The basic idea is
that if a component is highly connected to many other

Fig. 6 Pratt Whitney Aircraft Engine: (a) Spectrum of eigenvalues of aeroengine model com-
pared with spectrum of a 3-level hierarchical network. Inset shows the original adjacency ma-
trix. (b) Original definition of clusters, with 8 predefined subsystems; note that distinct clusters
share high density of links and this fails to bring out the latent natural clustering. (c) clusters
plotted using 2D reduced vector representation showing 2 main clusters identified by algorithm
at highest hierarchical level, using Eq. (9) and k 5 2; data plotted without EC and MC systems
that are known to be integrative. (d) 3D reduced vector representation showing 3 main clusters
at next hierarchical level, using Eq. (9), and k 5 3; data plotted with the EC and MC systems that
are densely linked to both the Fan-LPC-HPC cluster and the CC-LPT-HPT cluster.
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components, and sits in an overlap between multiple modules,
then this component needs special attention during the design
stage due to the integrative and coordinating roles it plays in the
system. Further, as a critical component, its failure can have a se-
rious effect on the functioning of the entire system. For example,
it has been shown the in the context of scale free networks that a
planned attack on these hub nodes can quickly result in a systemic
failure [38]. While we do not examine in- and out-degree of nodes
and their relation to system resilience, other research shows
“asymmetry” and “skeweness” of node degree are also closely
related to the robustness and sensitivity of large-scale networks to
modifications in the nodes [18].

To relate the modularity analysis to identification of hub nodes,
we compute the centrality of each node in the system as

xi ¼ 1
k

Pn
j¼1 Aijxj, where xi is the centrality of node i which is

made proportional to the average of the centralities of i’s neigh-
bors in the system, and 1/k is a constant of proportionality. In
other words, the centrality of each node measures the degree of its

overall influence in the system, i.e., a connection to a highly con-
nected component should matter more and have more influence
than a connection to a not so well connected component. This is
the well known eigenvector centrality [24], which when written in
matrix form becomes kx¼Ax. In other words, the vector of cen-
tralities x is an eigenvector of matrix of A with eigenvalue k. For
obtaining non-negative centralities, it can be shown by the Perron-
Frobenius theorem, the centrality vector corresponds to the first
(all positive) eigenvector with the largest eigenvalue. Relating this
to our analysis of modularity presented in previous section, this is
simply the eigenvector corresponding to the largest eigenvalue in
the EVD/Singular Value Decomposition (SVD) of A.

In the algorithm described in Sec. 4.3, a cosine matrix captures
the pairwise dot products between vectors representing node con-
nectivity. If a node falls in an overlap between two modules, it
will share high dot products with nodes from both modules. When
the cosine matrix is reordered to make it as block diagonal as pos-
sible to reveal the modules, these high degree connector nodes,

Fig. 7 Eigenvector and degree centrality of aeroengine components
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which fall in overlaps between modules, will be revealed as off-
diagonal high cosine rows or columns, Fig. 7(b)).

Combining the eigenvector centrality score and the results of
our algorithm, which identify the connector nodes, we see that the
nodes that fall in an overlap between multiple modules, and also
have a high eigenvector centrality score, are connector hubs that
push the system towards an integrative structure. This correlation
has also been observed in product development networks [40].

The results of our analysis show that certain specific compo-
nents from specific subsystems appear as connector hubs, i.e.,
they show high coupling with other subsystems, despite the fact
that the subsystem they belong to is itself modular. That is, these
components are part of more than one module. For example, as
shown in Fig. 7(b) [sizes of nodes correspond to eigenvector cen-
tralities of nodes], specific components of the FS (for example,
exit guide vanes and cases), LPC (for example, bleed BOM and
intermediate case), HPC (for example, blades, inner shrouds and
seals, variable vanes), and CC (for example, diffuser) subsystems
show very tight coupling with the full system, even though the FS,
LPC, and CC are purportedly modular subsystems. These compo-
nents are responsible for “pushing” the entire system towards an
integrative architecture, while the HPT, and LPT are clearly much
more modular (not considering the MC and EC systems, which
are fully integrative). During the design stage, these hub compo-
nents sitting inside modular subsystems will need extra focus
because they are responsible for increasing the complexity of the
system and bringing down architectural modularity. These compo-
nents increase design complexity not just because they have many
dependent components within their own modules; they are com-
plex because they have many connections outside their modules
[41] and may provide subordinate functions to other components
and subsystems.

Perhaps most importantly, because they participate in multiple
functions across (intended) modular systems, they are critical
components. Malfunctions to these components would have seri-
ous flow-on effects beyond their specific subsystems, and a tar-
geted or specific attack on these components and their failure can
lead to systemic failure. In the design stage, therefore, an impor-
tant analysis is to first identify if there are any such emergent hub
components that bring down architectural modularity, push up the
integrative architecture, and play multiple functional roles. The
related important design decisions then become whether it is pos-
sible to redesign some of the interfaces so as to reduce the vulner-
ability of the system via these components, or increasing the
reliability of these components if their “hubness” cannot be
significantly reduced.

6 Discussion and Conclusions

The field of complex networks, which uses graph theory to
study complex systems, shows that all complex systems, natural
or artificial, show the presence of hierarchical-overlapping modu-
larity. Such a structural configuration has deep relationships with
the functional configurations of these systems. Product architec-
tures are no exception. We have exploited this connection to iden-
tify a new way to characterize the modularity of an engineered
product or system. We have shown how our methodology cor-
rectly identifies the existence or lack of existence of modules in
random, regular, modular, and hierarchically modular graph mod-
els. We further showed that ideal graph models and eigenvalue
spectra can be used to correctly identify the modularity character-
istics of a known complex product, an aeroengine. More impor-
tant, we showed that modularity is a characteristic governed by
multiple properties, one that is not easily captured by a single met-
ric. Conscious efforts at redesign can be initiated to make the sys-
tem more modular, where the number of modules and hierarchical
modules are determined by the eigenvalue spectra as described in
the mathematical proof and empirical results of Sec. 4.2. How-
ever, if despite redesign efforts, the signature does not change sig-
nificantly, then this shows that despite desiring high levels of

modularity, there can be theoretical or empirical limits on how
much modularity can be achieved. Our method will make this
choice explicit to the engineer.

Further, our analysis of the aeroengine shows distinctly identifi-
able levels of hierarchical modularity, which was not originally
revealed, and were in fact masked, in the initial component-mod-
ule-system description [16]. These multiple levels of organization
show us which subsystems are modular and which ones are inte-
grative, along with specific components belonging to otherwise
modular subsystems that are responsible for making the entire sys-
tem function. Revealing this can aid design development, concen-
trating on specific systems for the possibility of testing whether
they can be redesigned to be made more modular. Finally, the
results show that the strict partitioning requirement of modularity
identification algorithms can produce inappropriate results from
an engineering design perspective, such as not revealing emergent
hub nodes. By not permitting nodes to overlap into multiple mod-
ules, algorithms that assume strict partitioning may characterize
systems as having higher degree of modularity (and therefore
reliability) than is actually warranted.

We believe that our work points in the direction of a single
modularity metric, but highlights that such a metric would be an
aggregate that must attend to multiple criteria affecting modular-
ity, such as degrees of randomness, modularity, hierarchy and
overlap, rather than being based on single or isolated measure-
ments of a system property that describe modularity. For example,
the well known Newman modularity metric Q measures modular-
ity of a complex system by comparing it to another random sys-
tem with the same node degree distribution, number of nodes/
edges, and other such properties: the idea is to define the degree
of modularity of a system by comparing it to a random system
with exactly the same properties but no modularity [24]. However,
this still leaves the problem of characterizing hierarchy and over-
laps open. Since the spectra of matrices and graphs contain infor-
mation on these multiple properties, the method described in this
paper uses the spectra of graphs and networks to characterize
modularity of product architecture, thereby capturing the multiple
organizational properties that complex systems are typically
characterized by.

Acknowledgment

This research was supported in part under Australian Research
Council’s Discovery Projects funding scheme (Project No.
DP1095601) and in part by the National Science Foundation
(Project No. CMMI 1030060). Andy Dong is the recipient of an
Australian Research Council Future Fellowship (Project No.
FT100100376).

References
[1] Gershenson, J. K., Prasad, G. J., and Zhang, Y., 2003, “Product Modularity:

Definitions and Benefits,” J. Eng. Design, 14(3), pp. 295–313.
[2] Kong, F., Ming, X., Wang, L., Wang, X., and Wang, P., 2009, “On Modular

Products Development,” Concurr. Eng., 17(4), pp. 291–300.
[3] Meehan, J., Duffy, A., and Whitfield, R., 2007, “Supporting ‘Design for Re-

use’ With Modular Design,” Concurr. Eng., 15(2), pp. 141–155.
[4] Newcomb, P. J., Bras, B., and Rosen, D. W., 1998, “Implications of Modularity

on Product Design for the Life Cycle,” ASME J. Mech. Des., 120(3), pp.
483–490.

[5] Lai, X., and Gershenson, J. K., 2008, “Design Structure Matrix-Based Product
Representation for the Retirement Process-Based Modularity,” in 20th Interna-
tional Conference on Design Theory and Methodology, Proceedings of the
ASME 2009 International Design Engineering Technical Conferences & Com-
puters and Information in Engineering Conference IDETC/CIE 2009, August
30–September 2, 2009, San Diego, CA, pp. 1–13.

[6] Alizon, F., Shooter, S. B., and Simpson, T. W., 2006, “Improving an Existing
Product Family Based on Commonality/Diversity, Modularity, and Cost,” in
11th Design for Manufacturing and the Lifecycle Conference, Vol. 4b, ASME,
pp. 713–725.

[7] Gao, F., Xiao, G., and Simpson, T., 2009, “Module-Scale-Based Product Plat-
form Planning,” Res. Eng. Des., 20(2), pp. 129–141.

[8] Cai, Y. L., Nee, A. Y. C., and Lu, W. F., 2009, “Optimal Design of Hierarchic
Components Platform under Hybrid Modular Architecture,” Concurr. Eng.,
17(4), pp. 267–277.

Journal of Mechanical Design JANUARY 2014, Vol. 136 / 011006-11

http://dx.doi.org/10.1080/0954482031000091068
http://dx.doi.org/10.1177/1063293X09353974
http://dx.doi.org/10.1177/1063293X07079319
http://dx.doi.org/10.1115/1.2829177
http://dx.doi.org/10.1007/s00163-008-0061-2
http://dx.doi.org/10.1177/1063293X09352122


[9] Sosa, M. E., Eppinger, S. D., and Rowles, C. M., 2004, “The Misalignment of
Product Architecture and Organizational Structure in Complex Product Devel-
opment,” Manage. Sci., 50(12), pp. 1674–1689.

[10] Tilstra, A. H., Seepersad, C. C., and Wood, K. L., 2012, “A High-Definition
Design Structure Matrix (HDDSM) for the Quantitative Assessment of Product
Architecture,” J. Eng. Design, 23(10–11), pp. 764–786.

[11] Stone, R. B., Wood, K. L., and Crawford, R. H., 2000, “A Heuristic Method for
Identifying Modules for Product Architectures,” Des. Stud., 21(1), pp. 5–31.

[12] H€oltt€a-Otto, K., and de Weck, O., 2007, “Degree of Modularity in Engineering
Systems and Products With Technical and Business Constraints,” Concurr.
Eng. Res. Appl., 15, pp. 113–126.

[13] Van Eikema Hommes, Q. D., 2008, “Comparison and Application of Metrics
That Define the Components Modularity in Complex Products,” Proceedings of
the ASME 2008 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference, DETC 2008/DTM-
49140, August 3–6, 2008, Brooklyn, NY, pp. 1–10.

[14] Wang, B., and Antonsson, E. K., 2004, “Information Measure for Modularity in
Engineering Design,” Proceedings of DETC’04 2004 ASME 2004 Design Engi-
neering Technical Conferences, Salt Lake City, UT, September 28-October 2,
2004, pp. 1–10. Available at: http://www.design.caltech.edu/Research/Publica-
tions/04e.pdf

[15] Sosa, M. E., Eppinger, S. D., and Rowles, C. M., 2007, “A Network Approach
to Define Modularity of Components in Complex Products,” ASME J. Mech.
Des., 129(11), pp. 1118–1129.

[16] Sosa, M. E., Eppinger, S. D., and Rowles, C. M., 2003, “Identifying Modular
and Integrative Systems and Their Impact on Design Team Interactions,”
ASME J. Mech. Des,. 125(2), pp. 240–252.

[17] Braha, D., and Bar-Yam, Y., 2004, “The Topology of Large Scale Engineering
Problem Solving Networks,” Phys. Rev. E, 69, p. 016113.

[18] Braha, D., and Bar-Yam, Y., 2007, “The Statistical Mechanics of Complex
Product Development: Empirical and Analytical Results,” Manage. Sci., 53, pp.
1127–1145.

[19] Kang, N., Kokkolaras, M., Papalambros, P. Y., Park, J., Na, W., Yoo, S., and
Featherman, D., 2012, “Optimal Design of Commercial Vehicle Systems Using
Analytical Target Cascading,” 12th American Institute of Aeronautics and As-
tronautics Aviation Technology, Integration, and Operations (ATIO) Confer-
ence and 14th AIAA/ISSM, September 17–19 2012, Indianapolis, IN, pp. 1–13.
Available at: http://ode.engin.umich.edu/publications/PapalambrosPapers/2012/
307.pdf

[20] Palla, G., Derenyi, I., Farkas, I., and Vicsek, T., 2005, “Uncovering the Over-
lapping Community Structure of Complex Networks in Nature and Society,”
Nature, 435(7043), pp. 814–818.

[21] Martin, M., and Ishii, K., 2002, “Design for Variety: Developing Standardized
and Modularized Product Platform Architectures,” Res. Eng. Des., 13(4), pp.
213–235.

[22] Dobberfuhl, A., and Lange, M. W., 2009, “Interfaces Per Module: Is There an
Ideal Number?,” Proceedings of the ASME 2009 International Design Engi-
neering Technical Conferences & Computers and Information in Engineering
Conference IDETC/CIE 2009, August 30–September 2, 2009, San Diego, CA,
pp. 1–13.

[23] H€oltt€a, K., and Salonen, M. P., 2003, “Comparing Three Different Modularity
Methods,” in 15th International Conference on Design Theory and Methodol-
ogy, ASME, pp. 533–541.

[24] Newman, M. E. J., 2010, Networks: An Introduction, Oxford University Press,
Oxford, UK.

[25] Sarkar, S., and Dong, A., 2011, “Community Detection in Graphs Using Singu-
lar Value Decomposition,” Phys. Rev. E, 83(4), p. 046114.

[26] Sarkar, S., Henderson, J., and Robinson, P., 2013, “Spectral Characterization of
Hierarchical Network Modularity and Limits of Modularity Detection,” PLoS
ONE, 8(1), p. e54383.

[27] Farkas, I., Derenyi, I., Barab�asi, A.-L., and Vicsek, T., 2001, “Spectra of ‘Real-
World” Graphs: Beyond the Semicircle Law,” Phys. Rev. E, 64, p. 026704.

[28] Mieghem, P. V., 2011, Graph Spectra for Complex Networks, Cambridge Uni-
versity Press, Cambridge, UK.

[29] Sarkar, S., Dong, A., and Gero, J. S., 2009, “Design Optimization Problem (re)-
Formulation Using Singular Value Decomposition,” ASME J. Mech. Des.,
131(8), p. 081006.

[30] Sarkar, S., Dong, A., and Gero, J. S., 2008, “A Learning and Inference Mecha-
nism for Design Optimization Problem Reformulation Using Singular Value
Decomposition,” Proceedings of the ASME 2008 International Design Engi-
neering and Technical Conference and Computers and Information in Engineer-
ing Conference (DETC/CIE), DETC2008-49147, August 3–6, 2008, Brooklyn,
NY, pp. 1–10. Available at: http://mason.gmu.edu/~jgero/publications/2008/
08SarkarDongGeroDETC.pdf

[31] Biggs, N., 1994, Algebraic Graph Theory, 2 ed. Cambridge University Press,
Cambridge, UK.

[32] Furedi, Z., and Kolmos, J., 1981, “The Eigenvalues of Random Symmetric
Matrices,” Combinatorica, 1, pp. 233–241.

[33] Chiriac, N., H€oltt€a-Otto, K., Lysy, D., and Suh, E. S., 2011, “Level of Modular-
ity and Different Levels of System Granularity,” ASME J. Mech. Des., 133(10),
p. 101007.

[34] Sarkar, S., and Dong, A., 2011, “Characterizing Modularity, Hierarchy, and
Module Interfacing in Complex Design Systems,” ASME 2011 International
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference Volume 9: 23rd International Conference on Design
Theory and Methodology; 16th Design for Manufacturing and the Life Cycle
Conference, Washington, DC, August 28–31, 2011, pp. 375–384.

[35] Denman, J., Sinha, K., and de Weck, O. L., 2011, “Technology Insertion in Tur-
bofan Engine and assessment of Architectural Complexity,” In Invest on visual-
ization: Proceedings of the 13th International DSM Conference Cambridge, S.
D. Eppinger, M. Maurer, K. Eben, and U. Lindemann, eds., Carl Hanser Verlag
GmbH & Co. KG, pp. 407–420.

[36] Sinha, K., and de Weck, O. L., 2012, “Structural Complexity Metric for Engi-
neered Complex Systems and its Application,” in Gain Competitive Advantage
by Managing Complexity: Proceedings of the 14th International DSM Confer-
ence Kyoto, Japan 2012, M. Onishi, M. Maurer, K. Kirner, and U. Lindemann,
eds. Carl Hanser Verlag GmbH & Co. KG, Munich, pp. 181–194.

[37] Sporns, O., Honey, C. J., and K€otter, R., 2007, “Identification and Classification
of Hubs in Brain Networks,” PLoS ONE, 2(10), p. e1049.

[38] Albert, R., Jeong, H., and Barab�asi, A.-L., 2000, “Error and Attack Tolerance
of Complex Networks,” Nature, 406(6794), pp. 378–382.

[39] Sosa, M. E., Mihm, J., and Browning, T., 2011, “Degree Distribution and Qual-
ity in Complex Engineered Systems,” ASME J. Mech. Des., 133(10), p.
101008.

[40] Braha, D., and Bar-Yam, Y., 2004, “Information Flow Structure in Large-Scale
Product Development Organizational Networks,” J. Inf. Technol., 19, pp.
244–253.

[41] McNerney, J., Farmer, J. D., Redner, S., and Trancik, J. E., 2011, “Role of
Design Complexity in Technology Improvement,” Proc. Natl. Acad. Sci.
U.S.A. 108(22), pp. 9008–9013.

011006-12 / Vol. 136, JANUARY 2014 Transactions of the ASME

http://dx.doi.org/10.1287/mnsc.1040.0289
http://dx.doi.org/10.1080/09544828.2012.706748
http://dx.doi.org/10.1016/S0142-694X(99)00003-4
http://dx.doi.org/10.1177/1063293X07078931
http://dx.doi.org/10.1177/1063293X07078931
http://www.design.caltech.edu/Research/Publications/04e.pdf
http://www.design.caltech.edu/Research/Publications/04e.pdf
http://dx.doi.org/10.1115/1.2771182
http://dx.doi.org/10.1115/1.2771182
http://dx.doi.org/10.1115/1.1564074
http://dx.doi.org/10.1103/PhysRevE.69.016113
http://dx.doi.org/10.1287/mnsc.1060.0617
http://ode.engin.umich.edu/publications/PapalambrosPapers/2012/307.pdf
http://ode.engin.umich.edu/publications/PapalambrosPapers/2012/307.pdf
http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.1103/PhysRevE.83.046114
http://dx.doi.org/10.1371/journal.pone.0054383
http://dx.doi.org/10.1371/journal.pone.0054383
http://dx.doi.org/10.1103/PhysRevE.64.026704
http://dx.doi.org/10.1115/1.3179148
http://mason.gmu.edu/~jgero/publications/2008/08SarkarDongGeroDETC.pdf
http://mason.gmu.edu/~jgero/publications/2008/08SarkarDongGeroDETC.pdf
http://dx.doi.org/10.1007/BF02579329
http://dx.doi.org/10.1115/1.4005069
http://dx.doi.org/10.1115/DETC2011-47992
http://dx.doi.org/10.1371/journal.pone.0001049
http://dx.doi.org/10.1038/35019019
http://dx.doi.org/10.1115/1.4004973
http://dx.doi.org/10.1057/palgrave.jit.2000030
http://dx.doi.org/10.1073/pnas.1017298108
http://dx.doi.org/10.1073/pnas.1017298108

	s1
	s2
	s2A
	s2B
	cor1
	f1
	l
	s2C
	s3
	s4
	s4A
	s4B
	s4B1
	s4B2
	E1
	E2
	F1
	s4B3
	E3
	E4
	F2
	F3
	E5
	s4B4
	E6
	E7
	s4C
	E8
	E9
	s5
	F4
	s5A
	s5A1
	F5
	s5B
	F6
	F7
	s6
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33
	B34
	B35
	B36
	B37
	B38
	B39
	B40
	B41

