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HES6 drives a critical AR transcriptional
programme to induce castration-resistant prostate
cancer through activation of an E2F1-mediated
cell cycle network
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Abstract

Castrate-resistant prostate cancer (CRPC) is poorly characterized
and heterogeneous and while the androgen receptor (AR) is of
singular importance, other factors such as c-Myc and the E2F
family also play a role in later stage disease. HES6 is a transcription
co-factor associated with stem cell characteristics in neural tissue.
Here we show that HES6 is up-regulated in aggressive human
prostate cancer and drives castration-resistant tumour growth in
the absence of ligand binding by enhancing the transcriptional
activity of the AR, which is preferentially directed to a regulatory
network enriched for transcription factors such as E2F1. In the
clinical setting, we have uncovered a HES6-associated signature
that predicts poor outcome in prostate cancer, which can be phar-
macologically targeted by inhibition of PLK1 with restoration of
sensitivity to castration. We have therefore shown for the first
time the critical role of HES6 in the development of CRPC and
identified its potential in patient-specific therapeutic strategies.
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Introduction

Prostate cancer is the most common non-cutaneous malignancy in

men in western countries (CRUK, 2010). Death results from the

development of castrate-resistant prostate cancer (CRPC). Several

mechanisms have been proposed to explain how this aggressive

phase of the disease develops. Most depend on continued androgen

receptor (AR) signalling in the context of enhanced secondary

pathways, while others are independent of conventional AR activity

(Pienta & Smith, 2005; Lamb et al, 2014). This heterogeneity

explains why, although virtually all primary locally advanced pros-

tate cancer can be treated effectively with androgen deprivation

therapy (ADT), CRPC remains difficult to treat, and those therapies

that have been developed are only effective for a limited duration in

a limited set of patients (Yap et al, 2011). It is therefore critical that
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we understand more about the driving processes in CRPC, so that

patient-specific mechanisms can be targeted.

Various oncogenic factors have been implicated in the natural

history of prostate cancer. The AR has generally been accepted as

the pre-eminent driving protein in prostate cancer and, even in

hormone resistant prostate cancer, it is still implicated in several

escape mechanisms based on a non-dihydrotestosterone-bound-AR

(Pienta & Smith, 2005; Lamb et al, 2014). c-Myc has been found

to be amplified in more than half of refractory prostate cancers

(Bernard et al, 2003; Clegg et al, 2011) and has been identified as

one of the key players in cell potency (Takahashi et al, 2007), but

the factors which mediate its downstream effects in late-stage

prostate cancer are still not well understood. Deregulation of E2F

activity and early cell cycle progression has also been implicated in

aggressive prostate cancer (Sharma et al, 2010), but the precise role

of E2Fs in cancer is dependent on a balanced interplay with other

regulatory factors and these interactions in prostate cancer need to

be elucidated.

The study of transcription factors in cell pluripotency has shown

that a small number of master regulator transcription factors can

radically change cell phenotype (Takahashi et al, 2007). HES6 has

been identified as a regulator of stem cell fate, specifically in neuro-

genesis (Kageyama et al, 2005; Murai et al, 2011), myogenesis

(Malone et al, 2011) and gastrulation (Murai et al, 2007, 2011). In

addition, it has been described as a marker of the neuroendocrine

phenotype in prostate cancer (Vias et al, 2008) and in metastatic

breast cancer (Hartman et al, 2009). Most recently, work demon-

strating the cooperation of HIF-1a and FoxA2 in metastatic neuro-

endocrine prostate cancer has identified HES6 as an important factor

in the development of these tumours (Qi et al, 2010).

Here, we evaluate the role of HES6 in CRPC and propose a mech-

anism of action in which HES6 induces persistent AR signalling and

enhanced E2F1-mediated cell cycle activity. In the clinical setting,

we describe a HES6-associated gene signature that correlates with

poor outcome and outline a possible therapeutic strategy to target

this programme of resistance.

Results

HES6 is regulated by AR and c-Myc

Using the androgen-dependent LNCaP cell line and chromatin

immunoprecipitation sequencing (ChIPseq), we showed that two

potent oncogenes in prostate cancer, the AR (Massie et al, 2011)

and c-Myc, bind upstream of the HES6 coding sequence (Supple-

mentary Fig S1A) to positively regulate levels of HES6 mRNA

(Fig 1A, Supplementary Fig S1B and C) and confirmed that overex-

pression of c-Myc overcomes growth inhibition by bicalutamide

(Bernard et al, 2003) (Supplementary Fig S1D), an effect that can be

reversed by knock-down of HES6 (Supplementary Fig S1E).

HES6 initiates androgen-independent growth

HES6 levels are found to be raised in several independent clinical

datasets comparing aggressive disease (metastases or CRPC) with

primary tumour and benign disease (Fig 1B). Using the bicaluta-

mide/castration-resistant derivatives LNCaP-Bic (Hobisch et al,

2006), C4-2 and C4-2b cells (Thalmann et al, 1994) as models of

CRPC, we found evidence of significant increases in HES6 transcript

levels in the C4-2 derivatives compared to LNCaP controls (Supple-

mentary Fig S2A). To test the functional relevance of HES6 in the

transition to CRPC, we stably overexpressed HA-tagged HES6 in

androgen-sensitive prostate cancer LNCaP and DuCaP cells, which

induced reduced sensitivity to bicalutamide (Supplementary Fig

S2B–D). We then proceeded to surgical castration using luciferase-

labelled LNCaP cells (LNCaP-LM) subcutaneously injected into the

flanks of NOD-SCID gamma (NSG) mice. Graft size was monitored

by bioluminescent imaging over 3 months. Overexpression of HES6

was sufficient to maintain normal tumour growth (Fig 1C) after

castration. Control grafts in castrated conditions were small and

pale, while the comparable HES6 grafts were large and vascular

(Fig 1D). Knock-down of HES6 by lentiviral shRNA in C4-2b cells

(Supplementary Fig S2E) led to significant attenuation of tumour

growth in both full and castrated conditions (Fig 1E and Supplemen-

tary Fig S2F). These data show that HES6 is sufficient to produce a

castration-resistant phenotype.

Nuclear AR and cell proliferation are maintained in HES6 grafts
in castrate conditions

We next assessed intensity of nuclear AR and cell proliferation by

immunohistochemical analysis of the LNCaP grafts. Normally, the

AR shuttles in and out of the nucleus according to the extent of

ligand activation, and following removal of testosterone, the AR

localizes to the cytoplasm (Azzi et al, 2006; Cutress et al, 2008). We

demonstrated cytoplasmic relocation of the AR in the native mouse

prostate (Supplementary Fig S3A) and in control grafts following

castration. By contrast, the AR was predominantly nuclear in

castrated HES6 xenografts (Supplementary Fig S3A, quantified

in Supplementary Fig S3B), suggesting a role for nuclear AR in

HES6-driven castration-resistant grafts. Staining using the prolifera-

tion marker Ki67 showed uniform increases in the castrated

HES6-overexpressing tissue (Supplementary Fig S3A, quantified in

Supplementary Fig S3C).

HES6 rescues AR activity at a subset of Androgen Receptor
Binding Sites (ARBS) which is also enhanced in CRPC

In order to explain our discovery of nuclear AR with increased levels

of HES6 in castration, we measured AR binding to chromatin by

ChIPseq. We found during bicalutamide treatment that HES6 was

able to maintain many AR binding sites that were lost in the EV

control cells. In such inhibitory conditions, we were able to divide

AR binding sites (ARBS) into three distinct classes: first, those peaks

that were lost during AR inhibition in both EV and HES6 cells were

defined as “lost”; second, those that disappeared in EV during bica-

lutamide treatment but were clearly present with HES6 overexpres-

sion were defined as “rescued”; third, those that were never totally

lost in the EV control condition with bicalutamide but were clearly

enhanced by the presence of high HES6 were defined as “enhanced”

(Fig 2A, Supplementary Table S1). Of these 3 groups, we observed

the strongest difference in average peak height between HES6 and

EV in those defined as “rescued” (Fig 2B). This included well-

known AR responsive genes such as KLK2 and KLK3 (Fig 2C,

Supplementary Fig S4A). We made comparison with ChIPseq data
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Figure 1. HES6 induces castration-resistant growth.

A Changes in HES6 mRNA levels on alteration of AR and c-Myc activity in LNCaP cells, shown by quantitative PCR. Cells were starved in Charcoal Stripped Foetal Bovine
Serum (CS) for 72 h and treated with 10 nM R1881 (AR agonist) for 16 h to check the AR regulation of HES6. Cells transfected with a pcDNA4-Myc vector were grown
in Full Serum (FS) conditions; n = 3, error bars represent mean � s.e.m.; *P = 0.016, #P = 6.9E-6 by t-test.

B Box and whisker dot plot showing HES6 expression is increased in metastatic disease (Mets) and castrate-resistant prostate cancer (CRPC) in several public datasets
(Tomlins et al, 2005; Varambally et al, 2005; Taylor et al, 2010; Grasso et al, 2012). *P = 8.8E-6, #P = 7.9E-5 by limma with Benjamini–Hochberg adjustment for
multiple testing for comparison of Mets to Benign.

C Xenografts of HES6-overexpressing LNCaP cells are resistant to castration. LNCaP cells expressing luciferase/YFP (LNCaP-LM) and transduced to overexpress HES6
were grafted subcutaneously (2 × 106 cells) in NSG mice, and growth was monitored by bioluminescent imaging for 11 weeks. Host mice were castrated at 3 weeks
(grafts approximately 100 mm3); n = 5; error bars represent mean � s.e.m; P = 0.0002 by t-test at week 11 for comparison of EV Castr to HES6 Castr. EV = Empty
vector. Full = testes present. Castr = castration.

D Visual appearance of harvested grafts and mean weights. One xenograft of each group is shown as an illustration. Evidence of significant difference in mean graft
weight in castrated conditions (0.017 � 0.009 g versus 0.503 � 0.158 g). Scale bars = 5 mm; n = 5; error bars represent mean � s.e.m.; *P = 0.0001 by t-test.

E Androgen-insensitive C4-2b-LM xenografts showed growth attenuation with constitutive lentiviral knock-down of HES6 (shHES6) compared to non-targeting controls
(shNT). n = 5; error bars represent mean � s.e.m.; *P = 0.004 by t-test at week 7. See also Supplementary Figs S1–S3.

Source data are available online for this figure.
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Figure 2. HES6 modulates AR binding in bicalutamide and castration resistance with a shift in AR regulome.

A Heatmap of normalized signal at peak summits in a window � 1 kb. Binding site classes were established by grouping highly reproducible peak calls into those that
were still present with empty vector (EV) in 1 lM bicalutamide (Bic) but “enhanced” by HES6, “rescued” by HES6 or “lost” in both conditions. Average binding site
location was established from mean location of peak summits across biological replicates and intensity of signal calculated as mean of the RPM normalized read
counts. All conditions were in biological quadruplicate as shown with the exception of EV in bicalutamide which was in triplicate. Veh = vehicle (ETOH).

B The mean normalized AR signal as profiles across binding sites seen in (A). This illustrates the global differences between conditions within the different AR binding
site classes.

C Example of binding events at KLK2 and KLK3 (PSA) where binding is markedly reduced with bicalutamide but rescued with overexpression of HES6.
D Heatmap showing binding site co-occurrence for “lost,” “rescued” and “enhanced” groups compared to global E2F1 binding sites as well as Encode Consortium

ChIPseq sets for well-known regulatory transcription factors. Comparisons were also made with our human tissue AR ChIPseq (Sharma et al, 2013). Co-occurrence
was calculated as the total base-pair overlap of occupancy between the test and query binding site sets normalized to the total base-pair occupancy of the query set.
To account for the differing lengths of the test sets, co-occurrence scores were normalized to Z-scores within each test set . Tx = treatment, HNPC = hormone naïve
prostate cancer.

E Genomic distribution analysis of “rescued” versus “lost” ARBS compared to whole genome shows increased AR binding in proximal promoters.
F Selected AR binding sites were validated by ChIP in the castrate-resistant C4-2b derivative of LNCaP cells. Knock-down of HES6 reduced AR binding enrichment at all

selected sites compared to control sites with no ChIPseq evidence of AR binding. n = 3; CAMKK2 P = 0.021, SPRY1 P = 0.026, RFC1 P = 0.056, KLK3 P = 0.041, GDF15
P = 0.008, NKX3-1 P = 0.006, TMPRSS2 P = 0.017, KLK2 P = 0.023, HIF1A P = 0.031, KLK15 P = 0.009, TLE4 P = 0.026, HES6 P = 0.018, TP63 P = 0.01, FKBP5
P = 0.006 by t-test.

G HES6-overexpressing LNCaP cells were transduced with a pSicoR lentivirus to stably knock-down AR (40% knock-down). Constitutive lentiviral knock-down of the AR
limits HES6-overexpressing LNCaP growth and abrogates the HES6-driven bicalutamide-resistant phenotype. Vehicle (Veh) is ETOH and bicalutamide (Bic) 1 lM; n = 3;
error bars represent mean � s.e.m.; *P = 0.023 by t-test for comparison of shAR Bic 1 lM to shNT Bic 1 lM. See also Supplementary Fig S4 and Tables S1 and S2.
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for other transcription factors including E2F1, c-Myc, FOXA1 and

STAT3 (Fig 2D, accessed through Encode Consortium), and found a

strong enrichment in the “rescued” group, raising the possibility of

concerted activity between the AR and these factors. Furthermore,

analysis of previous data assessing ARBS in human tissue (Sharma

et al, 2013) revealed a similar pattern of transcription factor overlap

in CRPC tissue, as well as untreated and potentially aggressive

primary prostate cancer (Fig 2D). Interrogation of the ARBS in an

unbiased manner with MEME (Machanick & Bailey, 2011) identified

similar motif enrichment (Supplementary Fig S4B and Table S2).

Analysis of ARBS genomic distribution uncovered a twofold

increase in ARBS located 500–2,000 bp upstream of transcriptional

start sites (TSS) in the “rescued” set, consistent with a small shift of

AR binding towards proximal promoters (Fig 2E).

We confirmed that this persistent AR signalling was HES6-

dependent by demonstrating evidence of reduced AR binding at

several selected ARBS with stable knock-down of HES6 in C4-2b

cells (Fig 2F). Finally, we verified that HES6-driven androgen insen-

sitivity is still AR-dependent by knocking down the AR in HES6-

overexpressing cells, with reversal of the phenotype (Fig 2G,

Supplementary Fig S4C). Collectively this suggests modulation of

the AR regulome by HES6.

HES6, AR and E2F1 co-operate in driving a cell cycle-related
tumour-enhancing network

We used expression microarrays to identify differentially expressed

genes (DEGs) associated with HES6 overexpression in the castration-

resistant xenografts (Fig 3A, Supplementary Fig S5) and Ingenuity

Pathway Analysis (IPA, Ingenuity® Systems, www.ingenuity.com)

to infer the functional consequences (Supplementary Fig S6A).

Surprisingly, we did not find any evidence for a neuroendocrine

phenotype (Supplementary Fig S5) but rather a predominance for

cell cycle pathways. A combined cell cycle network from the input

gene list revealed several dominant clusters including E2Fs, CDKs,

Cyclins and Aurora kinases (AURK) (Supplementary Fig S6B).

In order to identify potential transcriptional intermediaries, we

assessed enriched binding motifs by in silico analysis (Supplemen-

tary Fig S6C and Table S3) of the DEGs from castrated xenografts as

well as HES6-overexpressing LNCaP cells. This identified strong

enrichment for E2F family binding sites and specifically for

E2F1 (Fig 3B). Furthermore, we found a strong overlap (44%)

between DEGs in castrated xenografts and E2F1 transcriptional

targets identified by ChIP-seq in LNCaP cells (Fig 3C). To identify

whether the presence of HES6 has a specific effect on E2F function,

we performed ChIPseq for E2F1 (n = 4) in LNCaP cells and found

that HES6 increased average E2F1 binding activity in the presence of

bicalutamide (Fig 3D). Given our previous findings suggesting a shift

in AR binding towards promoter regions when “rescued” by HES6 in

bicalutamide, we investigated whether AR and E2F1 could be inter-

acting and whether HES6 was able to modulate such interaction. We

found that the ARBS belonging to the “enhanced” and “rescued”

groups showed a clear increase in AR occupancy at E2F1 binding

sites (Fig 3E). Enrichment of E2F1 binding in cells overexpressing

HES6 was validated at promoters of selected E2F1 transcriptional

targets (Fig 3F and Supplementary Fig S7) and was found not to be a

consequence of increased E2F1 protein levels (Fig 3F and Supple-

mentary Fig S5). We reasoned that HES6 may be enhancing E2F

activity and investigated potential interactions between HES6 and

E2F1. Given the persistence of nuclear AR with HES6, we also evalu-

ated interactions with the AR. We demonstrated physical interaction

between HES6 and E2F1, as well as between the AR and E2F1

(Fig 3G). These findings indicate that HES6 may enhance concerted

E2F1 and AR activity in androgen-deprived conditions.

E2F1 is a final common regulator for G1/S cell cycle transition

(Cam & Dynlacht, 2003). We therefore assessed by FACS analysis

the effect of overexpressing HES6 on cell cycle distribution in LNCaP

cells and observed an increase in the fraction of cells in both S and

G2/M phases (Supplementary Fig S8A). To test whether this was

due to more rapid initiation of cell cycle activity, we observed cell

cycle fractions after synchronization (Supplementary Fig S8B-D)

and found more rapid cell cycle re-entry in HES6-overexpressing

cells in both normal conditions and bicalutamide.

HES6 has a corresponding signature associated with aggressive
clinical disease

To assess the clinical relevance of these findings, we used publicly

available data (Varambally et al, 2005) to make comparisons

between benign, primary and metastatic prostate cancer. We found

that the cell cycle genes associated with HES6 expression (from

Fig 3A) were strongly represented in the metastatic group (Supple-

mentary Fig S9). We interrogated these data to identify transcripts

most strongly correlated with HES6 and selected the top 1.5%

according to a cut-off correlation coefficient of 0.9 (Supplementary

Fig S10A). From these 788 genes, we selected those that were also

present in the castrated HES6-overexpressing LNCaP xenograft DEG

list. The combination of these two sets of data (one from human

samples, one from xenografts overexpressing HES6) generated a

“HES6-associated signature” of 222 transcripts (Supplementary

Table S4). In order to validate this signature, we studied three addi-

tional publicly available datasets (Tomlins et al, 2005; Taylor et al,

2010; Grasso et al, 2012) and a published cell cycle progression

signature (CCP) in CRPC (Cuzick et al, 2011). Allowing for differ-

ences in array coverage, we found that genes on this HES6-associ-

ated signature list were consistently enriched in DEG lists comparing

metastatic or castrate-resistant tumours with benign or normal tissue

(Supplementary Fig S10B and C). These HES6-correlated genes effec-

tively clustered men into two groups following radical prostatectomy

(Taylor et al, 2010) (Fig 4A). Kaplan–Meier analysis at a mean

follow-up of 4.5 years (range 2–149 months) showed clear partition-

ing for men with low versus high HES6 (Fig 4B). Use of the n = 222

HES6-associated signature further enhanced clustering and was even

more effective in differentiating those patients destined for early

relapse (Fig 4C). This signature is more powerful in this capacity

than PSA and Gleason score (Fig 4D and Supplementary Fig S11). In

the absence of good HES6 antibodies that are reliable for immunohis-

tochemistry (Hartman et al, 2009), we checked protein expression of

the HES6-associated cell cycle regulator polo-like kinase 1 (PLK1) in

representative samples of benign, primary prostate cancer and CRPC

tissue (Fig 4E), identifying strong expression in CRPC tissue only.

We quantitatively assessed PLK1 expression in a large novel human

tissue microarray incorporating 61 men, some of whom had andro-

gen naı̈ve prostate cancer while others had hormone-relapsed

disease. We found clear evidence for an increase in PLK1 expression

in the prostates of men with CRPC (Fig 4F).
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Figure 3. HES6 enhances a cell cycle network through concerted activity with E2F1 and AR.

A Selection of differentially expressed genes (DEGs) in castrated xenografts of HES6-overexpressing LNCaP cells (orange) versus castrated EV controls (green); n = 5.
B GSEA motif analysis revealed enrichment of E2F1 in DEGs associated with HES6-overexpressing cells. Xenograft GSEA-NES-value = 2.25 and cells in vitro GSEA-NES-

value = 2.09.
C Overlap of the DEGs from castrated HES6-overexpressing LNCaP xenografts with E2F1 targets. Nearest gene (� 25 kb) overlap with DEGs from castrated (Castr) HES6-

overexpressing LNCaP xenografts is shown; hypergeometric P-value = 2.53E-46.
D Average enrichment of E2F1 at target sites is increased with HES6 compared to EV in bicalutamide (Bic) but not vehicle (Veh, ETOH). All ChIPseqs n = 4.
E AR ChIPseq occupancy at E2F1 binding sites is increased in HES6 “enhanced” and “rescued” peaks compared to “lost” (see Fig 2).
F Heatmap showing E2F1 ChIP. HES6 increased binding of E2F1 to differentially expressed genes in the castrated xenografts of HES6-overexpressing LNCaP cells. Each

ChIP n = 3; Myc P = 0.052, AURKB P = 0.057, CDC2 P = 0.12, AURKA P = 0.087, UBE2C P = 0.165, CENPM P = 0.049, CDK4 P = 0.025, BUB1 P = 0.068, CDC20
P = 0.087 by t-test.

G HES6 and AR co-immunoprecipitate with E2F1. IPs for AR, E2F1, HES6 and control IgG were performed using HES6HA-overexpressing LNCaP cell extracts and blotted
for HA, E2F1 and AR. n = 5. One representative experiment is shown for illustration. SN = supernatant. IP = immunoprecipitate. Different time exposures of the same
membrane are shown for each blot section to better visualize the whole experiment and are indicated in the lower-left corner (‘= minutes and “= seconds). Arrows
indicate co-IP of HES6 and E2F1. See also Supplementary Figs S5–S8 and Table S3.

Source data are available online for this figure.
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Selective pharmacological inhibition of this mechanism of
androgen independence

Finally, we investigated whether inhibition of HES6-driven cell cycle

regulating genes could alter growth in these castration-resistant

HES6-overexpressing cells. We found that these cells, though resis-

tant to bicalutamide, were responsive to inhibition with the PLK1

inhibitor GSK461364A (Gilmartin et al, 2009) with a greater than

50% reduction in cell proliferation (Supplementary Fig S12A).

Indeed, concomitant application of this inhibitor with bicalutamide

further reduced the rate of cell growth suggesting a synergistic effect

to rescue the androgen-dependent phenotype. These findings were

recapitulated in vivo with intraperitoneal injection of drug dramati-

cally slowing castrate-resistant growth of LNCaP-LM-HES6

xenografts (Fig 4G). PLK1 inhibition also reduced growth of

castrate-resistant AR-positive cells (C4-2b) and AR-negative cells

(PC3) (Supplementary Fig S12B and C) with greater effects on PC3

cells on isogenic introduction of the AR (Nelius et al, 2007). This

suggests that PLK1 inhibition reverses HES6-driven castration resis-

tance and raises the possibility of synergy with AR activity.

Discussion

Clinical progression to castrate-resistant prostate cancer (CRPC)

remains a major clinical problem and is the cause of death for most

men dying of prostate cancer. Half of men on LHRH monotherapy

will progress within 2 years of treatment (Hellerstedt & Pienta,

2002), and survival after the onset of metastatic CRPC does not

usually extend beyond 6–12 months (Petrylak et al, 2004). Recent

developments in second-/third-line prostate cancer therapeutics

with wide-ranging modes of action have reinforced the concept that

castrate-resistant prostate cancer is a heterogeneous disease with

multiple mechanisms of resistance (de Bono et al, 2010, 2011; Kantoff

et al, 2010; Nilsson et al, 2011; Scher et al, 2012; Ryan et al, 2013).

It is therefore important that cancer researchers delineate fully

these different mechanisms. Our study outlines a mechanism of

resistance centred on a single transcription co-factor and shows how

hypothesis-driven investigation of cell function, combined with

large-scale genomic correlation, can deliver a candidate oncogenic

factor in a meaningful biological context with the potential to

uncover new therapeutic avenues that could improve the treatment

of men who are no longer responsive to current drugs.

We have identified HES6 as a transcription co-factor that is able

to alter prostate cancer cell phenotype so fundamentally that these

cells are able to grow in the absence of testosterone. HES6 is better

known for its functions in the nervous system, where it is thought

to promote neuronal differentiation (Kageyama et al, 2005; Murai

et al, 2011), but its role in the prostate cell is not yet well under-

stood. Here we have seen that HES6, a driver of androgen indepen-

dence, is itself regulated by the AR. This suggests that the AR

regulome includes factors that are not necessarily required for

growth in a normal environment, but which can be recruited in an

altered environment where the cell has to rely on other pathways

for survival (Mills, 2014). Recently, it has been shown that ETS

factors such as ERG markedly increase AR binding in mouse pros-

tate tissue and mediate robust transcriptional changes in PTEN null

prostate cancer cells (Chen et al, 2013). In our study, we describe

how, during castration or AR inhibition, HES6 overexpression can

modulate the AR regulome, maintaining chromatin binding at a

proportion of ARBS in the absence of hormone stimulation. We also

show c-Myc to be another regulator of HES6 transcription, and so

have identified two potent oncogenes involved upstream of HES6 in

this mechanism of androgen independence.

Our study identifies E2F1 as an important intermediary in this

process, with E2F-regulated cell cycle factors accounting for a large

proportion of differentially expressed genes in these castrate-

resistant tumours. This cell cycle enhancing framework fits with

other recent studies providing evidence for the centrality of cell

cycle genes in explaining mechanisms of resistance (Sharma et al,

2010) and predicting poor survival in the clinical setting (Cuzick

et al, 2011). We identify a novel interaction between HES6 and

E2F1 and E2F1 and the AR and show enhancement of E2F1 activity

that seems to result from protein complex formation rather than

increased E2F1 expression as previously found in breast cancer

(Hartman et al, 2009). We propose that this mechanism may

account for maintained prostate cancer cell growth through

concerted activity with the AR in HES6-driven androgen insensitiv-

ity, where the AR persistently binds to chromatin at a subset of

binding sites and seems to be essential for the survival of the resis-

tant cells, which cannot withstand AR knock-down. This finding is

consistent with previous work assessing the impact of AR knock-

down on castration-resistant derivatives of this model (Snoek et al,

2009).

Although we did not find evidence for a classical neuroendocrine

phenotype, recent studies have suggested a broader relevance for

neuroendocrine differentiation with powerful transcription factors

such as Myc and cell cycle regulators such as AURKA being impli-

cated in development of therapy resistant tumours bearing neuro-

endocrine characteristics (Beltran et al, 2011).

We used a robust independent model to derive a HES6-associated

gene signature which contained several factors, including UBE2C

(Wang et al, 2009), EZH2 (Xu et al, 2012), and cell cycle progres-

sion factors such as CDC20, TK1, PLK1 and PTTG1 already shown

to be important in CRPC (Cuzick et al, 2011). We have found that

HES6-driven genes are strongly associated with aggressive human

prostate cancers at their presentation, demonstrating that this

phenomenon is not confined to the laboratory setting or to cell lines

alone. Furthermore, in patients undergoing radical treatment, this

signature is associated with early biochemical relapse after surgery.

We have identified PLK1 as a possible target within this gene

signature with an inhibitor giving promising results in rescuing an

androgen-sensitive phenotype and halting CRPC cell growth. When

combined with our data suggesting poor survival in patients who

have raised levels of HES6 and its associated genes, this raises the

possibility that such molecular information could be used to stratify

patients for trials of a PLK1 inhibitor. In future, a more personalized

treatment strategy could be pursued with men who display a high-

risk molecular signature being monitored closely and offered early

adjuvant treatment, while those at lower risk could be managed

more expectantly in order to avoid unnecessary intervention.

Taken together, our results identify the critical role of the HES6

transcription co-factor in maintaining AR activity in CRPC with

concerted enhancement of E2F1 activity to maintain cell growth in

the absence of testosterone and thereby offer a fresh treatment

paradigm in combating this disease.
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Materials and Methods

Detailed methodology and details of antibodies, primers, probes and

oligonucleotides are described in Supplementary Methods.

Plasmids

c-Myc was amplified from an IMAGE clone (Lawrence Livermore

National Laboratory, Livermore, CA) and then inserted at the

BamH1 restriction site of the lentiviral inducible pLVX-Tight-Puro

vector (Clontech, Mountain View, CA) by IN-Fusion Advantage

(Clontech) homologous fusion. Lentiviral pLVX-Teton-Genet vector

(Clontech) was used to stably express the tetracycline-controlled

transactivator. The human HES6 cDNA sequence was amplified and

inserted into the retroviral vector pBabe-puro (Cell Biolabs, San

Diego, CA). For knock-down of HES6, annealed oligonucleotides

were inserted into the lentiviral pSicoR vector (Ventura et al, 2004)

with a puromycin resistance cassette. Knock-down of the AR was

achieved using the lentiviral pSicoR vector with a blasticidin resis-

tance cassette.

Mice

Immunocompromised NSG male mice (Charles River, Wilmington,

MA) were used for tumour implantation. GSK461364A was adminis-

tered intraperitoneally 50 mg/kg at a dose rate of q2dx12. Vehicle

was water with 2% Cremophor-EL and 2% N,N-dimethylacetamide

(DMA) (Sigma-Aldrich, St. Louis, MO). Mice were maintained in the

Cancer Research UK Cambridge Institute Animal Facility. All experi-

ments were performed in accordance with national guidelines and

regulations, and with the approval of the animal care and use

committee at the institution.

Gene expression data

IlluminaBeadChip HumanWG-12 (version 3 and 4; Illumina, San

Diego, CA) were used for the gene expression. Publicly available

prostate cancer data sets were downloaded from GEO (Gene Expres-

sion Omnibus). Biological function and network generation was

performed using Ingenuity Pathway Analysis (IPA, Ingenuity

Systems, Redwood City, CA). For enrichment and motif analysis, we

used GSEA (Mootha et al, 2003; Subramanian et al, 2005).

Human prostate tissue samples

Ethical approval for the use of samples and data collection was

granted by the local Research Ethics Committee under ProMPT

(Prostate Mechanisms for Progression and Treatment) “Diagnosis,

investigation and treatment of prostate disease” (MREC 01/4/061).

Statistics

Data from independent experiments were reported as the

mean � s.e.m. Student’s t-test analysis or Mann–Whitney U-test

were performed to determine statistical significance in replicate

comparisons and Fisher’s exact test for proportionate analyses.

Study approval

All animal procedures were carried out in accordance with Univer-

sity of Cambridge and Cancer Research UK guidelines under UK

Home Office project licenses 80/2301 and 80/2435. For human

material, informed written consent was received from participants

prior to inclusion in the study under ethics committee number

MREC 01/4/061.

Accession numbers

Study data are deposited in NCBI GEO under accession number

GSE36526.

Supplementary information for this article is available online:

http://embomolmed.embopress.org
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Figure 4. HES6 is associated with aggressive clinical disease targetable by PLK1i.

A HES6-associated signature (n = 222, see Supplementary Fig S10 and Table S4 for generation of n = 222 HES6-associated signature) used to cluster 140 prostatectomy
specimens (Taylor et al, 2010). See also Supplementary Fig S9.

B Kaplan–Meier biochemical relapse-free survival analysis by recursive partitioning to high and low expression of HES6. Logrank P-value.
C Kaplan–Meier biochemical relapse-free survival analysis by two cluster partitioning based on expression of HES6-associated signature (n = 222). Logrank P-value.
D Graphical representation of proportional hazard ratios for biochemical relapse (BCR) calculated by Cox regression models used to estimate the association with

relapse of several key variables: age, surgical margin status, PSA, Gleason score and the clusters generated by the HES6-associated signature. Both the signature and
the Gleason score were shown to have an independent prognostic effect (P = 0.0071 and P = 0.0208), but not PSA (P = 0.7384), SMS (P = 0.1467) and age of
diagnosis (P = 0.9180). See also Supplementary Fig S11.

E Protein expression of HES6-responsive gene PLK1 shows strong staining in CRPC alone, compared to primary prostate cancer (CaP) and benign control (benign
prostatic hyperplasia, BPH). Scale bars represent 250 lm. Magnified windows = 100 lm2.

F Quantification of PLK1 expression in a hormone-relapsed tissue microarray (HRTMA). Cores were taken from 45 men with varying degrees of androgen insensitivity
undergoing channel transurethral resection of the prostate (chTURP), including both tumour areas and neighbouring benign regions where available. A number of
independent benign and primary CaP men were also included. Tumour cores were scored by two trained individuals assessing staining intensity and percentage of
positive nuclei. There was increased PLK1 staining in men resistant to androgen therapy; P-value = 2.189E-13 by Fisher’s exact test. LHRH = luteinizing hormone
releasing hormone. CAB = complete androgen blockade.

G LNCaP-LM-HES6HAHA xenografts were sensitized to castration on treatment with selective polo-like kinase 1 (PLK1) inhibitor GSK461364A 50 mg/kg administered i.p.
at a dose rate of q2dx12 versus vehicle. Host mice were castrated at 3 weeks (grafts approximately 100 mm3); n = 8; error bars represent mean � s.e.m.; *P = 0.007
by Mann–Whitney U-test at week 12. See also Supplementary Figs S9–S12 and Table S4.
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Prostate cancer is the most common non-cutaneous cancer in men.
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