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Abstract

The function of neocortical interneurons is still unclear, and, as often happens in biology, one may

be able to draw functional insights from considering the structure. In this spirit we describe recent

structural results and discuss some potential functional implications. In particular, many

GABAergic interneurons appear to innervate nearby pyramidal neurons very densely and without

any apparent specificity within their immediate vicinity, as if they were extending a “blanket of

inhibition”, contacting them often in an overlapping fashion. While it is clear that subtypes of

interneurons specifically target subcellular compartments of pyramidal cells, and they also target

different layers selectively, they appear to treat all neighboring pyramidal cells the same and

innervate them en masse. We explore the functional implications and temporal properties of dense,

overlapping inhibition by four interneuron populations.

Introduction

Although functional inhibition was discovered more than half a century ago [1], there is still

vigorous debate as to what exactly inhibitory neurons (INs) do. Even for the paradigmatical

example of a clearly defined IN population, the chandelier cells, it is still unclear whether

they are actually inhibitory [2] or excitatory [3], or whether their function could be a mixed

one, depending on the state of the network [4].

To make this problem more complicated, GABAergic interneurons belong to many different

subtypes, and their function is unlikely to be homogeneous or simple. However recent data

suggest that some INs project densely to nearby principal cells (PCs). To gather information

that could constrain hypotheses about IN function we review recent studies on network the

connectivity of five IN populations that together encompass ~85% of all neocortical INs: 1)

Parvalbumin containing INs (PVs) are virtually always fast spiking cells (FSs), with

particularly rapid action potentials. Due to the high overlap between FS and PV groups [5–

8], we use only the term PV for simplicity. 2) Chandelier cells (ChCs), also known as axo-

axonic cells [9] [10,11]. 3) Neurogliaform cells (NGFCs) [12,13], 4) Somatostatin

containing INs (SOMs) [14] and 5) vasoactive intestinal peptide containing INs (VIPs) [15].
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Of these five populations PVs, NGFCs, SOMs and VIPs show virtually no overlap with each

other [15–17], while some ChCs contain parvalbumin [11]. All studies reviewed here were

performed in rats or mice.

Blanket inhibition

This term describes the dense and unspecific innervation of local PCs by INs, i.e., restricted

to immediate intralaminar territories covered by their axons. PVs and SOMs project densely

to PCs within an 200 µm radius (Figure 1). This dense innervation pattern was demonstrated

in living IN-GFP brain slices across multiple cortical areas and developmental stages using

two-photon glutamate uncaging [18,19]. The connection probabilities decayed with distance

but at peak, at around 100 µm intersomatic distances, were ~80% for both IN types and in

some recordings all INs within 200 µm of a PC were connected to it demonstrating highly

overlapping inhibitory connectivity. Given that many axons are cut in slice, we expect these

INs project to essentially every PC around them in the intact brain. Since these studies

showed that a given PC receives inhibitory input from most PVs and SOMs around it, it

stands to reason that any PV or SOM inhibits most PCs around it unspecifically. Prior to

these studies, compatible but less comprehensive results had been reported, using paired

electrical recordings [20].

The connectivity between INs is less well understood. Some studies report a high degree of

connectivity between PVs, from PVs to SOMs and SOMs to PVs [21–23] (but see [5] and

[24] for smaller estimates of PV->PV and PV->SOM). Thus the dense inhibitory blankets

from PVs and SOMs to PCs might extend to INs too, with the clear exception that SOMs

virtually never inhibit each other.

A recent study of ChCs found that within their local axonal cloud they also project densely

to local PCs [10]. Nearly 50% of AISs within 200 µm from a ChC soma were apposed by a

cartridge. This could be a significant underestimate of the real connectivity because of the

technical caveats and stringent analysis methods employed (discussed in detail in [10]).

Indeed, some areas within the ChC axonal fields had cartridges apposing nearly every AIS.

Consistent with the lack of selectivity, an average of 4 ChCs were estimated to innervate any

given AIS, indicating an overlapping pattern of inhibition. Dense innervation of virtually

every PC AIS by ChCs in piriform cortex has also been observed [25]. Thus, ChCs appear

similar to PVs and SOMs in terms of their local blanket inhibition. It would be important to

study ChC connectivity with a similar method used on PVs and SOMs [18,19] to reveal the

functional density of this blanket inhibition.

A final case for a “blanket” inhibitory innervation can be made for NGFCs, which mediate a

spatially extreme form of blanket inhibition by forming presynaptic boutons that are not

directly opposed to postsynaptic densities of other cells and secrete GABA into the neuropil

some micrometers away from the functionally postsynaptic cells. This innervation strategy,

showering cortical circuits with GABA, presumably accounts for the 87% connection

probability observed from NGFCs to nearby neurons within 100 µm [13]. NGFCs

additionally modulate synaptic transmission within their axonal field [13] and inhibit cells

with more distant somata that have distal dendrites within the NGFC axonal fields [26].
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Working through presynaptic GABAB receptors, NGFCs can decrease the effect of

repetitive synaptic events [13]. A high degree of connectivity was observed in another recent

study on layer 4 NGFCs, although presynaptic modulation of synaptic transmission upon

thalamic stimulation was found only on PV-to-PC synapses but not on excitatory synapses

formed by thalamocortical afferents which also contain presynaptic GABAB receptors [12].

This discrepancy might be simply due to presence of the whole PV somato-dendritic domain

within the NGFC axonal cloud, rather than spatial specificity in the distribution of release

sites within the NGFC axonal field.

Early and late blanket inhibition

Subtypes of INs have different temporal properties in their firing and synaptic dynamics and

also target separate subcellular compartments of PCs. Due to dynamic changes and variance

of synaptic weights [27], blanket inhibition is unlikely to invariantly shut down all PC

activity in a region. PCs might rather be varyingly inhibited depending on the timing,

synaptic weights and the position of the IN contact (Figure 1).

Two lines of evidence suggest that PVs are specialized for a fast and transient inhibition

while SOMs deliver slow-onset, lasting inhibition. Firstly, both the excitatory input synapses

and inhibitory output synapses of PVs vs SOMs, have consistently different dynamics

[22,28–34]. Synapses on and from PVs are virtually always depressing: postsynaptic

potentials peak in the beginning and then decrease dramatically during a high frequency

train of action potentials. In contrast, synapses on and, sometimes but not always, from

SOMs are facilitating, meaning that they are almost silent in response to a single action

potential but subsequent postsynaptic potentials increase by several fold during a high

frequency spike train. Dynamics of inhibitory synapses between PVs and SOMs are

determined accordingly by the presynaptic cell [31].

Secondly, the amount of monosynaptic feedback inhibition within the populations is

dramatically different between subtypes, in terms of synaptic connections between

individual cells within the groups [22,23,31] as well as autaptic connections [35]. Individual

PVs readily form synapses onto each other and themselves, while SOMs virtually never

inhibit each other [22,24,31,36] allowing them to sustain persistent firing [37]. In addition

some data suggest that PVs/FSs more often than non-FSs, form reciprocal connections to the

local PCs that excite them, forming direct feedback inhibition loops [38–41] (however, see

[19,21,42,43]). Moreover, SOMs disinhibit layer 4 through powerful inhibition of PVs [44].

Thus we expect that during lasting high frequency neocortical activity, such as is seen

spontaneously and in response to sensory stimuli in vivo [45,46], there is a rapid-onset,

transient blanket of inhibition by PVs which is later replaced by a slowly recruited,

persistent blanket mediated by SOMs.

ChCs, like other PV cells, appear to have a fast, early action on local PCs [47]. To the best

of our knowledge there is currently a lack of information about the detailed dynamics of

ChC firing and synapses in the neocortex. However their output synapses might be

depressing like PV synapses (see Fig. 4c in [47]) as is the case in hippocampus [48,49].
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The spatially extreme NGFC inhibitory blanket is also temporally extreme, in that the slow

GABAB receptor-mediated postsynaptic event, elicited by a single action potential in a

NGFC, reaches its peak well over 100 ms later [50–52]. Also the GABAA receptor-mediated

component of NGFC inhibition is slower and longer lasting than with PVs [50].

Functional relevance of blanket inhibition

In rodents INs form a minority, ~15% [53,54], while PCs constitute the majority (~85%) or

neocortical neurons. Despite variance in input strength, every neuron receives both

inhibitory and excitatory inputs [55,56] and PCs target only ~10% of the neurons around

them [53]. Given these numbers one could infer that blanket inhibition serves to balance

excitation and prevent epilepsy. However, more detailed functional roles of inhibition in

cortical networks can be divided into five (partially overlapping) hypotheses: sharpening

tuning of stimulus response relation through lateral inhibition [57]; generation/pacing of

network oscillations through feedback inhibition [58,59]; normalization of input through

feed-forward inhibition [56,60], modulation of stimulus-response gain of PCs [61] and

computational discrimination of inputs into self-organizing maps [62]. Some of these

hypotheses have been recently reviewed elsewhere [29,63], so we will not discuss them in

detail but solely focus on some aspects of these hypotheses where the impact of the blanket

configuration of inhibition is evident. As a related aside, the blanket configuration might

reveal a principle for how cortical circuits are wired up during development and a further

impetus to build a disinhibitory network to sculpt specificity into the blanket (Box 1),

alongside the PC-specific synaptic weights.

The sharpening of excitatory responses by lateral inhibition is a traditional function of

inhibitory circuits and one that seems to be at work throughout the sensory systems of the

brain [57]. Any given excitatory input, by firing neighboring inhibitory interneurons,

themselves connected to all neighboring excitatory cells, will achieve essentially a “winner

take all” strategy, and enable the sole excitation of the desired target (Figure 2A). The

design of blanket inhibition goes hand in hand with this functional logic, since one would

want a uniform and unspecific inhibitory connectivity. This will assure that all excitatory

inputs are subject to a similar degree of local filtering and thus prevent biases in the

propagation of signals. An intriguing hypothesis, based on neural network theory, is the

possibility that inhibitory circuits serve to separate in a multidimensional vector space

similar patterns of excitatory inputs [64]. In fact, a learning rule with a local inhibitory

spatial flanks can spontaneously generate self-organizing maps [62], helping to explain the

common occurrence of functional maps in most regions of the brain. A local blanket of

inhibition is critical for this function, since it will enable a circuit to orthogonalize inputs

automatically, and this could be a critical aspect to enable sensory areas of the brain to

enhance the discrimination among similar inputs.

A blanket inhibitory design is also ideal for feedforward inhibitory circuits to linearize or

extend the dynamic range of PCs (Figure 2B). Otherwise some cells could escape this

normalization and saturate with increasing excitatory inputs. This would essentially

inactivate them from the network, defeating the purpose of this mechanism.
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The role of inhibitory circuits in the generation of oscillations and synchronization could be

equally well served by a blanket inhibitory design, although the functional implications are

more complicated. As a result of the dense blanket inhibition PCs near each other experience

synchronous inhibitory postsynaptic events from common presynaptic INs [65], and this

could in principle serve to synchronize their spiking [58]. At the same time, electrically or

synaptically coupled interneuron groups in slice can synchronize sustained spiking under

some experimental manipulations [36,66]. On the other hand, recent work shows that

interneuron spiking in neocortical brain slices is largely uncorrelated spontaneously during

UP-states or after thalamic stimulation [65]. However, in vivo, the subthreshold membrane

potential changes and spiking of some INs tend to be synchronized [67] and sensory evoked

responses are apparently similar within cell groups [29]. Moreover, in apparent contradiction

to the role of INs in generating oscillations [59], recent work suggests that inhibition can

actually decorrelate firing of PCs [65,68,69]. In principle, from an information theoretic

aspect both synchrony and decorrelated firing of neurons are useful – the prior for effective

transmission and the latter for unambiguous representation of information for example.

Perhaps a compromise can be reached by neuronal networks where irregular firing and

population level rhythmicity coexist [70]. If this is the case, interneurons could be involved

in generating both synchrony and irregular firing, depending on the exact state of the circuit.

Future work needs to examine the exact role of INs in synchronizing or decorrelating PCs.

Finally, another potential function of inhibition could be to leave a temporal mark in the

circuit, as a refractory trail for the spread of further excitatory patterns (Figure 2C).

Inhibition, in particular by the facilitating SOMs and the GABAB receptor-triggering

NGFCs, can remain in a given cortical circuit after the excitatory neurons that recruited the

INs have ceased firing (see e.g., disynaptic inhibition traces in [30,33,60]). This could result

in a transient trail of inhibition left behind by a passing wave of excitation, possibly causing

a network level refractory period akin to that associated with the action potential in an axon.

Like the latter allows action potential propagation in only one direction along an axon, the

inhibitory trail might, to some extent, enforce directionality of spread of activity seen for

example across the cortical surface during sensory stimulation [71]. The blanket

configuration would be ideal for this function, and infact early and late “blankets” could

differentially re-channel excitatory activity into different circuits, enabling a novel type of

fast circuit plasticity that does not require the slower Hebbian learning rules.

Since the possible functions of INs are so many, it might be useful to comprehensively

study, through simulations and experiments, whether realistic networks can actually perform

multiple roles simultaneously.

Conclusions

Blanket inhibition is a general feature of most inhibitory connections to principal cells in the

cortex, except for VIP cells which appear to make holes in the blankets. Blanket inhibition

exists in different temporal domains and could be critical to implement different functional

roles of inhibitory neurons.
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Highlights

- Key inhibitory interneurons innervate pyramidal neurons densely and

unspecifically.

- Timing of inhibition is different across interneuron populations.

- Dense inhibitory network structure should inform hypotheses of function.

- Disinhibitory interneurons can make holes in the dense inhibitory “blanket”.
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Box 1: “Making holes in the blanket: VIPs as disinhibitory specialists“

In contrast to the dense blanket inhibition of PCs by INs discussed here so far, VIPs do

not connect to most PCs within their reach [24,72,73]. VIPs specifically target SOMs

and, to a lesser extent, PVs [24,72,73]. Two recent papers [72,73] show inhibition of

SOMs by VIPs during behaviorally triggered excitation of VIPs, by whisking in

somatosensory cortex and by aversive feedback stimuli in auditory and prefrontal

cortices. This would disinhibit the PCs under SOM blanket inhibition. Given the

horizontally restricted extent of VIP axons [72,74,75], activation of a limited number of

VIPs could make holes in the blanket of inhibition, selectively disinhibiting PCs in some

regions while leaving others under the blanket (Figure 3). These disinhibitory holes

might be expected to be the size of the axonal fields of a few SOMs, and to occur at times

of behaviorally relevant activation of VIPs [72,73] as well as spontaneously due to the

high resting membrane potential and excitability of these neurons. Alternatively, if many

or all VIPs can be activated by a stimulus, this would briefly disable the whole SOM

blanket, possibly allowing for spread of excitation into an unusual direction (see

“Functional relevance of blanket inhibition”). Given that VIPs could be activated by

higher cortical feedback [72,73], these holes in the blanket might serve to recall past

experiences.
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Figure 1.
Blanket inhibition by the different subtypes of interneurons. (a) Early blanket inhibition by

PVs. (b) Early Blanket inhibition by ChCs. Right panel shows early activation of ChCs

compared to PCs after layer 1 stimulation (copied with permission from [4]). (c) Late

blanket inhibition by SOMs. (d) Slow blanket inhibition by NGFCs. Inset: Gray trace

represents total inhibitory current while blue is a GABAB receptor component and red is the

difference. Green triangles represent PCs, and circles in each panel represent INs projecting

to PCs. Traces shown in (a), (c), and (d) represent responses of PCs to IN inputs.
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Figure 2.
Functional roles of INs. (a) Lateral inhibition. (b) Input normalization. (c) INs decorrelate

PC spiking. (d) Inhibitory trail reduces response to a second input. Lightning symbols

indicate input along arrows. (ii) Simple temporal effect. Green triangles represent PCs and

red circles represent INs. (ii) example of spatio-temporal effect. Here circles represent

modules containing both INs and PCs, and arrows the spread of excitation; because of the

inhibitory trail stimulation of a pathway at t1, shortly before stimulation of another path at t2
blocks the progress of the latter activity at the red cross and directs it instead to the blue

direction.

Karnani et al. Page 14

Curr Opin Neurobiol. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
Hole in inhibitory blanket. Orange cell represents a VIP disinhibiting a network through

inhibition of a SOM. Green triangles represent PCs, and a light blue circles SOMs.
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