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Wildlife diseases are increasingly recognized as a major threat to biodiversity.

Chytridiomycosis is an emerging infectious disease of amphibians caused

by the fungus Batrachochytrium dendrobatidis (Bd). Using a mathematical

model and simulations, we study its effects on a generic riparian host popu-

lation with a tadpole and adult life stage. An analytical expression for the

basic reproduction quotient, Qo, of the pathogen is derived. By sampling

the entire relevant parameter space, we perform a statistical assessment

of the importance of all considered parameters in determining the risk of

host extinction, upon exposure to Bd. We find that Qo not only gives a con-

dition for the initial invasion of the fungus, but is in fact the best predictor

for host extinction. We also show that the role of tadpoles, which in some

species tolerate infections, is ambivalent. While tolerant tadpoles may provide

a reservoir for the fungus, thus facilitating its persistence or even amplifying its

outbreaks, they can also act as a rescue buffer for a stressed host population. Our

results have important implications for amphibian conservation efforts.
1. Introduction
Infectious wildlife diseases are linked to many recent animal population declines

and are considered a major threat to biodiversity [1,2]. Understanding the

dynamics of diseases and the factors that determine their long-term effects on

host populations is an important step for conservation measures. Chytridiomyco-

sis, an emerging infectious disease of amphibians [3], is caused by the fungus

Batrachochytrium dendrobatidis (Bd) [4]. Bd has a wide host range and is now

found on all continents where amphibians occur [5]. Its invasion can have devas-

tating effects on host populations [6], and chytridiomycosis is currently linked to

the decline or local extinction of over 200 amphibian species [7]. Nevertheless,

many amphibian populations currently seem to be in a long-term endemic state

with the fungus [8–10], often with a substantial reduction in survival [11].

The life cycle of Bd is a succession of a motile, waterborne, infectious zoospore

and a substrate-bound thallus, the zoosporangium [12]. The zoospore encysts in a

keratinized epidermal cell of its host [13] and transforms into a zoosporangium

within a few days [14]. In the zoosporangium, new zoospores form, which are

released towards the skin surface and into the external environment [15]. The

exact pathophysiology of Bd is not fully understood, but disturbance of epidermal

intercellular junctions seems to be involved in pathogenesis [16].

The prevalence of Bd and its effects on host populations have been statistically

linked to abiotic conditions, such as temperature [17] and precipitation [18]. How-

ever, a complete mechanistic understanding of the interactions of demographic,

immunological and environmental factors and their influence on the epizootic

dynamics of Bd is lacking. Simple deterministic epizootic models with density-

dependent transmission predict an eventual fade out of diseases, once the host

population falls below a certain threshold. Recent findings, however, highlight
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the role of tadpoles, which are less affected by infection than

adults [19,20], as a potential reservoir facilitating the per-

sistence of Bd [21], or even promoting host extinction [22].

Moreover, recent reports, suggesting the presence of Bd on

aquatic birds [23] and crayfish [24], signify the risks of possible

environmental reservoirs. It has also been theorized that a

potentially long-lived free zoospore stage might contribute to

local host extinctions [22,25,26].

Previous theoretical work on Bd by Mitchell et al. [22] and

Briggs et al. [21] has succeeded in showing that all three scen-

arios, Bd clearance, Bd–host coexistence and host extinction,

are possible epizootic outcomes even for the same host species.

Mitchell et al. [22], however, neglect infected adults, do not

consider within-host disease dynamics and ignore any possi-

ble variation in individual zoospore load. Keeping track of

zoospore loads is important because (i) the progression

of infection depends on reinfection events [12,17] and can

vary greatly between individuals [27], (ii) zoospore load

strongly influences pathogenesis [15,28] and (iii) the release

of zoospores increases with fungal load [14]. Briggs et al. [21],

on the other hand, assume that tadpoles are resistant to chytri-

diomycosis, a trait that may not be present in all frog species

[20,29]. In addition, none of these models considers the possi-

bility of seasonal variation of Bd transmission [30] and a

possible regulation of on-host fungal growth (although its

potential importance has been pointed out by Briggs et al.).
We propose a generic, continuous-time dynamical model

for the interaction between Bd and an amphibian host popu-

lation in an aquatic environment that addresses the above

shortcomings of previous models. The host population includes

two life stages, tadpoles and adults, and infections occur in both

life stages through contact with zoospores in the water. Using

analytical tools and numerical simulations, we investigate the

short- and long-term consequences of an exposure of the host

population to Bd. By systematically sampling the entire relevant

parameter space, we assess the risk of host extinction as a

function of the model parameters. We quantify the relative

importance of model parameters using a dimensionless

measure which we call risk effect. Finally, we investigate the

role of the tadpoles in the epizootic and show that the host

extinction risk need not necessarily increase when tadpoles

tolerate infection (e.g. do not develop chytridiomycosis).
2. Material and methods
(a) Model description
In this section, we outline the epizootic model. A detailed descrip-

tion and justification of the model are provided in the electronic

supplementary material, §1. We consider a single, closed, well-

mixed amphibian population in a single aquatic habitat, interacting

with a single Bd strain. The population is structured into two life

stages, tadpoles and adults. Adults lay eggs at a constant or season-

ally varying rate. Eggs quickly hatch as tadpoles and tadpoles

metamorphose into adults at a constant rate. All newly recruited

individuals are healthy. In the absence of Bd, the population is den-

sity regulated through competition, with adult and tadpole

carrying capacities KA and KT, respectively.

The model keeps track of the distribution of the zoospore load, or

degree of infection (DOI), across individuals. We denote by PA(t, n)

and PT(t, n) the number of adults and tadpoles, respectively, that

at time t are infected with n [ 0, 1, . . . zoospores, i.e. have DOI n.

Because fungal load is usually estimated through the zoospore con-

centration on the host’s skin [31], a zoospore-focused model allows
for comparison with observations, as opposed to, say, a sporan-

gium-focused model. We denote by NA(t) ¼
P1

n¼0 PA(t, n) the

total number of adults and by

SA(t) ¼ 1

NA(t)

X1
n¼0

nPA(t, n)

the average DOI among all adults. NT(t) and ST(t) are defined in

a similar way for tadpoles. The subscript s used hereafter for

model parameters and variables, shall stand for either A (adults)

or T (tadpoles).

New infections occur through contact with free zoospores

released into the water by infected individuals [14]. This corre-

sponds to findings suggesting that infested waters and sand might

be the primary source of infection [21,28,32]. Infections might also

change due to within-host disease dynamics, modelled through

transition probability rates between DOIs. These transition rates

depend on the exponential, within-host, disease growth or decay

rates soon after exposure (ls), as well as the natural within-host

zoospore loss rates (mS,s).

The negative effects of Bd on the population are modelled by

(i) an increased mortality rate of individuals, (ii) a decreased

adult fecundity and (iii) a higher failure rate of metamorphoses

[19,33]. The severity of all three effects increases with the DOI.

For example, the yearly host survivorship is halved at a certain

DOI tolerance level, T s and the adult breeding rate is halved at a

certain DOI, T br. Individuals die immediately if their DOI reaches

a lethal threshold [28,32,34]. We also explicitly considered the case

where tadpoles completely tolerate their infections, e.g. do not

develop chytridiomycosis [19,20]. In that case, the tadpoles’ DOI

is nevertheless limited to a maximum possible value.

The model gives the temporal dynamics for the DOI distri-

butions PA(t, n), PT(t, n) and the total number of free, active

zoospores present in the water, the zoospore pool Z(t). For the

DOI distribution of adults, we have

d

dt
PA(t, n) ¼ [bA(t)Z(t)þ IA,u(n� 1)]PA(t, n� 1)

þ IA,d(nþ 1)PA(t, nþ 1)

� [bA(t)Z(t)þ IA,u(n)þ IA,d(n)]PA(t, n)

� [mA(NA(t))þ gA(n)]PA(t, n)

þ dn,0

tm

X1
n0¼0

sm(n0)PT(t, n0): (2:1)

The first three rows in (2.1) correspond to transitions between

different DOIs. Here, bA(t) is the pool-to-adult transmission
rate. It can be constant or annually oscillating, allowing us to

investigate possible effects of seasonal variation. In our investi-

gations, we varied its average value �bA, its relative oscillation

amplitude (b) and its phase lag (w) with respect to the breeding

season. The terms IA,u, IA,d (up and down) represent transition

rates between DOIs due to within-host dynamics. The fourth

row corresponds to disease-independent and -dependent host

mortality, the former increasing linearly with density. The last

row describes the continuous metamorphosis of tadpoles into

adults, at a rate 1/tm and with a DOI-dependent probability of

success sm(n0). The Kronecker delta dn,0 is 1 if n ¼ 0 and 0 other-

wise, ensuring that new recruits are healthy. Similarly, for

the tadpoles

d

dt
PT(t, n) ¼ [bT(t)Z(t)þ IT,u(n� 1)]PT(t, n� 1)

þ IT,d(nþ 1)PT(t, nþ 1)

� [bT(t)Z(t)þ IT,u(n)þ IT,d(n)]PT(t, n)

� mT(NT(t))þ gT(n)þ 1

tm

� �
PT(t, n)

þ dn,0rbr(t)
X1
n0¼0

sbr(n0)PA(t, n0), (2:2)
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Figure 1. Schematic of the dynamics for the DOI distributions of adults (2.1) and tadpoles (2.2). Dashed arrows correspond to adult and tadpole recruitment, thin
full arrows to disease-independent and disease-induced deaths, thick black arrows to new infections and thick grey arrows to within-host disease dynamics.
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with the difference being the additional loss term 1/tm, which

accounts for failed or successful metamorphoses. The breeding

rate rbr(t) can be constant or have an annual peak at the breeding

season. We varied both the width of that peak (breeding period), as

well as the overall scale of rbr, quantified by the cumulative yearly
fecundity, r ¼

Ð yr
0 rbr(t) dt. The breeding rate is modulated by

sbr(n0), which mediates a possible DOI-dependent reduction in

fecundity. See figure 1 for a schematic illustration of the

dynamics (2.1) and (2.2). The dynamics of the zoospore pool are

dZ
dt
¼
X

s[{A,T}

hsNs(t)Ss(t)� mZ[Z(t)� Zo]:

Here, mZ is the free zoospore loss rate and hs are the rates at

which zoospores on hosts release new zoospores into the

water. Zo is the equilibrium size of a possible external zoospore

pool in the absence of infected amphibians, referred to as

environmental reservoir.

We note that one can derive mean field approximations of

the dynamics (2.1) and (2.2), which are similar in structure to,

but more general than the ones considered by May et al.
[35, eqns (19,20)] (see the electronic supplementary material,

§2.1). If the characteristic time scales of the zoospore pool are

short compared with the epizootic dynamics [36, §6], we

obtain a host-to-host transmission model similar to the one

derived by Anderson et al. [37, eqn. (8)] (see the electronic sup-

plementary material, §2.2). Important generalizations of our

model, compared with [35,37], are the involvement of two host

life stages and a seasonal variation of recruitment.

(b) Numerical simulations
The considered model parameter ranges for all simulations are

given in table 1. Whenever possible, these ranges were chosen

to roughly represent the values reported in the literature, or

otherwise taken within plausible limits. Simulations typically

ran for 10 years, and started with a healthy host population

that was exposed to the pathogen during the second year.

We categorized each simulation outcome into one of the fol-

lowing three scenarios: (i) frog extinction, (ii) clearance of the

fungus from the population and (iii) Bd persistence, i.e. the coex-

istence of the host and fungus in an endemic state by the end of

the simulation. Using Monte Carlo simulations [38], we esti-

mated the probability of any of the above scenarios, for

varying values of each individual parameter, when all other par-

ameters are randomly chosen from their entire range. We
evaluated the effects of the different parameters on the prob-

ability of a disease-driven host extinction. We quantified the

relative importance of each parameter by its so-called risk effect,
which measures the change in the probability of host extinction,

when the parameter is varied from its minimum to its maximum

value. Risk effects were estimated through linear regression of

the probability of extinction obtained from 104 trials (see the

electronic supplementary material, §5.2).

We differentiated between cases where Zo ¼ 0 (no environ-

mental reservoir) or Zo . 0, and between cases where tadpoles

suffer from infection or completely tolerate it. We also examined

the effects of stochastic host demographics, by replacing the

deterministic, disease-independent mortality in our simulations

with random fatal events occurring at a constant Poissonian

rate. This stochastic model is otherwise identical to the deter-

ministic model described earlier. We refer to the electronic

supplementary material, §5 for technical details.
3. Results and discussion
(a) Early invasion dynamics
Using a mean field approximation and standard linear stab-

ility theory [39], we analytically calculated the basic

reproduction quotient Qo of the fungus [40,41], introduced

by Roberts et al. [36] for macroparasite models. Qo (termed

basic reproduction ratio, Ro, in Roberts et al.’s original formu-

lation) has been defined as the number of adult parasites

arising in the next generation from a single adult parasite,

in a completely susceptible host population. It is comparable

to the basic reproduction ratio in microparasite models [42].

Here, it gives the expected number of zoospores released

into the water, originating from a single free zoospore, at

the early stage of invasion in a newly exposed habitat. The

condition Qo . 1 is therefore a deterministic predictor for

the successful invasion of Bd. We assumed that Bd-induced

mortalities only become significant at a relatively high DOI

and do not affect the early growth of the epizootic [3,34].

We refer to the electronic supplementary material, §2.3 for

the derivation.

We find that the early epizootic dynamics strongly

depend on (i) the exponential rate ls at which early infections



Table 1. Parameter ranges used in simulations. Exact parameter definitions
are given in the electronic supplementary material, §1. Chosen values are
justified in the electronic supplementary material, §5.1. All rates are in
d21. Subscripts A and T refer to adults and tadpoles, respectively; the
subscript s to either one. The case F T ¼ 1 corresponds to tadpoles
tolerating their infection.

description symbol values

environmental reservoir Zo 0, 10 – 1015

free zoospore loss rate mZ 1023 – 1

on-host zoospore loss rate mS,A 1023 – 1

on-host zoospore loss rate mS,T 1023 – 1

early infection growth rate lA (21) – 1

early infection growth rate lT (21) – 1

mean adult transmission rate �bA 10210 – 1023

mean tadpole transmission rate �bT 10210 – 1023

phase lag of transmission

rates bs(t)

w 0 – 1 year

relative oscillation amplitude

of bs(t)

b 0 – 1

zoospore release rate hA 1 – 10

zoospore release rate hT 1 – 10

adult lethal DOI threshold F A 104

tadpole lethal DOI threshold F T 104, 1

adult DOI tolerance T A 10 – FA

tadpole DOI tolerance T T 10 – FT

metamorphose DOI tolerance T m 10 – 106

breeding DOI tolerance T br 10 – 106

yearly adult fecundity r 10 – 103

tadpole lifetime tm 10 days to 4 years

breeding period tbr 1 day to 0.5 year

maximum adult survivorship sA 0.1 – 0.9

maximum tadpole survivorship sT 0.01 – 0.2

adult carrying capacity KA 10 – 103

tadpole carrying capacity KT 10 – 103
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Figure 2. Simulations of the stochastic model (one per row), leading to ende-
mic states. Panels (a,c) show population sizes, panels (b,d) show the mean
adult DOI. The breeding rate rbr and transmission rates �bA, �bT are time-inde-
pendent. Populations are exposed to Bd during the second year. (a,b) Tadpoles
do not suffer from infection and have a long life time (tm ¼ 1 year ). The
observed cycles are purely due to host-demographic delays, as Bd-intrinsic
time scales are very short (mZ ¼ 1 d21, mS,A ¼ mS,T ¼ 0:2 d�1). (c,d ) Tad-
poles strongly suffer from infection, but with otherwise identical parameters as
in (a,b). Model parameters are given in the electronic supplementary material,
table S1. (Online version in colour.)
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decay (ls, 0) or grow (ls . 0) within hosts, when excluding

external reinfections and (ii) the time-averaged per capita
recruitment (or turnover) rate �Rs of each life stage s in the

population prior to exposure. In particular, whenever

ls � �Rs � 0 for at least one life stage s, the fungus will suc-

cessfully invade upon exposure (in fact, in this case Qo is

formally infinite). But invasion is still possible, even if all

ls � �Rs , 0. Then Qo takes the form

Qo ¼
1

mZ

X
s[{A,T}

hs
�bs

�Ns
�Rs�ls

, (3:1)

where �Ns are the time-averaged population sizes in the unin-

fected community, �mZ is the time-averaged zoospore loss rate

and �bs are the time-averaged transmission rates. The deri-

vation of (3.1) assumes that the initial exposure is so weak

and the resulting early Bd dynamics so slow that linear stab-

ility theory applies beyond the time scales over which the

averaged variables change. In the alternative limit of rapid
Bd growth, all time averages should be replaced by their

instantaneous values.

In fact, the above results, and in particular equation (3.1),

hold for communities of multiple host species with multiple

life stages and arbitrary recruitment flows and mortalities.

The index s then runs through all species and life stages

(see the electronic supplementary material, §2). Equation

(3.1) highlights the increased risk of invasion associated

with larger host population sizes. It also shows that the

susceptibility of a single host species or life stage (i.e. for

which ls � �Rs � 0) can jeopardize the entire community of

a riparian habitat.

(b) Post-invasion dynamics
Simulations of the single-species model reproduce all three

possible scenarios: (i) host extinction, (ii) clearance of the

fungus from the population (or failure to invade) and

(iii) long-term persistence of the fungus. All of these scenarios

occur for a substantial parameter range, although by definition,

clearance is only possible in the absence of an environmental

reservoir (Zo ¼ 0).

Fungal persistence is typically accompanied by a perma-

nent reduction of the host population to a fraction of its

initial carrying capacity, as observed in numerous host–

pathogen interactions and predicted by standard theory

[43]. This reduction tends to be more severe as Bd trans-

mission rates bs or the reservoir Zo increase. Figures 2a–d
and 3a illustrate typical simulations resulting in long-term

Bd persistence. Host population sizes increase during breed-

ing periods (figure 3a), but can also vary due to epizootic

cycles (figure 2a) or even due to stochastic mortalities. In fact,

in many cases this stochasticity induces coherent cycles

around an otherwise stable endemic state, a phenomenon

known as quasi-cycles [44]. Furthermore, using cross-correlation
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Figure 3. Adult population sizes during two similar simulations of the sto-
chastic model. Annual peaks coincide with breeding seasons. The host
population is exposed to the fungus during the second year. (a) Tadpoles
do not suffer from infection and enable host survival, albeit at a reduced
population size. (b) Tadpoles suffer from infection; all other parameters
are identical to (a). Upon exposure to the fungus, the population quickly
goes extinct. Model parameters are given in the electronic supplementary
material, table S1. (Online version in colour.)

Table 2. Risk effects of model parameters and Qo. Risk effects measure the
direction and magnitude of change in the probability of host extinction,
when a parameter is varied from its minimum to its maximum value. Only
risk effects over 0.1 are shown; dash (—) represents lower values. Data
columns 1 and 3: tadpoles suffer from infection. Data columns 2 and 4:
tadpoles tolerate infection. Data columns 1 and 2: Zo sampled from 10 to
1015. Data columns 3 and 4: Zo ¼ 0. All model parameters were sampled in
their entire range, given in table 1. Similar results were obtained for the
stochastic model.

parameter

Zo > 0 Zo 5 0

suffer tolerate suffer tolerate

Qo þ0.66 þ0.83 þ0.81 þ0.71

Zo þ0.66 þ0.78 n.a. n.a.

T A 20.38 20.47 20.17 20.28

mZ 20.11 20.20 20.44 20.46
�bA þ0.32 þ0.34 þ0.38 þ0.39

KT — — 20.27 20.35
�bT þ0.17 þ0.27 þ0.24 þ0.18

T T 20.24 n.a. — n.a.

KA — — 20.22 20.12

lA þ0.17 þ0.19 þ0.18 þ0.12

mS,A — — 20.14 20.11

hA — — þ0.13 —

mS,T — — — 20.12

T br — — — 20.10
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analysis [45, §14.2], we found that Bd prevalence positively cor-

relates with recent host population sizes, usually with a delay

that depends on the characteristic time scales of the epizootic

(up to several months).

When host population sizes are low due to high Bd pressure,

stochastic fluctuations can eventually cause host extinction [46].

But host extinction is also possible in the deterministic case,

provided that Bd proliferation and host vulnerability are

sufficiently high. Simple deterministic models of density-

dependent disease transmission predict an eventual fade out of

the pathogen, once the host population falls below a certain

threshold [46]. However, if zoospores remain viable for a long

time in lake water or sediments [25,26], then feedback delays

in the density regulation of Bd proliferation can result in host

extinction. Similar delays can appear if host recovery time

scales exceed those of population crashes.

(c) Risk effects
The risk effects of the model parameters and Qo are given in

table 2. We note that even though Qo is not an independent

model parameter, its risk effect can still be defined and

estimated (see the electronic supplementary material, §5.2).

Our results indicate that environmental reservoirs can

have detrimental effects on host populations, and extinc-

tion becomes almost certain as their size (Zo) exceeds a

certain threshold. In the absence of environmental reservoirs

(Zo ¼ 0), the two most important model parameters are the

average transmission rate �bA and free zoospore loss rate mZ,

in accordance with previous work [21,22]. Figure 4a–d
shows the probabilities of host extinction, Bd prevalence

and Bd clearance as functions of the tuple (�bA, mZ). When

Zo ¼ 0, all three parameter regions seem to be strongly deter-

mined by �bA and mZ, with the endemic regime separating

regions favouring extinction (low mZ, high �bA) from those

favouring Bd clearance (high mZ, low �bA). The negative risk

effect of mZ underlines the risks associated with a potentially

long-lived infectious zoospore, the existence of which still

remains controversial [25,26,30]. We did not find significant

risk effects for many of the other model parameters. For

some of them, such as the zoospore release rates hs, this

was due to their relatively narrow ranges.

Interestingly, we found that the basic reproduction quoti-

ent Qo shows the greatest predictive power for the extinction

risk. The risk reaches 100% when Qo exceeds a certain
threshold, as seen in figure 5a–d. For Zo ¼ 0, Bd persistence

becomes most likely at intermediate values Qo � 1. Strictly

speaking, Qo only characterizes the early growth of the epi-

zootic. Our results suggest that the efficiency of the fungus

in proliferating at a site shortly after exposure strongly deter-

mines its long-term effect on host demographics. We point

out that Qo, as given by (3.1), is only valid if ls � �Rs , 0

for all host types. In the alternative case, Qo is formally infi-

nite and even though the fungus is expected to invade, our

numerical results on its role in host extinction should not

be extrapolated to these cases.

We emphasize that the risk effects calculated for the

considered parameters, and therefore their order of importance,

depend on their chosen ranges (table 1), more precisely on their

true (unknown) probability distribution within those ranges.

The resulting assessment should therefore be appreciated quali-

tatively. In special cases, the effect of certain parameters on the

extinction risk might be stronger or even opposite to the predic-

tions given here, as the latter are merely statistical and taken

over a large parameter space. For example, in some cases we

found that larger host carrying capacities actually increase

the risk of extinction despite their negative risk effect, as they

facilitate stronger epizootic outbreaks.
(d) The role of tadpoles
As adult densities decrease, tadpoles can act as a temporary

reservoir for Bd, if they can tolerate infection and remain

in the tadpole stage for long times. This effect can lead to
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strong Bd outbreaks and host population declines, even when

zoospore death and within-host clearance rates are high

(mZ � 1 d�1, mS,s � 0:2 d�1). Shorter tadpole stages dampen

these outbreaks, but Bd prevalence is still generally higher

and adult densities lower when tadpoles tolerate Bd, compared

with when they do not. These observations are exemplified by

simulations shown in figure 2a–d. In figure 2a,b, a long tadpole

stage and Bd tolerance lead to strong outbreaks and fluctu-

ations in host densities. An increased Bd-induced tadpole

mortality dampens these outbreaks, as demonstrated by the

simulations in figure 2c,d. Adult population sizes are greatest

when tadpoles suffer from Bd and the tadpole stage is

short. These findings are supported by observations linking

longer tadpole stages and decreased tadpole vulnerability to

increased Bd prevalence [19,47].

In the presence of environmental reservoirs (Zo . 0), or

for long zoospore life expectancies within and outside of

hosts ( � 10 days), the significance of tadpoles as a reservoir

diminishes. The fungus then persists even when tadpoles

suffer from infection and the overall host mortality becomes

important. The negative risk effect of the tadpole carrying

capacity KT (table 2), which is particularly strong when tad-

poles completely tolerate infection, suggests that tolerant

tadpoles act as a rescue buffer during strong outbreaks.

Figure 3a,b exemplifies this idea. It shows two similar simu-

lations in which tadpoles either tolerate infection (a) or suffer

from it (b), with extinction only occurring in the latter case.

When sampling over the entire parameter space (with Zo ¼

0), we observed a slightly increased fraction of host extinctions

(25%) when tadpoles suffer from infection, compared with

cases where tadpoles tolerate Bd (only 21% extinctions).

Our findings underline the complex role of the tadpole–

adult life cycle in the epizootic [19]. We tested the robustness

of these results against a variation in the way this life cycle is
modelled. We investigated an alternative model, in which tad-

poles attempt metamorphosis once they reach a certain age tm,

but not before. Such a delayed metamorphosis is in contrast to

our original model, in which tadpoles metamorphose at a con-

stant rate right from the start of their life as tadpole. All other

aspects of our original model are kept identical, allowing a

cross-comparison of the two schemes. We refer to the electronic

supplementary material, §3 for details. Simulations generally

showed behaviour that was qualitatively similar to our original

model. However, the parameter space for which the host popu-

lation persists for longer times (even in the absence of disease)

is somewhat smaller. This is because the prolonged tadpole

stage exposes tadpoles to a higher cumulative risk of death

and tends to destabilize dynamics. Nevertheless, this alterna-

tive model reproduces the reported ambivalent role of

tadpoles, depending on their susceptibility and life time as

well as the zoospore loss rate.
4. Conclusion
We have investigated the short- and long-term demographic

effects of Bd on an exposed host population, using a generic,

mechanistic mathematical model that includes various poss-

ible host–pathogen interactions. Our statistical assessment

provides a rank of importance for several epizootic, immuno-

logical and demographic parameters with respect to their

influence on the risk of extinction. Our approach can be seen

as an alternative to conventional elasticity analysis [48] as

well as regression methods used in sensitivity analysis

[49,50]. Both theories aim at estimating the importance of

demographic parameters for population growth and extinction

risk. A novelty of our approach is the systematic evaluation of

the entire 25-dimensional parameter space, which was able to

reveal relationships between focal parameters and the epizoo-

tic dynamics, independently of a particular choice of the other
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parameters. Moreover, the population viability analysis given

here [51] can easily be adapted to virtually any wildlife disease

model that includes host demographics [36].

The transmission rates �bs, zoospore loss rates mZ, mS,s and

immunological parameters such as ls and T s, are strongly

linked to abiotic factors like temperature and pH [4,14,30].

A better understanding of these links will provide a connec-

tion between our parametrization and site-specific abiotic

factors. This will enable a possible translation of our results,

or at least methodology, to an explicit risk assessment for

the numerous amphibian species threatened by the fungus.

However, for accurate site- and species-specific predic-

tions, further details are required on Bd physiology and

the interaction with its hosts, in order to narrow down the

parameter ranges to be considered. In table 2, we have pro-

vided a suggested priority list of parameters expected to be

of particular importance.

The strong predictive power of Qo for host extinction, as

found by our simulations, suggests that the efficiency of the

fungus in proliferating at a site shortly after exposure strongly

determines its long-term effects on host demographics. Rapid

epizootic growth during the invasion phase should therefore
be seen as a strong warning signal for a possible imminent

local extinction. Thus, estimating Qo for individual sites holds

great potential for prioritizing future conservation efforts.

We showed that the effect of tolerant tadpoles on host

extinction risk is ambivalent, and depends on the loss rate

of zoospores within and outside of hosts. Our results

complement prevailing, but simplistic views of tolerant tad-

poles contributing to stronger outbreaks and facilitating Bd
persistence [19–21].

We emphasize that if more than one host species are

involved, the epizootic dynamics are likely to be more compli-

cated [52]. In fact, in that case a tolerant species acting as a

reservoir could induce the extinction of another more suscep-

tible coexisting species [19,53]. Our derivation of the basic

reproduction quotient, Qo, in multi-species communities

(§3.1) is a small step towards the theoretical understanding of

the expected dynamics.
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