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Abstract

Genetic studies of autism over the past decade suggest a complex landscape of multiple genes. In 

the face of this heterogeneity, studies that include large extended pedigrees may offer valuable 

insight, as the relatively few susceptibility genes within single large families may be more easily 

discerned. This genome-wide screen of 70 families includes 20 large extended pedigrees of 6–9 

generations, 6 moderate-sized families of 4–5 generations, and 44 smaller families of 2–3 

generations. The Center for Inherited Disease Research (CIDR) provided genotyping using the 

Illumina Linkage Panel 12, a 6K single nucleotide polymorphism (SNP) platform. Results from 

192 subjects with an Autism Spectrum Disorder (ASD), and 461 of their relatives revealed 

genome-wide significance on chromosome 15q, with three possibly distinct peaks: 15q13.1-q14 

(HLOD=4.09 at 29,459,872bp); 15q14-q21.1 (HLOD=3.59 at 36,837,208bp); and 15q21.1-q22.2 

(HLOD=5.31 at 55,629,733bp). Two of these peaks replicate previous findings. There were 

additional suggestive results on chromosomes 2p25.3-p24.1 (HLOD=1.87), 7q31.31-q32.3 

(HLOD=1.97), and 13q12.11-q12.3 (HLOD=1.93). Affected subjects in families supporting the 

linkage peaks found in this study did not reveal strong evidence for distinct phenotypic subgroups.
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Introduction

Autism Spectrum Disorders (ASDs; MIM 209850) are characterized by impairments in 

social interaction and communication as well as by repetitive and stereotyped behaviors and 

interests. ASDs include Autistic Disorder, Asperger Disorder, and Pervasive Developmental 

Disorder – Not Otherwise Specified (PDD-NOS). Prevalence estimates for ASDs have 

recently been reported to be approximately 1 in every 150 children in the general 

population.1 In families with an autistic child, recurrence rates are estimated to be greater 
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than 15% that an additional offspring will also have autism.2, 3 ASDs present a serious 

public health concern that warrants identification of risk factors with great urgency.

Genetic factors play a substantial role in ASDs (See Review4). However, recent gene 

discovery efforts for ASDs show that genetic heterogeneity is the rule, rather than the 

exception. While known genes now explain as much as 20% of ASD cases, each known 

genetic cause explains only a small fraction of the total.4 In addition, genome-wide linkage 

and association studies done over the past decade have implicated multiple regions. Such 

heterogeneity increases the value of studies that include large extended pedigrees. Many 

autism studies have focused on small families (sibling pairs, or two parents and an affected 

offspring) to try to localize autism predisposition genes. These collections of small families 

may include cases with many different susceptibility loci. Subjects affected with ASDs who 

are members of a large extended family may be more likely to share the same genetic causes 

through their common ancestors. Within such families, autism may be more genetically 

homogeneous.5, 6 Additionally, these family members are more likely to share similar 

environmental exposures, facilitating possible future analyses of gene by environment 

interaction effects.

We recently published a genome-wide, 10K single nucleotide polymorphism (SNP) linkage 

analysis using one of the largest known extended ASD pedigrees, with seven ASD cases 

distributed in a six-generation pedigree, all of whom were descendents of a single founding 

couple.7 In this previous study, we identified three chromosomal regions meeting genome-

wide linkage significance criteria at 3q13.2-13.31, 3q26.31-q27.3, and 20q11.21-q13.12; and 

two additional regions meeting criteria for suggestive significance at 7p14.1-p11.22 and 

9p24.3. All five identified regions replicated previous findings, and for some of the regions, 

we were able to narrow the boundaries. However, our results again illustrated the complex 

nature of ASD as we found genetic heterogeneity even within a single pedigree.

In our current study, we present genome-wide 6K SNP linkage results for 70 multiple 

generation pedigrees, ranging in size from 2 to 9 generations. Ascertainment of these 70 

multi-generation pedigrees represents over 20 years of autism research in Utah.8 These 

pedigrees show modest positive scores in two of our previously identified regions (9p24.3 

and 20q11.21-q13.12), and provide convincing evidence for new ASD susceptibility loci on 

chromosome 15.

Materials and Methods

Subjects

Subjects were members of 70 pedigrees having at least two family members with an ASD. A 

total of 653 subjects were genotyped, 192 of whom were defined as having either strictly 

defined Autistic Disorder or a more broadly defined ASD (Table 1 about here). Table 1 

shows the characteristics of these families, which include 20 large extended pedigrees of 6–

9 generations, 6 moderately-sized families of 4–5 generations, and 44 smaller families of 2–

3 generations. The 20 extended pedigrees have an average of 23 deceased connecting 

relatives in the upper generations who were not genotyped. These families were identified or 

confirmed using the Utah Population Database (UPDB), a computerized genealogy database 
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that contains family history information for over 6.5 million individuals who are, for the 

most part, descendants of the nineteenth century Utah pioneers (www.hci.utah.edu/groups/

ppr/). Previous studies have shown low rates of inbreeding within the UPDB.9, 10 Using the 

UPDB, we were able to identify many distant family relationships between the individuals 

with ASD that were not known to the subjects or their families. These relationships were 

kept confidential. This study has ongoing approval from the University of Utah Institutional 

Review Board.

Phenotyping

Families interested in participating were asked to give questionnaire consent, then to give 

initial information regarding possible exclusion criteria and to complete the Social 

Communication Questionnaire (SCQ).11 The SCQ was developed as a parent report measure 

based on the Autism Diagnostic Interview-Revised.12 A cutoff score of 15 on the SCQ has 

been shown to have good sensitivity (0.85) and specificity (0.75) for identifying ASDs from 

other diagnoses.11, 13 Subjects were contacted for possible inclusion if their SCQ score was 

above 15, or if they had a previous diagnosis of ASD. Subjects were excluded if they 

reported medical conditions known to be associated with autism (tuberous sclerosis, Fragile 

X, neurofibromatosis, congenital rubella, or PKU) or evidence of brain injury. If subjects 

were eligible for the study, they were asked to sign informed consent for DNA and 

additional assessments. When possible, all subjects with a suspected ASD were then given 

both the ADI-R12 and the Autism Diagnostic Observation Schedule-Generic (ADOS-G),14 

and study diagnoses were made using these assessments. For cases where assessments could 

not be obtained, diagnoses were made according to DSM-IV criteria by a psychologist 

trained in autism assessment (JM) using all available information (clinical records, other 

behavioral data, other questionnaire and interview information). Items from the ADI (“age 

of first words” and “age of first phrases”) were used to assess language delay. For parents 

who indicated normal onset, but who could not remember exact ages, values were set to 23 

months for words and 32 months for phrases (acquiring language after these ages is 

considered abnormal on the ADI-R). For parents who indicated delayed onset, but could not 

remember exact ages, values were set to 1-½ standard deviations above the mean. For 

subjects who never acquired language, values were set to 3 standard deviations above the 

mean. Qualitative language delay was coded for any subject whose onset was ≥ 24 months 

for words, or ≥ 33 months for phrases.

IQ was measured in subjects with ASDs using assessments appropriate for age and 

developmental level. The Wechsler Intelligence Scale for Children WISC-III or Wechsler 

Adult Intelligence Scale WAIS-III,15, 16 Differential Abilities Scale (DAS),17 and the 

Mullen Scales of Early Development18 were used. The DAS is appropriate for children ages 

2-1/2 to 18 years with either typical or delayed development, and the General Conceptual 

Ability Score from the DAS correlates well with the Full Scale IQ score of the Wecshler 

(WISC-III and WAIS-III) scales.19, 20 If we were unable to obtain a valid score on a subject 

under 68 months on the DAS, we used the Mullen, a standardized measure of cognitive 

function in young children. For those administered the Mullen, the Early Learning 

Composite t-score (mean=50, sd=10) was converted to a standard score (mean=100, sd=15) 

as a measure of overall IQ.21
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Genotyping

Genotyping services were provided by the Center for Inherited Disease Research (CIDR) 

using the 6K single nucleotide polymorphism (SNP) linkage panel. Originally, 703 samples 

from the pedigrees were sent for genotyping, in addition to 32 blind duplicates of these 

pedigree samples for QC, for a total of 735 samples. QC genotyping also included internal 

controls used by CIDR. The genotyping platform was the Illumina Linkage Panel 12, which 

includes 6090 single nucleotide polymorphism (SNP) markers, with an average genetic 

coverage of 0.65 cM. Illumina BeadStudio software was used to evaluate all genotypes 

using the quantitative GenCall score, which is an indicator of how well a DNA sample 

performed over all released SNP assays. A total of 55 samples were not released due to one 

or more of the following reasons: 1) poorly defined clusters, 2) excessive replicate and/or 

Mendelian errors, 3) more than 50% missing data, or 4) a higher than expected missing data 

rate for markers on the X chromosome, suggesting a possible mosaic 46XX or 46XO 

karaotype. Five of these 55 unreleased samples were blind duplicate pairs and the rest were 

pedigree subjects. There were therefore a total of 680 successfully genotyped subjects, of 

which 653 were pedigree members and 27 were blind duplicates for QC. Three of the 

smaller families were left with only one affected case after this QC step, so there were 

effectively 67 informative families in the sample.

Of the 6090 total SNPs possible, 6044 were released. Loci were dropped if atypical 

clustering patterns were found. A total of 4,309,372 genotypes were released with a missing 

data rate of 0.064% and a Mendelian consistency rate of 99.96%. SNPs with Mendelian 

errors were subsequently zeroed using PedCheck.22 The 27 blind duplicate pairs were 

checked for consistency between pairs using the file cleaned by PedCheck. Within these 

cleaned genotypes, duplicate reproducibility was 100%.

Analyses

We used the genetic map provided by CIDR based on the deCODE genetic map.23 Base pair 

positions were obtained from the March 2006 human reference sequence (hg18) assembly. 

Analysis was done using the multipoint linkage software MCLINK, a Markov chain Monte 

Carlo (MCMC) method that allows for multilocus linkage analysis on large extended 

pedigrees.24 Using blocked Gibbs sampling, MCLINK generates inheritance matrices from 

haplotype chains for the markers being analyzed, and performs an approximate calculation 

of the log-likelihood function linkage statistics. Internally, MCLINK runs the analysis five 

times to ensure a consistent solution. MCLINK has been used previously to identify 

candidate genomic regions for a number of complex diseases.25, 26 Allele frequencies for the 

MCLINK analysis were estimated using all of the observed data.

We performed a nonparametric analysis and a general parametric model-based analysis 

using simple dominant and recessive model parameters that reproduced the reported 

population frequency of ASDs.1 For the recessive analysis, the disease allele frequency was 

set at 0.05 with penetrances for each of the three genotypes of 0.0014, 0.0014, and 0.8. For 

the dominant analysis, the disease allele frequency was set at 0.0025, with penetrances of 

0.0014, 0.8, and 0.8. Only affected cases were assumed to have known phenotypes. While 

nonparametric methods provide a standard analytic approach for complex psychiatric 
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disorders, the parametric approach is well suited to the analysis of a complex trait such as 

autism, particularly when using large extended pedigrees. Parametric models, which provide 

assumptions about the genotype-phenotype relationship, simplify the parameter space and 

allow for more powerful and efficient analyses without leading to false positive results.27–29 

The multipoint heterogeneity lod score (HLOD) allows for unlinked pedigrees and variation 

in the recombination fraction. The HLOD provided by MCLINK is robust to model 

misspecification, and may reflect the true position of linkage peaks more accurately under 

conditions of appreciable heterogeneity (as is the case with ASD).26, 28, 30 HLOD scores 

have been shown to be more powerful than homogeneity LOD scores or model-free methods 

under these conditions.31, 32 The HLOD has been shown to produce scores consistent with 

other published methods.33, 34

Eliminating linkage disequilibrium (LD) between markers in linkage studies has been 

strongly recommended, as false positive results can occur in the presence of LD.35–39 As 

these studies have shown, increases in type I error are most dramatic when LD is high and 

when there are missing genotypes for parents and other connecting relatives. Recommended 

thresholds of acceptable LD vary, but a pair-wise r2 value of 0.05 between SNPs has now 

been supported with extensive simulation studies.37 Linkage peaks achieving at least 

suggestive linkage evidence (HLOD ≥ 1.86) were reanalyzed after screening for LD. SNPs 

within a 1-lod drop of each peak were screened using the PLINK software package,40 which 

recursively removes SNPs within a sliding window. We set a window size of 50 SNPs, 

shifted the window by 5 SNPs at each step, and used a Variance Inflation Factor (VIF) of 

1.5, which is equivalent to a multiple correlation coefficient R2 of 0.33 regressed 

simultaneously over all SNPs in the selected window. This R2 considers not only the 

correlations between SNPs but also between linear combinations of SNPs,40 and 

corresponds in our data to a pair-wise r2 of approximately 0.05. Also, as part of the 

validation procedure, we removed rare SNPs with a minor allele frequency less than 0.10. 

Our screening deleted 63 of the 209 SNPs across all 10 of the re-analyzed regions. Only four 

SNPs within these screened regions had a pair-wise r2 > 0.05; the maximum pair-wise r2 

was 0.165. We also checked for SNPs out of Hardy-Weinberg Equilibrium using PLINK, 

and one additional SNP was deleted for this reason.

Results

Table 2 describes the diagnostic information for affected subjects (Table 2 about here). Of 

the 192 total affected subjects, 166 had data on both the ADI-R and ADOS-G. Of these 166 

subjects with complete information, 122 met criteria for strictly defined Autistic Disorder on 

both assessments, and 44 met criteria for an ASD, having closely missed the cut-off scores 

for strictly defined autism on one or both measures. The other 27 cases were missing one 

(N=22) or both (N=5) assessments due to testing difficulties and/or unavailability of a 

reliable informant. There was a 6.7:1 male/female ratio among the subjects with strictly 

defined autism, which fell to 3.3:1 among the subjects with an ASD. For all subjects 

combined, the male/female ratio was 5.4:1. Subjects with ASDs were older than subjects 

with strictly defined autism at entry into the study (mean age: 15.9 vs. 12.0 years), though 

the difference was not significant (t=1.74, p=0.09). As expected, ADI-R scores were 

significantly higher for the autism group compared to the ASD group (t=9.78, p<0.0001 for 
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social; t=8.30, p<0.0001 for verbal; t=3.86, p=0.0002 for restricted interests/repetitive 

behaviors). The nonverbal total cannot be compared because while 28 autistic subjects were 

nonverbal, only one ASD subject was nonverbal. Means of ADI items indicating delay of 

first words and phrases also differed by diagnostic group in the expected direction (76.23% 

in autism vs. 52.38% in ASD; p=0.003). Quantitative scores on the ADOS are not compared 

because of differences between modules, but more individuals in the autism group were 

administered Modules 1 and 2 compared to the ASD group. IQ was obtained for 172 of the 

192 affected subjects. Of these, 112 (65.12%) had IQ>70. Not surprisingly, significantly 

fewer subjects with strictly defined autism had IQ>70 (57.14%) compared to the percentage 

of ASD subjects with IQ>70 (86.96%; p<0.0001).

Figure 1 shows genome-wide linkage results, and Table 3 gives scores for regions with at 

least suggestive evidence for linkage (HLOD≥ 1.86) (Figure 1 and Table 3 about here).41 

Each of these regions was screened for possible inflation due to LD as described above. 

Significant evidence of linkage (HLOD ≥ 3.3)41 was found on chromosome 15, and initially 

on chromosome 21, though the chromosome 21 peak vanished when SNPs were eliminated 

because of LD. There were 10 closely spaced SNPs within this region that were deleted in 

the LD screen.

The chromosome 15 scores in Table 3 represent three possibly distinct regions, as shown in 

more detail in Figure 2 (Figure 2 about here). Note that the scores between these three 

maxima do not drop substantially. Using a 1-LOD drop to define regions, the approximate 

boundaries of these three regions are: 27,440,000 bp – 32,790,000 bp; 32,790,000 bp – 

43,260,000 bp; and 50,770,000 bp – 56,800,000 bp. Nonparametric evidence was also found 

in these regions. Of note, linkage evidence was provided by multiple pedigrees, both large 

and small. Maximum scores for individual large pedigrees were not large enough to suggest 

complete sharing across all affected cases within any pedigree. In fact, the highest score for 

an individual pedigree within the three chromosome 15 peaks was a LOD of 2.27 under the 

15q21.1-q22.2 peak in a 7-generation family with nine affected cases.

We investigated characteristics of the autism phenotype for cases in the families supporting 

the three chromosome 15 linkage peaks in our sample. For the pedigrees that achieved 

nominal point-wise significance (i.e., LOD > 0.588 for an individual pedigree, p=0.05) 

within the three peaks, the proportion of cases with ASD diagnoses was 30.0%, 31.0%, and 

25.5% respectively, not significantly different from the overall proportion of autism cases in 

the entire sample (27.1%). Similarly, the proportion of male affected pedigree members was 

75.0%, 79.3%, and 82.4%, not significantly different from the overall total male percentage 

of 84.4%. The proportion of affected subjects with IQ>70 was 66.7%, 65.2%, and 54.6%, 

not significantly different from the overall proportion of 65.1%. Subjects supporting these 

peaks also did not show significant differences in quantitative means of ADI domain scores 

or in language delay as measured by the ADI as compared to the full sample. See 

Supplemental Table 1 for a summary of these results.

As shown in Table 3 and Figure 2, regions of interest were also initially found on 

chromosomes 2, 6, 7, 13, 19, and 21. Suggestive linkage evidence was observed on 

chromosome 2p25.3-p24.1, from about 2,960,000 bp to about 10,660,000 bp that remained 
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after LD screening. We again tested for phenotypic differences among affected subjects in 

families supporting this peak. No differences were found for gender, ADI scores, language 

delay, or IQ>70 (see Supplemental Table 1). However, most of the affected subjects in these 

families had autistic disorder, with significantly fewer affected ASD subjects than observed 

in the full sample (1/23=4.35% vs. 52/192=27.08%, Fishers exact test p=0.02).

Two regions on chromosome 6 were initially identified, but one (6q27) was completely 

eliminated when SNPs were deleted for LD and rare allele frequency (seven close SNPs 

were dropped from this region). The 6q2-32-q24.1 just missed the suggestive linkage 

evidence threshold (HLOD=1.81).

The relatively broad chromosome 7q31.31-q32.3 peak was in a region implicated by several 

previous studies.42–45 and maintained suggestive linkage evidence even after LD screening. 

No significant phenotypic differences were found among affected subjects in families 

supporting this peak (see Supplemental Table 1).

The narrower chromosome 13q12.11-q12.3 peak also exceeded the suggestive linkage 

evidence threshold even after eliminating SNPs in LD. For this peak, we again did not find 

evidence for significant phenotypic subgroups (Supplemental Table 1). The peaks on 

chromosomes 19q13.43 and 21q22.12-q22.13 both disappeared when SNPs in LD were 

eliminated (10 SNPs from each location).

In a previous linkage screen of a single large Utah family, our group previously reported 

regions with at least suggestive linkage evidence on chromosomes 3q13.2-q13.31, 3q26.31-

q27.3, 7p14.1-p11.22, 9p24.3, and 20q11.21-q13.12.7 The current sample includes this 

original pedigree, but these regions were not strongly supported by the new pedigrees. 

Within these 70 pedigrees, our strongest signals in any of these previous regions were on 

chromosomes 9p24.3 (HLOD=1.30 at 2,202,546 bp) and 20q11.21-q13.12 (HLOD=1.23 at 

40,018,916 bp), but both of these regions were below the suggestive linkage threshold. The 

seven affected subjects in this original pedigree were notably heterogeneous across 

phenotypes, though all were male. An investigation of pedigrees supporting the peaks in the 

current sample on chromosomes 9 and 20 showed 13% females in families supporting 

chromosome 9, and 21% females in families supporting chromosome 20. These results 

suggest that sex is not a defining phenotype of these linkage regions in our families.

Discussion

We have performed a genome-wide linkage scan on a large collection of families with two 

or more cases of ASD. The 70 families studied here, which included 26 large extended 

pedigrees and 44 smaller 2- or 3-generation pedigrees, represents 20 years of recruiting and 

ascertaining ASD cases in Utah. Our study is noteworthy for the significant linkage 

evidence observed on chromosome 15 in possibly three distinct regions, and suggestive 

evidence on chromosomes 2, 7, and 13. Although we observed genetic heterogeneity within 

the families we studied, our large extended pedigree design offers a unique resource for 

finding linked chromosomal regions. Nonparametric scores showed consistency with the 

model-based analyses, though the magnitudes of the peaks were reduced. This reduction in 
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significance is not surprising, given multiple lines of evidence confirming the reduced 

statistical power of NPL methods.27–32 The consistency of the NPL results supports our 

choice of the HLOD statistic, which is robust to model misspecification.28, 30

Our most significant finding was on chromosome 15q, which may comprise three separate 

peaks. Our 15q13.1-q14 linkage peak overlaps a region of chromosomal anomalies at 

15q11-q13 implicated in autism across numerous studies.4, 45 However, genes of primary 

interest reported in these other studies are primarily centromeric (20,500,000 bp to 

25,000,000 bp) to the start of our linkage peak at 27,440,000 bp. A recent multi-center study 

by Liu et al. of subjects with ASD who had IQ scores ≥ 70 reported a LOD score of 4.01 at 

chromosome 15q13.3–14,46, which overlaps the reported linkage findings in our sample. In 

our sample, the proportion of IQ scores > 70 from the affected subjects contributing to this 

peak did not differ from the proportion > 70 in our full sample. While Utah collaborated in 

the Liu et al. multi-center study,46 there was no overlap of subjects between that study and 

the current study.

The chromosome 15q21.2-q22.1 region in the current study replicates linkage findings 

reported by Szatmari et al. on a large sample of over 1,400 multiplex families with ASDs.47 

Szatmari et al. identified an extended region from 56,600,000 bp to 87,500,000 bp, with two 

maxima: LOD=3.19 at rs1372828 (69,302,220), and LOD=3.41 at rs1433452 (85,395,878). 

These findings were strongest when subjects with copy number variations (CNVs) were 

removed from the analysis. The International Molecular Genetic Study of Autism 

Consortium (IMGSAC) also found evidence for linkage on chromosome 15q21–22 when 

male-male sib pairs were omitted.48 In contrast to Lamb et al., the sex ratio of our affected 

subjects supporting this peak did not differ from the sex ratio in our overall sample.

Consistent with the complex landscape of autism genetics, our linkage peaks on 

chromosome 15 showed within- and across-family heterogeneity. No individual pedigree 

LOD score in any large extended pedigree suggested sharing of a single haplotype across all 

affected cases, reinforcing the concept that genetic heterogeneity exists within individual 

pedigrees. Pedigrees providing the most support for the chromosome 15 peaks did not differ 

from the overall sample in terms of diagnostic severity, sex, IQ, language delay, or ADI 

domain score. Further characterization of individual cases who share common haplotypes 

within and across pedigrees may reveal additional insights into ASD predisposition genes in 

the region.

Other regions with suggestive positive results in our families occurred on chromosomes 2, 7, 

and 13. Our chromosome 2p25.3-p24.1 findings are more telomeric than the commonly 

reported chromosome 2p15-p16 autism region.4, 49, 50 In particular, the neurexin 1 gene 

(NRXN1), which has shown association with autism,47, 50 is at approximately 50,000,000 

bp, well downstream of our peak. Our chromosome 7q31.31-q32.3 peak overlaps previous 

linkage findings reported in many studies42, 51–54 Several interesting gene associations with 

autism can be found in this region, including reelin (RELN), Ca+ - dependent activator 

protein for secretion 2 (CADPS2), and met proto-oncogene (MET).55–61 Finally, our 

chromosome 13q12.11-q12.3 peak does not appear to overlap with the 13q21 peak for 

autism and specific language impairment reported in several studies.62–64 The neurobeachin 
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gene (NBEAL2), reported to be disrupted in autism,65 is located at 34,633,887 bp, 

somewhat downstream of our linkage region (21,190,000 bp – 30,950,000 bp).

Our expanded pedigree sample did not strongly support regions we previously reported in a 

single extended Utah autism pedigree. Our best signals in our current data within these 

previous regions were on chromosome 9p24.3 (HLOD=1.30) and 20q11.21-q13.12 

(HLOD=1.23), but neither of these peaks reached suggestive evidence for linkage. Affected 

subjects in families supporting these peaks did not share phenotypic similarity with the 

original family. However, families need not be phenotypically similar, even if they share the 

same predisposing alleles. Pleiotropy, effects of other susceptibility loci, effect of genetic 

background, and environmental factors could all modify phenotype. The phenotypic 

heterogeneity and lack of strong support of original peaks is perhaps not surprising. Even in 

our original study, heterogeneity (genetic and phenotypic) was found within the single 

pedigree. Simulation analyses in our original study demonstrated those findings were not 

likely to be false positives, but our new results suggest these predisposing alleles are not 

common among our other pedigrees.

In conclusion, our results implicate a region on chromosome 15 that replicates results 

published by others and may harbor one or more susceptibility genes for autism. While this 

region overlaps with peaks from previous studies, specific genes have not yet been 

identified, and will require more detailed molecular work. To date, our investigation of 

phenotypes in families supporting the linkage evidence have not revealed consistent 

subtypes, though these analyses have only focused on very broad aspects of the ASD 

phenotype. More detailed analyses of additional aspects of phenotype, including presence of 

seizures, verbal ability, and other aspects of the clinical phenotype are planned. These 

results can be used to direct future gene localization efforts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Genome-wide linkage results using all SNPs before screening for possible inflation due to 

linkage disequilibrium.

a. recessive model

b. dominant model

c. non-parametric analysis
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Figure 2. 
Detailed results of SNPs screened for linkage disequilibrium for chromosomes.

a. chromosome 15, significant results

b. chromosome 2, suggestive results

c. chromosome 7, suggestive results

d. chromosome 13, suggestive results
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