
Latent Classiness and Other Mixtures

Michael C. Neale
Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Box
980126, Richmond, VA 23298-0126, USA. neale@vcu.edu, Phone: 804 828-3369

Abstract

The aim of this article is to laud Lindon Eaves’ role in the development of mixture modeling in

genetic studies. The specification of models for mixture distributions was very much in its infancy

when Professor Eaves implemented it in his own FORTRAN programs, and extended it to data

collected from relatives such as twins. It was his collaboration with the author of this article which

led to the first implementation of mixture distribution modeling in a general-purpose structural

equation modeling program, Mx, resulting in a 1996 article on linkage analysis in Behavior

Genetics. Today, the popularity of these methods continues to grow, encompassing methods for

genetic association, latent class analysis, growth curve mixture modeling, factor mixture

modeling, regime switching, marginal maximum likelihood, genotype by environment interaction,

variance component twin modeling in the absence of zygosity information, and many others. This

primarily historical article concludes with some consideration of some possible future

developments.
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Introduction

The papers in this special issue devoted to the contributions of Dr. Lindon Eaves to the field

of behavior genetics span an extraordinary breadth of intellectual contributions, each marked

by their depth of scholarship. To grasp the extent of his scientific developments is at once

delightful, inspiring and humbling. It is also important to recognize the context in which

these advances were made. Today, computer science is advanced such that programing is

readily accomplished in high-level languages on extraordinarily powerful devices such as

smart phones, tablets, laptop and desktop computers, all networked to clusters of teraflop

and petaflop performance. Thirty years ago, when I made my first acquaintance with Dr.

Eaves, things were different. Although I had used a Commodore Pet 2001 computer with 4k

of RAM (Wikipedia, 2013) as an undergraduate, communication with more powerful

computers was limited to using punch cards for input and 132-column (14.75in wide) paper

for output. Although the output paper had green bars on it, this method of communicating

with computers would hardly be considered “green” today! Despite obstacles such as these,

Lindon was making fantastic strides in the field, combining his knowledge of statistics,
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genetics and psychology to lay the foundation of our discipline. In this article I want to focus

on his contributions to mixture distribution modeling.

Early mixture distributions: Major loci

Curiously, but perhaps not coincidentally, the first known approach to fitting a mixture

distribution appears to have been that of the famous statistician and biometrician Karl

Pearson (Pearson, 1894), as described by Everitt (1996) and McLachlan & Peel (2000). A

colleague had suggested that the skewness in a set of measurements of the ratio of forehead

to body length of crabs might be due to the presence of two separate species. Pearson, even

more heavily handicapped by the absence of computer resources and predating the advent of

maximum likelihood by some 30 years, supported this contention using an incredibly

laborious algebraic method of moments. This tradition of persevering in the face of daunting

challenges such as the lack of suitable technology or knowledge or both, characterizes the

careers of our greatest scientists in general, and of Lindon Eaves in particular.

At times, in order to create new knowledge it is necessary to deconstruct the old. On several

occasions in his career, Eaves has done just this, and the area of mixture distributions

provides an apt example. Well before molecular genetics enabled the direct measurement of

genomic variants, it was hypothesized that a single locus could have a large effect on a

quantitative trait. If this effect was large enough, then the distribution of that trait in the

population would not follow the normal distribution. This contention is entirely reasonable,

and a mixture distribution test was incorporated as part of a set of tests used to discern what

were known as ‘major genes’ (Morton & MacLean, 1974; Go, Elston, & Kaplan, 1978).

This set included the marginal mixture distribution, but was more sophisticated in that it

considered the distribution of pairs of relatives – a bivariate mixture distribution. Although

Elston (1979) had cautioned against relying on these higher moments as a criterion for the

existence of a major locus, the method remained popular. It was also beginning to be applied

to behavioral and psychological tests such as measures of IQ (Weiss, 1972). That was until,

perhaps, Eaves’ 1983 paper in the American Journal of Human Genetics. In a

characteristically direct treatment, Lindon simulated data (using what we would now

consider hopelessly archaic mainframe computer) according to a simple model of test items

which were correlated due to the effects of a single common factor or ability dimension.

This common factor followed the normal distribution, and individuals’ item responses were

generated according to a single parameter logistic item response theory model (Lord,

Novick, & Birnbaum, 1968). Thus the null hypothesis of no major locus was true for these

data, but the data generating mechanism was the standard model for generating item

responses and the subsequent scoring of such tests, i.e., a sum score of binary items. Forty

items were used, with an even spread of item difficulties from −3 to +3 standard deviations

on the ability scale. The paper showed that of ten datasets, only in seven cases did

optimization behave satisfactorily, and of those in only one case were the criterion for

declaring support for a major locus not met. It is easy to regard such debunking of

problematic methodology as an ad hominem attack – especially when on the receiving end –

and it can wound one’s pride. To my mind this was not Lindon’s intent in this case, nor in

any other. He was simply being a responsible scientist, trying to ensure that we put our faith

in only those methods appropriate for the data at hand.
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Marginal maximum likelihood: A mixture distribution

My first encounter with mixture distribution work was with Lindon and colleagues in the

early 1990’s, when he was developing models for multiple symptom data. Such data were

abundant at VCU at that time, with the advent of data from the first waves of the Virginia

Twin Study of Adolescent Behavioral Development (Eaves et al., 1997; Hewitt et al., 1997,

VTSABD) and the Virginia Twin Study of Psychoactive Substance Use Disorders

(VATSPSUD; (Kendler, Kessler, Heath, Neale, & Eaves, 1991)). In this article, Dr. Eaves

combined item-response theory, latent class analysis and a behavior genetic model to tackle

the question of what factors are responsible for the similarities of symptoms across relatives,

and how best to model such similarities. In common with the major locus vs. polygenic

theme of the preceding section, both of these possible sources were considered as

mechanisms for twin similarity for class membership. There is no substitute for reading

Eaves’ original articles – I recommend it strongly. In this section I aim to highlight the key

concepts that led to the development of this model.

Bayes’ Theorem and marginal maximum likelihood

Item-level data present special problems for model-fitting approaches, of which one of the

most significant is that the likelihood can be very expensive (i.e., slow) to compute, even

with early 21st century hardware. The development of item response theory models

described in the previous section incorporates one approach to resolving the issue, and it is

very much at the heart of mixture distribution modeling. The idea is to use a conditional

probability approach, using the Kolmogorov definition:

(1)

which can be rearranged to give:

(2)

It turns out that while the joint probability on the left hand side of the equation may be very

difficult to compute, the marginal probability p(A|B) can prove to be very easy to evaluate.

In the case of multiple binary or ordinal items, a natural model is to assume that there is an

underlying, normally distributed liability dimension. This assumption seems appropriate

because it represents the multifactorial hypothesis that a very large number of factors

influence complex phenotypes such as behavior. Results from genome-wide association

studies (GWAS) thus far indicate that for many traits there are indeed few if any variants

that account for more than a tiny fraction of the variance. Variation appears truly polygenic,

with a large number of variants each having very small effects, and environmental factors

may operate in a similar fashion (they may not and their systematic investigation is a future

goal for our field). If an outcome – an item on a test or a symptom of a disorder – is

measured at the binary (yes/no) or ordinal (never/sometimes/often) level, it is necessary to

invoke a threshold model or similar to describe the change from continuous variation of the

underlying trait to the observed binary or ordinal response set. A popular approach here is to

use a threshold model, in which there are particular points on the distribution where
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individuals abruptly change from one response category to the next (Curnow & Smith, 1975;

Falconer, 1965; Mehta, Neale, & Flay, 2004). To compute the likelihood under the threshold

model requires numerical integration of the normal distribution, because there is no closed

form for the normal probability density function (pdf). In practice, this means evaluating a

small number of points (typically k = 10 – 20) along the distribution. The trouble starts when

considering several (m) correlated items, as it is necessary to compute km points in the

distribution, which grows very rapidly with m. This is known as the curse of dimensionality.

Bock (1972) showed how the problem could be approached by: i) selecting a point on the

latent trait dimension and calculating the height of the normal pdf at that point; ii)

computing the likelihood of the data conditional on the latent trait; iii) multiplying the

results of steps i) and ii); and iv) repeating steps i)–iii) for multiple (k) points, and summing

the results. This algorithm may seems a bit tortuous, but several points are worth noting.

First, step i) corresponds to evaluating p(B) in Equation 1, while step ii) evaluates p(A‖B).

The latter yields great computational savings, because conditional on the value of the latent

trait the item responses are independent. Thus instead of evaluating km points it is necessary

only to evaluate mk2 points, being k points for each of the m dimensions, repeated for each

of the k points chosen on the latent trait. This procedure is known as marginal maximum

likelihood (MML), and it has applications in many areas, with more likely to come. Most

important to note is that it is fundamentally a mixture distribution.

Latent class analysis with data from twins

The idea behind latent class models is that items or other measures covary purely because

the population consists of subgroups (Lazarsfeld, 1950). These subgroups are characterized

by different item response probabilities, but within each subgroup the items do not correlate

at all. There is therefore a direct parallel between MML and latent class analysis. Normal

theory MML is essentially a latent class model with class membership probabilities that

follow the normal distribution, and where the item response probabilities for each class are a

simple linear function of the latent trait mean for that class. The overall likelihood of any

individual data vector is computed as a weighted sum of its conditional likelihoods. This

sum can be written as:

(3)

where p(class = j) is the probability that an individual belongs to class j, q is the number of

classes in the model, and L(xi|class = j) is the conditional probability of the item responses xi

of individual i, given that they belong to class j. In practice, the class membership

probabilities are estimated along with the conditional response probabilities for each class.

To date, latent class models have not enjoyed as much popularity as common factor models,

for several possible reasons. First, it may be somewhat implausible that there is no residual

correlation within classes. To a degree this problematic assumption has been ameliorated by

the advent of factor mixture modeling (Lubke & Muthen, 2005a), which fits a model with

one or more factors within each class (latent growth curve mixture modeling is one example

of this type of model). Second, maximizing the likelihood of mixture models is generally
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subject to more difficulties in optimization than are single-component models, with

convergence failure or converging to a local instead of a global maximum a common

problem. Third, the convenient likelihood ratio test for comparing models with sub-models

(computed as a difference in −2 log-likelihood) does not follow a χ2 distribution (Steiger,

Shapiro, & Browne, 1985; Nylund, Asparoutiov, & Muthen, 2007). Alternative, although

computationally heavy, methods such as the bootstrap likelihood ratio tests (McLachlan &

Peel, 2000), may be used instead.

These limitations aside, it is still reasonable to estimate latent class models with certain

datasets, at which point the question as to how to model twin resemblance for latent class

membership emerges. A delightful variety of options are described in Eaves et al (1993).

First it is possible to estimate directly the joint class membership probabilities. This

multinomial model is effectively a saturated model against which models with fewer

parameters can be compared. Setting these probabilities equal for MZ and DZ pairs specifies

a shared environment model for twin resemblance. Under a single gene Hardy-Weinberg

equilibrium model, class membership probabilities are estimated to be a simple function of

allele frequencies: p2, 2pq and q2 (with q = (1 − p)). In this case MZ pairs are always

concordant for class membership, while DZ pairs’ joint probabilities are calculated

according to their expected frequencies under the assumption of independent assortment. A

third, and perhaps overlooked, possibility described in the article is to set the pairwise class

membership probabilities according to both a majorlocus and a major environmental factor,

to yield a model of genotype × environment (G × E) interaction. A valuable aspect of this

approach is that it is relatively scale-free, compared to direct analysis of sum or factor scores

using ANOVA or regression methods on observed sum or factor scores. Such direct

methods carry a non-trivial risk of false positive findings due to differences in measurement

precision at different points on the scale, as discussed by Dr. Eaves in a later article (Eaves,

2006) and elsewhere in this issue.

Multivariate linkage analysis

During the mid-1990’s, Dr. Eaves and I were among the faculty teaching at the

Methodology for Genetic Studies workshops in Europe and Boulder, Colorado. At that time,

linkage analysis was a popular approach to gene-mapping, for several reasons. First, very

few genetic markers were available, especially compared to the millions of single nucleotide

polymorphisms (SNPs) that can be assayed at low cost today. The primary technology in use

was restriction-length fragment polymorphisms (RFLPs) which yielded a large number of

‘alleles’ at each of a small number (≈ 400) of loci. Second, many geneticists had access to

pedigree or family data, which enabled studies of the resemblance between relatives as a

function of their degree of sharing over a particular region of the genome. Thus while most

gene-mapping studies in 2013 use association with SNPs (often in a case-control design), in

the 1990s most mapping involved linkage.

Historically, linkage analysis was often conducted using a regression-based approach

described by Haseman and Elston (1972) in the second volume of this journal. The essence

of the method is that if a particular region of the genome harbors factors that cause variation

in the outcome trait, then siblings who share two alleles identical by descent (IBD) should
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be more similar than those who share one, who in turn should be more similar than those

who share zero. In practice, it is not always possible to unambiguously diagnose the degree

of IBD sharing for a sib pair at a particular locus, but it is always possible to ascribe

probabilities. In the absence of any genomic data, the prior probabilities are .25, .5 and .25

for IBD 0, 1 and 2, respectively. A regression of intrapair differences on IBD sharing is a

natural approach, and it is common to use p(IBD = 2) + .5p(IBD = 1) as a continuous

measure of IBD sharing. This has the advantage of computational speed, as there are closed-

form algorithms to obtain regression parameter estimates (no optimization required).

Expediency aside, we note that the mathematical model is not accurate. That is, sibling pairs

never share, e.g., 0.783 alleles IBD at a locus, they share either 0, 1 or 2. Following

discussions with David Fulker, Stacey Cherny and others at the Boulder workshop in 1995,

a mixture distribution approach to the analysis was devised (Fulker & Cherny, 1996).

Equation 3 applies directly, in that the joint likelihood of the sib pairs was computed as a

weighted sum of the likelihoods of the data given that the sib pairs were IBD 0, 1 or 2. The

weights were the respective probabilities that each individual pair was IBD 0, 1 or 2, based

on the genetic marker data (using a program such as Genehunter (Kruglyak, Daly, Reeve-

Daly, & Lander, 1996)).

To enable multivariate linkage analysis, Dr. Eaves and I developed a mixture distribution

modeling extension to the package Mx (Neale, 1997). To our knowledge, this was the first

implementation of mixture distribution modeling in a general purpose structural equation

modeling program. Combined with the feature of definition variables, with which the

covariance structure, mean vector or weights could differ for every data vector in the

sample, it was possible to conduct multivariate multipoint linkage analysis. In what might be

called ‘blind’ experimental procedure for simulation studies, Dr. Eaves generated the data

using parameter estimates only known to him, while I fitted the model with the new

software to establish whether the correct estimates could be recovered. Mixture distribution

modeling in Mx, and in its successor, OpenMx (Boker et al., 2011), has since become a

popular and valuable feature with a wide variety of applications, some of which are

described in the following section. I personally, and the field generally, owe Dr. Eaves a

debt of thanks – not only for his role in developing mixture distribution modeling in Mx, but

also for supporting its initial development when I was a junior faculty member in his

department.

Zygosity and other examples of ignorance

Since their inception (Rende, Plomin, & Vandenberg, 1990) and to this day, most twin

studies rely on accurate diagnosis of zygosity. Data analysis usually proceeds by classifying

the twins as MZ or DZ and analyzing them in separate groups (Neale & Cardon, 1992).

Although highly precise, almost unambiguous, classification is possible with genetic marker

data, other methods such as questionnaires (Nichols & Bilbro, 1966) are subject to

approximately 5% error. Again, the natural statistical approach to dealing with imperfect

diagnostic data is not to make a diagnosis at all, but to incorporate quantitative measures of

what we know (and what we don’t) into our analyses. Ten years ago the mixture distribution

approach was described in the pages of this journal (Neale, 2003) – effectively applying

Equation 3 – but it has been used relatively infrequently since, either by myself or others.
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One exception is Benyamin et al (2005), where there was no data on zygosity at all, but in

principle the method should be used whenever zygosity is in doubt for any pair in the

sample.

Association analyses are another area in which uncertainty exists, although virtually all

analyses of genetic marker data proceed as if it does not. SNP genotypes diagnosed by

microarray or sequencing technologies are often highly accurate (in the case of sequencing

dependent on coverage) but they are not perfect. A mixture distribution approach to

association analysis was developed independently by Sham et al (2004) and myself in Min

et al (2004), both using Mx for the analysis. It is not surprising that the method is not used

for GWAS, because it requires fitting a mixture distribution model by numerical

optimization. which is much slower than, e.g., using a closed-form approach that involves a

single evaluation of a formula. When there are millions of SNPs involved, optimization-

based approaches are not practical with early 21st century hardware. However, it may prove

possible to develop much faster algorithms, and Moore’s Law (Moore, 1965) continues to

apply to hardware performance, so this may change in future. It is also not clear whether the

relationship between analyses performed with a mixture distribution approach and those that

use the convenient fiction of perfect allele calling is monotonic across loci. If it were,

ordering the loci from most significant to least would give the same order for both analytical

approaches, but this seems unlikely. However, the two methods may be so highly correlated

that using one vs. the other would make no practical difference.

Growth curve mixture modeling is another popular approach in the social sciences (Muthén

& Shedden, 1999; Witkiewitz, Maisto, & Donovan, 2010; Bauer & Curran, 2003). It is an

application of factor mixture modeling (Lubke & Neale, 2008; Lubke & Muthén, 2005b) in

which the factor structure is specified with a finite number of parameters, regardless of the

number of occasions of measurement. For the purposes of association analysis, one

approach is to obtain posterior probabilities of class membership for each individual in the

sample1, and then assign case vs. control status according to a cut-off of probability of class-

membership. For example, one might wish to identify those with a high probability of

belonging to a heavy-use class in an analysis of longitudinal substance use data. Once again,

a more precise approach would be to use the probabilities of class membership directly,

using the method of Sham et al (2004) as described above. Ideally, multivariate or

longitudinal models would directly include SNP genotypes or other indicators of risk

directly, as described by Medland & Neale’s (2009) analysis of DRD4 association with

marijuana, stimulants and sedatives. This single-step analysis ideal is likely to remain

computationally impractical at the genome-wide level for some years to come. It is I think in

the Eaves spirit that trying to get it right, even if it takes quite a bit longer, is worth every

drop of energy put into it. The contrary, a quick-and-dirty analysis, knowing that it is wrong

(and especially without acknowledging its limitations) can border on the unethical. Often

datasets take years to assemble, so care and patience with their analysis is appropriate, albeit

sometimes in the face of pressure to publish or perish.

1these probabilities are readily obtained with software such as Mplus or OpenMx
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Genotype by environment interaction

Two general paradigms exist for the analysis of G×E interaction, and both can benefit from

mixture distribution approaches. One is the context of measured genes and measured

environments, of which Caspi & Moffit’s (2002) article is the canonical example. In this

case, as discussed in the latent class analysis section above, a conditional likelihood

approach can be helpful in handling some of the problems with behavioral and

psychological measurement, which are often based on multiple binary or ordinal indicators

(items or symptoms). Dr. Eaves’ latent class approach has some parallels in the continuous

latent trait domain. For example, Schmitt et al (2006) describe a method to test for non-

normality in the latent trait distribution of a test based on multiple items. Additional novel

developments in this area were provided by Dylan Molenaar and colleagues (Molenaar,

Dolan, & Verhelst, 2010). Effectively, MML permits exploration of the trait distribution in

the population which is relatively free of artifacts due to measurement. Combination of this

method with genetic and environmental measures has the potential to provide a less scale-

dependent test for measured G × E, though this has yet to be developed.

A second genre of G × E interaction modeling is within the classical twin study, where the

interaction between latent genetic and environmental factors is the focus. One simple

approach described by Jinks & Fulker (1970)(Jinks & Fulker, 1970) is the regression of twin

pair sums on their differences. Van der Sluis et al (2006) described an MML approach

which has several advantages. It has greater statistical power when data are not transformed

to normality (G × E interaction inevitably generates non-normality so this is a dubious

procedure). Second, more nuanced analyses become possible, including joint analysis of

multiple groups (e.g., DZ as well as MZ pairs) and tests of whether genetic factors that

affect trait level are the same as those that influence sensitivity to environmental conditions.

These and multivariate extensions were recently described (Molenaar, Sluis, Boomsma, &

Dolan, 2012), again using the mixture distribution modeling features in Mx.

Yet further applications of MML are possible within the framework of the Purcell G × E

interaction model. A particularly thorny issue exists when the putative environmental

moderator is not purely environmental but also includes genetic factors, some of which are

shared with the outcome phenotype of interest. One approach would be to integrate the

likelihood over the latent environmental factor of a putative environmental moderator. That

is, to put values of the latent environmental factor on the path from genotype to

environment, and weight them in the (by now hopefully familiar) MML approach.

Substituting environmental latent variables as moderators has the potential to eliminate some

of the issues with using the observed value of the moderator – such as the potential for non-

linear G × G interaction to masquerade as G × E interaction. Although MML seems viable

in this context, validating the method would of course require extensive simulations across a

range of conditions. As usual, Dr. Eaves is way ahead of the curve here, having provided an

alternative approach via Bayesian estimation to tackle the same problem (Eaves & Erkanli,

2003). The latency between Dr. Eaves’ contributions and their widespread adoption by the

field of behavior genetics is frequently longer than desired, partly because his thinking is

often further ahead than that of his peers. Provision of open source, readily accessible,
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verifiable and modifiable software can go some way towards reducing this scientific lag

(Morin et al., 2012).

Summary

Finally I must acknowledge the contribution of my mentor, David Fulker, who was not

accorded a festschrift, though he certainly earned one, due to his untimely death. Lindon and

David were good friends and colleagues and when I was at the Institute of Psychiatry as a

graduate student, David encouraged me to contact Lindon to ask whether he had a copy of

some IQ data that he’d previously analyzed. The phone call was brief, and negative: “No,

sorry mate, the data were written down on a piece of bog-paper or something and lost years

ago”. It did not take me very long to realize that while his response seemed to lack class

expected of an Oxford don, Lindon’s intellectual class belonged to a much higher and

hitherto latent dimension.

In conclusion, it was my honor and pleasure to organize this festschrift for Lindon Eaves,

my mentor and colleague of many years. The impressive array of his accomplishments

briefly described in this paper, and the developments that they subsequently inspired, are

only a small sample of those of his scientific output. Other articles in this issue go some way

towards a (still incomplete) account of perhaps the greatest behavior geneticist of our

generation.
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