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We studied the in vitro and in vivo efficacies of the investigational drug isavuconazole against mucormycosis due to Rhizopus
delemar. Isavuconazole was effective, with MIC and minimal fungicidal concentration (MFC) values ranging between 0.125 and
1.00 �g/ml. A high dose of isavuconazole prolonged the survival time and lowered the tissue fungal burden of cyclophospha-
mide/cortisone acetate-treated mice infected with R. delemar and was as effective as a high-dose liposomal amphotericin B treat-
ment. These results support the further development of this azole against mucormycosis.

Mucormycoses are among the most common infections af-
flicting immunocompromised hosts and are occurring at an

increasing frequency (1–3). The risk factors for mucormycosis
include compromised immune status due to hematologic malig-
nancies, neutropenia, steroid treatment, hyperglycemia, ketoaci-
dosis and other forms of acidosis, deferoxamine therapy, and
trauma (4–6). Despite disfiguring surgical debridement and ad-
junctive antifungal therapy, the overall mortality rate of mucor-
mycosis remains approximately 50% and can approach 100% in
hematogenously disseminated and central nervous system disease
and in patients with prolonged neutropenia (2, 7–11). Clearly,
new strategies for preventing and treating mucormycosis are ur-
gently needed.

The new investigational drug isavuconazole (BAL4815) (ISA)
is the active compound of the water-soluble prodrug isavucona-
zonium sulfate (BAL8557). Following administration, the prod-
rug isavuconazonium sulfate is rapidly converted by esterases in
plasma to isavuconazole (isavuconazole is the term used here to
describe the medicinal product). ISA shows broad-spectrum ac-
tivity against fungi and is currently in late-stage clinical develop-
ment for invasive fungal diseases, including invasive mucormyco-
sis and invasive aspergillosis. For example, ISA has activity against
Aspergillus spp. (12–15) (including those resistant to itraconazole,
caspofungin, and amphotericin B [13]), Candida spp. (16, 17)
(including isolates resistant to fluconazole [18]), and Cryptococcus
spp. (19, 20). Recent studies demonstrated promising in vitro ac-
tivity of ISA against Mucorales (12, 21, 22) fungi that cause mu-
cormycosis. Therefore, the activity of ISA was compared to that of
liposomal amphotericin B (LAmB) in a murine model of mucor-
mycosis. Since Rhizopus species are the most common Mucorales
isolates obtained from patients with mucormycosis (8, 23, 24),
these studies focused on Rhizopus delemar.

The MIC100 (defined as the lowest concentration that causes
100% growth inhibition relative to the drug-free growth control)
values of ISA (Astellas Pharma Global Development, Inc., North-
brook, IL) were determined against four clinical isolates of R. dele-
mar (fumaric-malic acid producers) or four clinical isolates of
Rhizopus oryzae (lactic acid producers) (25) using the Clinical
Laboratory and Standards Institute (CLSI) M38-A2 method (26).
The minimal fungicidal concentrations (MFCs) were also deter-
mined by spotting samples from all of the 96-well plates on potato

dextrose agar (PDA) plates supplemented with 0.1% Triton X-100
and incubating them at 37°C for 2 days. The MFC was defined as
the lowest concentration of the drug at which the organism failed
to grow on the PDA plate. Against R. delemar isolates, ISA had
median MIC100 and MFC values of 0.188 �g/ml (25th and 75th
quartiles, 0.0625 and 0.0625 �g/ml). All tested R. oryzae isolates
had ISA MIC100 and MFC values of 0.125 �g/ml. These studies
showed that isavuconazole is fungicidal, since the MFC values
were equivalent to the MIC values.

Next, the efficacy of the prodrug isavuconazonium sulfate was
evaluated in a neutropenic mouse model of intratracheal infection
(27) caused by R. delemar 99-880 (a brain isolate with ISA MIC100

and MFC values of 0.25 �g/ml). Male ICR mice (23 to 25 g; Tac-
onic Farms, Germantown, NY) were used in this study. They
were given irradiated feed and sterile water containing 50 �g/ml
Baytril (enrofloxacin; Bayer) ad libitum (to control for bacterial
infection). Neutropenia was induced by cyclophosphamide (200
mg/kg of body weight intraperitoneally [i.p.]) and cortisone ace-
tate (500 mg/kg subcutaneously) on days �2 and 3 relative to
infection. This treatment regimen results in �10 days of leukope-
nia with a total white blood cell count dropping from �13,0000/
cm3 to almost no detectable leukocytes as determined by the Uno-
pette system (Becton-Dickinson and Co., Franklin Lakes, NJ).
After sedation with ketamine and xylazine, the mice were intra-
tracheally infected with 2.5 � 105 spores of R. delemar 99-880 (27).
Treatment with the prodrug isavuconazonium sulfate (80, 110,
and 215 mg/kg, prepared fresh daily in irrigation water and given
orally three times daily [t.i.d.]) started 8 h postinfection and con-
tinued through day 4. The higher dose of 215 mg/kg t.i.d. of isa-
vuconazonium sulfate demonstrated enhanced efficacy over that
of placebo treatment of mice (70% survival in the isavuconazo-
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nium sulfate-treated mice versus 10% survival for placebo mice
[treated orally with irrigation water] after 21 days) (Fig. 1).

Since a high dose of ISA (215 mg/kg t.i.d.) demonstrated effi-
cacy against R. delemar infection, the efficacy of this dose was
compared against that of a high dose of LAmB (AmBisome; Gilead
Sciences Inc., Forest City, CA) in treating mucormycosis, which is
considered the standard therapy for mucormycosis in this model
(28). LAmB was dissolved initially in sterile irrigation water and
diluted in 5% dextrose water (D5W) according to the manufac-
turer’s instructions. Neutropenic mice were infected intratrache-
ally as described above. Eight hours later, treatment with isavu-
conazonium sulfate (215 mg/kg t.i.d., given orally) or LAmB (15
mg/kg, given once daily through tail vein injection) started and
continued through day 4. Neutropenic mice infected intratrache-
ally and administered a comparable volume of vehicle (i.e., D5W)
served as placebo controls. The primary endpoint for efficacy was
the time to moribundity of infected mice. ISA was as effective as
LAmB in treating neutropenic mice for mucormycosis. The twenty-
one-day survival rates for the prodrug isavuconazonium sulfate-,

LAmB-, and placebo-treated mice were 65%, 40%, and 15%, respec-
tively (Fig. 2A).

Because ISA increased the survival rate of neutropenic mice
infected with R. delemar, the effect of drug treatment on the tissue
fungal burden in target organs was determined. The mice were
infected as described above and treated until day 3 relative to
infection when the mice were sacrificed and their lungs and brains
harvested and tested for tissue fungal burden (representing pri-
mary and secondary target organs [27]) by quantitative PCR
(qPCR) (29). Treatment of the mice with the prodrug resulted in
an approximately 1-log decrease in lung and brain fungal burdens
compared to those of placebo-treated controls. This reduction in
tissue fungal burden was comparable to that elicited by LAmB
treatment (Fig. 2B).

A recent study demonstrated that oral-gastric doses of the pro-
drug isavuconazonium sulfate at 10, 40, 160, and 640 mg/kg pro-
duced serum peak levels of 0.51 to 25.4 �g/ml ISA and an elimi-
nation half-life of 1 to 5 h (30). The short half-life of this drug is in
contrast to the long half-life of �50 h seen in humans following a
single-dose administration (31). Therefore, the prodrug was ad-
ministered three times daily over a series of doses that would pro-
vide a range of exposures, some of which should result in serum
peak levels of ISA above the registered MIC and MFC values of
0.125 to 1.0 �g/ml. Indeed, the higher dose of 215 mg/kg (prodrug
isavuconazonium sulfate) given three times daily, which would
have resulted in serum peak levels of �12.5 �g/ml ISA and a
half-life of �3.1 h (30), demonstrated enhanced protection of
mice from mucormycosis. This protection was equivalent to the
efficacy demonstrated by a high dose of LAmB.

In addition to the activity in the cyclophosphamide/cortisone
acetate-treated mice, ISA activity has been demonstrated in ani-
mal models of other fungal infections, including invasive aspergil-
losis and disseminated candidiasis (14, 32, 33). Finally, the avail-
ability of ISA in oral and intravenous formulations provides a
clear advantage for this azole for use in different medical scenar-
ios. However, given the frequency of this infection in patients with
diabetes, future studies of ISA efficacy should also be carried out in
a diabetic murine mucormycosis model (8, 9). In summary, given
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FIG 1 Isavuconazole enhanced survival of neutropenic mice with mucormy-
cosis pneumonia. Mice (n � 10 per arm) were infected intratracheally with
2.5 � 105 spores of R. delemar 99-880 (inhaled inoculum was 4.1 � 103

spores). Isavuconazonium sulfate treatment started 8 h postinfection and con-
tinued three times daily at 80, 110, or 215 mg/kg by oral gavage through day 4
postinfection. Placebo mice were infected and treated with sterile irrigation
water. *, P � 0.05 compared to placebo-treated mice by log rank test.
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FIG 2 Isavuconazole is as effective as high-dose LAmB in improving survival (A) and reducing fungal burden (B) of neutropenic mice from mucormycosis. Mice
(n � 10 per arms for both A and B) were infected intratracheally with 2.5 � 105 spores of R. delemar 99-880 (average inhaled inoculum was 1.3 � 103 cells).
Isavuconazonium sulfate (215 mg/kg t.i.d., by oral gavage) or LAmB (15 mg/kg every day by i.v. injection) treatment started 8 h postinfection and continued
through day 4 postinfection (A) and day 3 postinfection (B). Placebo mice were infected and treated with 5% dextrose water. (A) Survival of mice through day
21. *, P � 0.025 or 0.004 for LAmB or ISA compared to placebo by log rank test, respectively. (B) Fungal burden was measured by qPCR with a conidial standard
curve (29, 34). All qPCR results are expressed as log10 spore equivalents per gram of tissue. *, P � 0.05 compared to placebo by Wilcoxon rank sum test.
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the in vitro and in vivo evidence of the activity of ISA against
Rhizopus, these results warrant further development of this azole
for the treatment of mucormycosis.
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