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Abstract
Our body is colonized by more than a hundred tril-
lion commensals, represented by viruses, bacteria and 
fungi. This complex interaction has shown that the mi-
crobiome system contributes to the host’s adaptation to 
its environment, providing genes and functionality that 
give flexibility of diet and modulate the immune system 
in order not to reject these symbionts. In the intestine, 
specifically, the microbiota helps developing organ 
structures, participates of the metabolism of nutrients 
and induces immunity. Certain components of the mi-
crobiota have been shown to trigger inflammatory re-
sponses, whereas others, anti-inflammatory responses. 
The diversity and the composition of the microbiota, 
thus, play a key role in the maintenance of intestinal 
homeostasis and explain partially the link between in-
testinal microbiota changes and gut-related disorders in 
humans. Tight junction proteins are key molecules for 
determination of the paracellular permeability. In the 
context of intestinal inflammatory diseases, the intesti-
nal barrier is compromised, and decreased expression 
and differential distribution of tight junction proteins 
is observed. It is still unclear what is the nature of the 
luminal or mucosal factors that affect the tight junction 

proteins function, but the modulation of the immune 
cells found in the intestinal lamina propria is hypothe-
sized as having a role in this modulation. In this review, 
we provide an overview of the current understanding of 
the interaction of the gut microbiota with the immune 
system in the development and maintenance of the in-
testinal barrier. 
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Core tip: Each of our bodies is colonized by more than 
a hundred trillion commensals, which include viruses, 
bacteria and fungi. The association between microbiota 
and their hosts is complex and has important repercus-
sions for both. The diversity and the composition of the 
microbiota thus play a key role in the maintenance of 
intestinal homeostasis and the induction of immunity. 
These features partially explain the link between altera-
tions in intestinal microbiota and gut-related disorders 
in humans. In this review, we provide an overview of 
the current understanding of the interaction between 
gut microbiota and the immune system in the develop-
ment and maintenance of the intestinal barrier.
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INTRODUCTION
Each of  our bodies is colonized by many commensals, 
such as viruses, bacteria and fungi, which are called 
microbiota. If  we consider only the bacterial fraction, 
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we will be examining more than a hundred trillion cells, 
spread all over our skin and mucosal surfaces. This 
quantity makes explicit the clear mutual benefit for both 
the microbiota and the host[1]. Due to the complex and 
specific demands of  symbiotic and commensal organ-
isms to survive, it is quite difficult to culture them in the 
lab and, therefore, to understand their contribution to 
the host’s biological processes. However, with current 
genomic sequencing techniques, a significantly greater 
understanding of  the microbiome has been achieved. 

It has become clear that adaptation of  the host is 
influenced by the microbiome, adding new genes and 
functions that allow flexibility in the diet, which explains 
why so much effort is spent by the immune system to 
balance this genetic modulation. Therefore, it is reason-
able to state that the increased capacity of  accommodat-
ing new symbionts correlates with the increasing of  the 
complexity of  diet[2]. 

Although the microbiota may encompass both Eu-
karya and Archaea members, their relative abundance 
in their niche is low compared to bacteria. The highest 
number and most diverse microbial population is found 
in the colon, where there are 1010-1012 organisms per 
gram of  luminal content[3]. Most of  the bacteria found 
in the colon belong to the phyla Proteobacteria, Bacte-
roidetes, Firmicutes, Actinobacteria, and Verrucomicro-
bia[4]. The relationship between microbiota and host is 
complex, having important repercussions for both. It is 
now understood that microbiota contribute to physio-
logical processes of  the host, whereas the host provides 
the necessary nutritional environment for its survival[1].

Interestingly, in the host’s gastrointestinal tract, mi-
crobiota may have different effects. The microbiome has 
an important role in facilitating the development of  gut-
associated lymphoid tissues and participating in the metabo-
lism of  nutrients. On the other hand, under certain circum-
stances, the microbiota can also trigger diseases in genetically 
susceptible individuals[5]. Recent studies have suggested that 
commensal microbiota influence the host’s intestinal im-
mune response[1,6,7]. For example, certain components of  
the gut microbiota are capable of  inducing immunoglob-
ulin A (IgA)-mediated responses and developing Th1/
Th17 effector T cells and regulatory T (Treg) cells[8-12]. 
Moreover, Bacteroides fragilis mediates the development 
of  Foxp3+ Treg cells through the activation of  Toll-like 
receptor (TLR)2[13-15]. In the large intestine, Clostridium 
species induce Foxp3+ Treg cells independently of  TLRs 
through the induction of  transforming growth factor-β 
(TGF-β)[16]. Thus, various types of  bacteria influence in-
testinal T cell development. 

Moreover, gut microbiota have an important role in 
the development of  Foxp3+ Treg-mediated CD4+ T cell 
homeostasis[17] and in the acquisition of  antigen reper-
toire of  the Foxp3+ Treg cells[18]. Although the mecha-
nism is not clear, other cells from the immune system 
have important roles in the maintenance of  the intestinal 
homeostasis[19]. Tr1 cells, for instance, do not express 
Foxp3 transcription factor and are induced by cytokines 
such as interleukin (IL)-10 and IL-27[20,21], which can be 

produced by CD103+ dendritic cells (DCs) when ex-
posed to Bifidobacterium breve (B. breve)[22]. However, the 
mechanism by which CD103+ CX3CR1- DCs sense B. 
breve is not clear because CX3CR1 is required for dendrite 
extension[22].

In this review, we provide an overview of  the current 
understanding of  the role of  the gut microbiome in the 
development and maintenance of  the intestinal barrier.

DISTINGUISHING ENEMIES AND 
FRIENDS: A VISCERAL CHALLENGE
Interestingly, the intestinal immune system is able to dis-
tinguish commensals from pathogenic microorganisms. 
Hosts can sense commensals differently than pathogens 
even though they have the same immunostimulatory 
molecules as pathogenic bacteria and are capable of  trig-
gering inflammation if  they penetrate the intestinal epi-
thelial barrier. Many studies have shown that this sensing 
of  commensals is important for the development and 
functionality of  the immune system because germ-free 
mice have reduced cellularity and impaired functionality 
of  the immune system in the lamina propria of  the small 
intestine[23].

Under normal conditions, the immune system is 
instructed by commensal microbiota to not respond to 
luminal antigens. Furthermore, commensal microbiota 
secrete metabolites by nutrient processing, prevent infec-
tions by pathogenic microbes, provide signals to induce 
healthy immune development, and stimulate innate and 
adaptive immune responses to maintain homeostasis. 
However, when dysbiosis occurs, non-invasive bacte-
ria are transported to key immune inductive sites, the 
mesenteric lymph nodes (MLN)[24-30]. This abnormal 
situation leads to aberrant immune responses against mi-
croorganisms that otherwise would not be considered a 
threat. 

The most important difference that distinguishes 
pathogens from commensals is the outcome of  their 
interaction with the host. In the intestine, an infec-
tious process usually starts with adhesion to the brush 
border of  intestinal cells[31,32]. After the adhesion phase, 
pathogenic bacteria produce virulence factors that are 
secreted in the external environment or injected into the 
cytosol of  host cells. Non-invasive bacterial pathogens 
are able to inject virulence factors that contribute to the 
remodeling of  the cytoskeleton of  the host, leading to 
the formation of  pedestal structures, which facilitate en-
hanced adhesion. Other pathogens include invasive and 
facultative intracellular bacteria, which secrete virulence 
factors that enable these pathogens to cross the epithe-
lial barrier[33] by remodeling the actin cytoskeleton. Thus, 
these bacteria are able to penetrate into host cells and 
form a specialized niche that increases their survival[34]. 
Importantly, invasive pathogens need to resist innate im-
mune defenses, survive phagocytosis and, in some cases, 
manipulate adaptive immunity to cross the epithelial bar-
rier and establish infection. 
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Certain components of  the microbiota have been 
shown to lead to inflammatory responses, whereas oth-
ers lead to anti-inflammatory mechanisms. The diversity 
and the composition of  the microbiota thus play key 
roles in the maintenance of  intestinal homeostasis and 
partially explain the link between intestinal microbiota 
changes and gut-related disorders in humans[3,12,13,16,35-37].

Indeed, an association has been established between 
changes in the relative abundance of  certain bacterial 
groups and the unexpected responses of  the human im-
mune system leading to diseases. The opposite situation 
is also observed, in which introducing a bacterial type 
restores homeostasis[38]. For example, Faecalibacterium 
prausnitzii, a member of  the normal human microbiota, 
has been associated with the extension of  the period of  
remission in patients with Crohn’s disease[39].

Gram-positive bacteria have microbe-associated mo-
lecular patterns (MAMPs), such as cell wall polysaccha-
rides, peptidoglycans, lipoprotein anchors, lipoteichoic 
acids (LTA) and wall bound teichoic acids (WTA), that 
are capable of  influencing pattern recognition recep-
tor (PRR) recognition of  known MAMPs, leading, for 
instance, to a shield effect[40,41]. These MAMPs interact 
with PRRs, such as theTLRs, C-type lectin receptors 
(CLRs) and nucleotide oligomerization domain (NOD)-
like receptors (NLRs), driving the induction of  innate 
immune responses, with immune activation, antigen pre-
sentation, and expression of  antimicrobial factors[42,43].

Commensal bacterial components are usually recog-
nized by TLRs, which is important for protection against 
gut injury and associated mortality. Impairment in the 
interaction between commensal bacteria and TLRs have 
been reported to promote chronic inflammation and tis-
sue damage, e.g., inflammatory bowel disease[44]. There 
are two possible mechanisms by which TLR activation 
mediates this interaction: (1) steady-state induction of  
protective factors via constitutive detection of  lumen-de-
rived microbial products by TLR2 expressed on colonic 
epithelium or (2) upon epithelial damage, commensal-
derived TLR ligands induce the production of  protective 
factors. Recent studies have shown a role for CpG DNA, 
which is an agonist of  TLR9, in mediating the beneficial 
effects of  probiotics in the gastrointestinal tract[28].

Interestingly, a study has shown that non-pathogenic 
bacteria may modify immune responses by activat-
ing peroxisome proliferator-activated receptor gamma 
(PPARγ), a protein that promotes the export of  the 
nuclear factor kappa B (NF-κB) subunit RelA from the 
nucleus to the cytosol, downregulating the transcrip-
tional activity of  NF-κB[45]. For instance, Bacteroides 
thetaiotaomicron induces PPARγ expression, leading to an 
anti-inflammatory profile in the intestinal compartment. 
This effect was not observed with a related strain, B. vul-
gatus[45]. It has also been suggested that commensal bac-
teria induce the expression of  PPARγ through activation 
of  the TLR4 pathway[46]. Additionally, the administration 
of  an exogenous source of  PPARγ by local gene therapy 
results in decreased inflammation in an experimental 
colitis model[47].

Another interesting mechanism by which commensal 
bacteria inhibit the NF-κB pathway occurs through sta-
bilization of  IκBα, a key inhibitor of  the NF-κB path-
way. Studies have shown that certain strains of  bacteria, 
such as nonpathogenic Salmonella and Lactobacillus casei, 
inhibit IκBα degradation by the ubiquitin/proteasome 
system[48,49].

Although MAMPs appear to be identical between 
different species, there are variations in their chemical 
structure in regards to polymer composition, length and 
substitutions[4]. Some studies in several lactobacilli have 
targeted the D-alanylation of  LTA as having a role in 
the immunogenicity of  these MAMPs. Loss of  D-ala-
nylation of  LTA in Lactobacillus plantarum, for instance, 
leads to a decrease in the capacity of  the molecule to ini-
tiate TLR2-dependent proinflammatory responses[50]. In 
a mouse model of  colitis, this mutation leads to a more 
protected phenotype compared with the WT[50]. In ad-
dition, other strain- or species-specific variations in the 
chemical modification (acetylation or pyruvylation) of  the 
conserved peptidoglycan polymer backbones may lead to 
altered immunomodulatory capacities in the intestine[51].

The pilin-encoding spaABC operon found in probi-
otic Lactobacillus rhamnosus (LGG) leads to the production 
of  SpaC protein, which can bind to mucus, explaining 
why it is more persistent in the human intestine than a 
closely related strain L. rhamnosus that lacks pili. Other 
protein effector molecules produced by LGG have been 
identified that prevent apoptosis induced by proinflam-
matory cytokines[52-54].

Another study demonstrated that protein glycosyl-
ation of  the S-layer protein produced by Lactobacillus 
acidophilus (L. acidophilus) North Carolina Food Micro-
biology is essential for its interaction with the CLR DC-
SIGN (DC-specific ICAM3-grabbing non-integrin) as it 
influences cytokine response in DCs and T cell priming[55].

The absence of  the microbiota in germ-free mice 
causes developmental defects in the immune system. 
These mice have fewer plasma cells and intraepithelial 
lymphocytes, lower IgA levels, and smaller Peyer’s patch-
es and MLNs than conventional animals and exhibit 
increased susceptibility to pathogenic bacteria[56]. 

The intestinal epithelial barrier is composed of  
tightly attached epithelial cells, antimicrobial products, 
and a mucus layer. Commensal microbiota maintain the 
integrity of  epithelial cells, stimulate them to secrete mu-
cus and anti-microbial peptides, and thereby contribute 
to maintaining a basal level of  steady-state host defense. 
Goblet cells secrete mucin-2, which forms a net-like 
mucus layer that physically separates most of  the micro-
biota from the epithelium. In the colon, the lower layer 
is dense, relatively free of  bacteria, and has concentrated 
levels of  alpha-defensins; the upper layer contains some 
commensal bacteria. In the small intestine, the mucus 
is only one layer thick, and the epithelium is protected 
from microbiota by antibacterial proteins such as primar-
ily regenerating islet-derived 3-gamma (RegⅢγ)[57]. 

In the innate immunity scenario, antimicrobial pep-
tides, such as alpha-defensins, lysozyme C, phospholi-
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pases, C-type lectin, and RegⅢγ are produced by Paneth 
cells or by enterocytes[1,58]. In the adaptive immunity 
scenario, system effectors are secreted into the intestinal 
lumen, restricting bacterial penetration into the host’s 
mucosal tissue. An example of  this is IgA[59]. With these 
peptides, the host shapes the gut microbiome and con-
trols the interaction between the host and microbiota 
(Figure 1).

INTESTINAL DENDRITIC CELLS AND 
MACROPHAGES: A COMPLEX 
DISTINCTION
Mononuclear phagocytes such as macrophages and DCs 
are the main cells involved in the maintenance of  tissue 
integrity as well as in the initiation and control of  innate 
and adaptive immune responses. Thus, they are crucial[60] 
to preserving homeostasis and preventing infections 
through the maintenance of  tolerance to dietary antigens 
and control of  commensal microorganisms and patho-
gens in the intestinal mucosa[61]. These phagocytes are 
distributed in lymphoid organs such as Peyer’s patches 
and MLNs and are also very abundant in the gut lamina 
propria[62], but their phenotypic characterization is not 
completely understood.

DC populations definition was initially proposed 
based on the expression of  the markers CX3CR1 (frac-
talkine receptor) and CD103 (αE integrin)[63], but the 
complexity of  markers has increased over time. Rivol-
lier et al[64] has shown that CD11c+ DCs can be divided 
into three populations: CD103+CX3CR1-CD11b- DCs, 
CD103+CX3CR1-CD11b+ DCs, and CD103-CX3C-
R1intCD11b+ DCs. Particularly, CD103+CX3CR1- DCs. 
These three populations, which also express CD11c and 
major histocompatibility complex Ⅱ (MHC Ⅱ), have 
been well characterized[61,65] and have generated great 
interest. Currently, there appears to be a consensus that 
CD11c+CD103+ MHCⅡ+ cells are the “bona fide” DCs 
of  the lamina propria[66] because of  their contribution to 
intestinal health, as described below.

DCs constantly survey the microenvironment and 
coordinate a balance of  maintaining immune tolerance 
to harmless antigens while mounting immune responses 
against enteric pathogens. Depending on from which 

bacterial strain components were derived, DCs can be 
stimulated, leading to either IL-12 secretion and a Th1 
response, or IL-10 secretion and a Th2 response, as will 
be detailed below. However, a controversy remains re-
garding whether the CX3CR1-expressing cell line is DCs 
or macrophages. Many groups still refer to these as DCs, 
whereas others categorize them as mononuclear phago-
cytes and others as macrophages[67]. Increasing evidence 
has shown that there are numerous subsets of  DCs and 
macrophages in the lamina propria[64,67].

In addition, it has been demonstrated that CD103+CX3CR1- 
DCs develop independently of  macrophage colony-stim-
ulating factor (M-CSF) but expand in response to fms-
like tyrosine kinase 3 ligand and GM-CSF[68]. These DCs 
appear to be the primary, if  not the only, population 
of  DCs that migrate to the MLNs through a CCR7-
dependent mechanism, and they are important for the 
induction of  oral tolerance and suppression of  the 
development of  colitis through the induction of  Treg 
cells[62,63,68-70]. These DCs have also been described to 
have the ability to generate and activate CD8+ T cells[71] 
with TGF-β production[70]. In addition, these cells pro-
duce the vitamin A metabolite retinoic acid (RA) in the 
gut[72]. RA production by DCs is enhanced by inflam-
matory stimuli and plays a role in immune homeostasis 
and maintenance of  intestinal tolerance in the steady-
state[73]. 

Kinnebrew et al[74] showed that the CD103+CD11b+ 
DCs from the lamina propria promote tolerance against 
food antigens and can rapidly produce IL-23 in response 
to flagellin in the lamina propria. In addition, Rivol-
lier et al[64] demonstrated that in ulcerative colitis, Ly6Chi 
monocytes infiltrate into the colon and differentiate 
into pro-inflammatory DCs that express CD103-CX3C-
R1intCD11b+ and secrete high levels of  IL-12, IL-23, 
iNOS, and tumor necrosis factor-α (TNF-α). This work 
showed that Ly6Chi monocytes have the ability to dif-
ferentiate into regulatory mononuclear phagocytes or 
inflammatory DCs in the colon. Zigmond et al[75], using 
an acute innate model of  colitis, showed that infiltrat-
ing Ly6Chi monocytes acquire two functionally distinct 
fates in the inflamed colonic lamina propria. Rather 
than giving rise to resident CX3CR1hi macrophages as 
in the healthy colon, the monocyte infiltrate initially dif-
ferentiates into CX3CR1intLy6Chi effector cells that sense 
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Figure 1  First line of defense of the intestinal 
barrier shapes the gut microbiota. Antimicrobial 
peptides are produced by Paneth cells, such as 
alpha-defensins, lysozyme C, phospholipases and 
C-type lectin, primarily regenerating islet-derived 
3-gamma (RegⅢγ) or by enterocytes (RegⅢγ). In 
the adaptive immunity scenario, system effectors 
are secreted into the intestinal lumen, restricting 
bacterial penetration into the host mucus and mu-
cosal tissue.
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bacterial products via TLRs and NOD2. The monocyte 
infiltrate gives rise to a phenotypically and functionally 
distinct CX3CR1intLy6Clo population that displays migra-
tory DC hallmarks such as uptake and processing of  
orally acquired antigens and priming of  naive CD4+ T 
cells. This process occurs with C-C chemokine receptor 
type 7 (CCR7) expression, which enables these cells to 
emigrate from the colonic lamina propria towards the 
draining lymph nodes. Recently, Cerovic et al[76] demon-
strated the presence of  two distinct subpopulations of  
CD103- DCs in the intestine. Similar to what is observed 
in CD103+ DCs, intestinal-derived CD103- DCs appear 
to be responsive to Flt3 and able to activate naive T 
lymphocytes, giving them a migratory phenotype. This 
presents a new mechanism for the rapid activation of  T 
effector responses in the intestine. 

In summary, CD103+ DCs act as sentinels. They 
sense inflammatory signals, capture luminal antigens, and 
migrate to MLNs to interact with T cells. DCs are key 
players in the intestinal mucosa, promoting tolerance, 
and immunity. Their plasticity and motility allows them to 
play multiple roles as they move from the lamina propria 
to the epithelium and, subsequently, towards the MLNs.

In contrast, CX3CR1+ cells that do not express 
CD103 were initially described as DCs in the distal il-
eum. These cells were shown by several studies to play a 
key role in capturing and transporting intestinal antigens 
to MLNs[63,77,78]. Furthermore, CX3CR1+ cells have an 
ontogeny that is distinct from CD103+ DCs and appear 
to be derived in an M-CSF-dependent manner[68]. Pro- 
and anti-inflammatory properties have been linked to 
CX3CR1+ cells from the lamina propria. Importantly, the 
CX3CR1+ cells from the lamina propria represent a het-
erogeneous group of  cells, which express high and low 
levels of  CX3CR1[63].

CX3CR1hi cells from the lamina propria were defined 
as macrophages because they did not have the ability to 
migrate to the MLNs[61]. Therefore, CX3CR1+ macro-
phages were thereafter known as residents of  the lamina 
propria. CX3CR1hi macrophages have been shown to 
contribute to intestinal homeostasis through commen-
sal bacteria recognition and the production of  anti-
inflammatory cytokines[79]. The absence of  CX3CR1 led 
to failure to establish oral tolerance; in other words, they 
cannot efficiently suppress local and systemic antigen-
specific immune responses upon exposure to food an-
tigens. These cells also appear to play an important role 
in the induction of  oral tolerance by expanding Foxp3+ 
Treg cells[80]. Both CX3CR1+ macrophages and Foxp3+ 
Treg cells are mostly abundant in the colon, whereas 
Foxp3+ Treg cells are scarce in the duodenum. The inter-
actions between these cells remain to be elucidated[81].

Medina-Contreras et al[82] demonstrated an important 
role for maintaining CX3CR1+ macrophage populations 
in the lamina propria preventing commensal bacteria 
translocation to MLNs, these cells limit Th17 responses 
in colitis. CX3CR1 knockout mice (KO) had reduced fre-
quencies of  lamina propria macrophages and exhibited 
markedly increased translocation of  commensal bacteria 

to MLNs. In addition, the severity of  dextran sodium 
sulfate (DSS)-induced colitis was drastically increased 
in the KO compared with the control mice. These cells 
appear to be important for protection against intestinal 
inflammation and gut barrier integrity. Interestingly, 
Diehl et al[83] showed that the CX3CR1hi mononuclear 
phagocytes of  the intestine, which had previously been 
shown to be non-migratory, were able to migrate into 
MLNs in the absence of  MyD88 or under conditions 
of  antibiotic-induced dysbiosis in a CCR7-dependent 
manner, carrying non-invasive bacteria captured from 
the intestinal lumen and inducing both T lymphocyte 
responses and IgA production to avoid inflammatory 
bowel disease. The microbiota seem to instruct the im-
mune system to inhibit migration of  bacteria to MLNs 
via CX3CR1hi cells. This mechanism leads to tolerance 
to commensal bacteria. Recently, using the expression 
of  CD64, Tamoutounour et al[84] also managed to distin-
guish macrophages from DCs in the lamina propria and 
in the MLNs. The authors identified the gamma chain 
IgG receptor high affinity FcyRI (CD64) as a marker to 
label intestinal macrophages. The authors showed that 
macrophages and DCs could clearly be discriminated by 
CD64 expression, even when the macrophages express 
CD11cint (CD64+) or when the DCs express CX3CR1int 
(CD64-). The expression of  CD64 in macrophages is 
induced by interferon (IFN)-γ and suppressed by IL-4. 
However, on the other hand, IL-10 also upregulates 
CD64 and might sustain CD64 expression on macro-
phages. In the last stage of  development in the lamina 
propria, macrophages express CD64+CD11b+CX3CR1hi. 
More importantly, it has been demonstrated that CD64 
can be used as a reliable marker of  macrophages in both 
the small and large intestine under steady-state condi-
tions and inflammatory responses[85].

CX3CR1+ macrophages and CD103+ DCs in the in-
testinal lamina propria have developed mechanisms to 
prevent exacerbated responses to commensal bacteria, 
but they can also respond to infection by pathogens. The 
effects of  gut microbiota in the cells of  the lamina pro-
pria, which are crucial in recognizing bacterial tolerance 
induction and orientation of  T cell responses, appear to 
be essential for the maintenance of  intestinal immune 
homeostasis. The plasticity of  dendritic cells, for ex-
ample, is extremely important for their ability to respond 
to microbial stimuli and the ability to capture luminal 
bacteria and migrate to MLN. In the lamina propria, 
macrophages are educated to acquire non-inflammatory 
characteristics. Interestingly, however, the expression of  
CX3CR1+ in macrophages that were isolated from colon 
differs considerably from those isolated from the duode-
num, jejunum and ileum, suggesting that the instructions 
that macrophages receive from these regions are variable. 
This makes it clear that distinct commensal populations 
in different regions of  the intestine give signals to these 
cells, influencing their profiles[86].

The role of  gut microbiota in macrophage and DC 
development is not clear. It is known that these cells par-
ticipate in the regulation of  intestinal immune responses 

22 February 15, 2014|Volume 5|Issue 1|WJGP|www.wjgnet.com

Caricilli AM et al . Microbiota, the immune system, and the intestinal barrier



against various microorganisms and diseases by produc-
ing several pro- and anti-inflammatory cytokines in an 
attempt to maintain intestinal homeostasis. This is an 
important topic for further investigation. A summary of  
these findings is illustrated in Figure 2A and B.

MICROBIOTA AND ITS ROLE ON TH17 
ACTIVATION
Th17 cells are a prominent population among the T cells 
present in the intestinal lamina propria that cooperate 
in maintaining intestinal homeostasis[87]. These Th17 
cells play a key role in mucosal host defenses as well as 
in the development of  autoimmune diseases[88]. Under 
steady-state conditions, Th17 cells are usually found in 
the lamina propria of  the small intestine, where Th17 
cells development depends on the presence of  dietary 
antigens and commensal flora[12]. These cells are a subset 
of  CD4+ T cells and primarily secrete IL-17, which has 
important effects on the intestinal epithelium, through 
improving the barrier function and stimulating mucin 
production, as well as on the function of  tight junctions 

and transport of  IgA to the lumen[89,90].
While accumulating evidence shows that Th17 cells 

play a role in the pathogenesis of  a variety of  inflamma-
tory conditions, there is considerable controversy con-
cerning whether they also contribute to the maintenance 
of  intestinal immune homeostasis. Both protective and 
pathogenic roles of  IL-17 have been reported in patients 
with inflammatory bowel disease (IBD) and in experi-
mental colitis in mice[91,92]. Patients with IBD often have 
increased levels of  IL-17, and IL-17 specific inhibition 
protected them from this disease[93].

It is important to note that during inflammatory con-
ditions, such as experimental autoimmune encephalo-
myelitis (EAE), the induction of  Th17 cells requires the 
following cytokines: IL-1β, IL-6, IL-23 and TGF-β1[88]. 
In addition to being present during the inflammatory 
response, a population of  T cells that expresses retinoic 
acid receptor, RORγT (which is a specific transcription 
factor of  Th17 cells), was also found under steady-state 
conditions (sTh17) in the lamina propria of  the small 
intestine[94], where they accumulate in the presence of  
luminal commensal microbiota.

An important role for these cells in the digestive 
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tract has been shown in RORγT KO mice, which lack 
both innate and Th17 cells. These mice displayed a 
large expansion of  lymphoid follicles in the intestine, 
had an increased number of  Th1 and IgG+ B cells and 
were extremely susceptible to DSS-induced colitis[95]. 
Moreover, Th17 cells are not found in the gastroin-
testinal tract of  germ-free mice, suggesting that this 
cell population is generated in response to the gut mi-
crobiota[96]. Segmented filamentous bacteria (SFB) are 
potent inducers of  Th17 in the intestine, despite being 
found in low frequency in the intestine[12]. Other com-
ponents of  the microbiota can also stimulate Th17 cells 
in the intestine, including the “Altered Schaedler Flora” 
(ASF), which comprises L. acidophilus (strain ASF 360), 
Lactobacillus salivarius (strain ASF 361), and Bacteroides 
distasonis (strain ASF 519) and several other species[14]. 
This stimulation depends on the host immune response 
and the exposure time. The induction of  Th17 cells 
in the intestinal lamina propria by SFB protects against 
Citrobacter infection by stimulating the production of  Reg
Ⅲγ defensins[12]. Nevertheless, SFB also increases the sus-
ceptibility to EAE, arthritis[97], colitis[98] and diabetes[99]. 
The exact mechanism by which SFB are able to induce 
Th17 differentiation in the intestine is not understood. 
Flagellins are potentially involved[100]. Colonization with 
SFB leads to increased IgA production and secretion; 
moreover, the colonization of  germ-free mice with SFB 
also increases the expression of  Th17 cells in the intes-
tine[12,101]. 

A recent study has shown that Candida albicans and 
Staphylococcus aureus induce the expression of  Th17 
cells and that these cells are able to produce IFN-γ and 
IL-10[102]. Furthermore, Shaw et al[103] showed that IL-1β 
induced by commensal bacteria is critical for the dif-
ferentiation of  Th17 cells in the intestine under steady-
state conditions. It is clear that the differentiation of  
Th17 cells is extremely complex and triggered by various 
ligands, such as microbial cells and innate cytokines. 
Th17 cells are double-edged swords: they can act as both 
protectors and aggressors, depending on the context. 
They are generated in response to microbiota, and they 
are able to induce the secretion of  pro- and anti-inflam-
matory cytokines with important effects on the intestine 
epithelium. Th17 cells are also important for maintaining 
homeostasis between the host and microbiota. A sum-
mary of  these findings is illustrated in Figure 2C.

GUT PERMEABILITY: AN UNCLEAR 
CONNECTION BETWEEN ALTERED 
GUT MICROBIOTA AND THE IMMUNE 
SYSTEM
The gastrointestinal tract is considered the largest sur-
face of  the human body that is in contact with the envi-
ronment. The mucosal barrier plays an important role in 
the selection of  luminal factors that are allowed to enter 
the body and those that are forbidden to enter because 

of  the danger they may pose. 
The mucosal barrier is composed of  a mucus layer, 

epithelial cells, and intercellular tight-junction proteins 
between these cells[104]. Tight junction proteins are key 
molecules for determining paracellular permeability; they 
form complex protein systems, which are organized by the 
transmembrane proteins occludin and claudins interact-
ing with zonula occludens proteins that bind to the actin 
cytoskeleton. When actin contracts, it leads to increased 
permeability to electrolytes and small molecules[105].

In the context of  inflammatory bowel syndrome 
(IBS), some studies have shown that the intestinal bar-
rier is compromised, and decreased expression and 
differential distribution of  tight-junction proteins are 
observed[106-110]. The nature of  the luminal or mucosal 
factors that affect the function of  tight junction proteins 
is still unclear. 

There is some evidence suggesting a role for the mast 
cell enzyme tryptase in the degradation of  the tight-
junction proteins and increased permeability because the 
infiltration and activation of  these cells are increased in 
IBS patients in association with higher output of  trypt-
ase from their mucosal biopsies[111]. Therefore, it is pos-
sible that these proteins are both expressed less because 
of  transcriptional/translational regulation and destroyed 
because of  increased tryptase output. Understanding the 
predominant mechanism involved may present a possi-
bility for interference as a potential therapy by improving 
the intestinal barrier in IBS. However, it is still unclear 
whether the altered gut microbiota found in IBS or the 
modulation of  intestinal immune cells may trigger detri-
mental effects on the gut barrier. Recent findings suggest 
that there is a complex interaction between alterations in 
microbiota and immune cell recruitment, which lead to 
physiological responses such as an altered gut barrier.

Some probiotic molecules appear to modulate chang-
es in host cell signaling. This scenario can be illustrated 
by the p40 and p75 proteins produced by LGG: they co-
modulate phosphoinositide 3-kinase (PI3K)/Akt signal-
ing[112]. When TNF-α, IL-1β and IFN-γ are secreted, p40 
protein and unidentified epidermal growth factor recep-
tor ligands stimulate the production of  Bcl2, stabilizing 
tight-junction proteins and promoting epithelial barrier 
function and cell survival[113].

TLR and NLR signaling triggered by MAMPs are 
likely to have roles in the production of  physical and 
chemical defenses in the small intestine, limiting the 
numbers of  mucosa-associated bacteria and prevent-
ing bacterial penetration of  host tissues. Some bacterial 
strains can also stimulate regulatory immune mecha-
nisms through the activation of  DCs and CD4+Foxp3+ 
T cells[114]. This phenomenon has been shown by a study 
in which Bifidobacterium breve led to the induction of  IL-
10-producing regulatory Tr1 cells in the colon via TLR2/
MYD88-dependent production of  IL-10 and IL-27 in 
CD103+ DCs[22]. WTA and LTA have also been shown 
to shift IL-10/IL-12 ratios in macrophages towards 
IL-10 via the TLR2/Extracellular signal-regulated kinase 
(ERK) signaling pathway[115].
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Functional changes of  epithelial cells can also be trig-
gered by bacterial components. LGG proteins p40 and 
p75 increase the resilience of  intestinal epithelial cells 
to cytokine-induced proapoptotic signals and induce a 
strengthening of  the epithelial barrier function involv-
ing the EGFR/PI3K/Akt/PKC pathway[113]. Another 
study has shown that the expression of  tight-junction 
in humans is modulated through TLR2 signaling[116]. 
Moreover, B-cell lymphoma-9, ERK3, c-Jun N-Terminal 
Protein Kinase and poly(Adenosine diphosphate-ribose) 
polymerase (PARP)14 have also been implicated in the 
signaling events induced by LGG consumption, leading 
to the induction of  IFN/STAT4 pathway activation and 
production of  T helper 1-type cytokines[117].

In the context of  obesity and metabolic syndrome, it 
is unclear how immune modulation occurs in the intes-
tine, despite numerous lines of  evidence showing that 
intestinal barrier disruption is associated with alterations 
in the gut microbiota[118-121]. Conversely, other models, 
such as colitis and inflammatory bowel disease, have 
shed light on mechanisms that potentially orchestrate the 
modulation of  the immune system by the microbiota, 
which may be very useful for understanding gut barrier 
alterations in models of  obesity. 

Other studies have shown that the endocannabi-
noid system is also involved in the regulation of  the gut 
barrier and inflammation. Metabolic endotoxemia and 
systemic inflammation are suppressed by 2-arachidon-
oylglycerol; these phenomena are potentiated by 2-pal-
mitoylglycerol. In addition, 2-oleoylglycerol leads to the 
release of  gut peptides from intestinal L-cells, such as 

the glucagon-like peptide 2, which is associated with the 
regulation of  gut barrier function[120].

Although some investigations have led to the hypoth-
esis that Gram-negative bacteria may be involved in trig-
gering metabolic endotoxemia and, therefore, in wors-
ening the condition of  the intestinal barrier[119-123], it is 
plausible that mechanisms other than lipopolysaccharide 
(LPS) are responsible for this. This is illustrated by the 
study that showed that Akkermansia muciniphila, a Gram-
negative bacterium, decreased metabolic endotoxemia, 
which was induced by a high-fat diet, through increasing 
levels of  endocannabinoids that control inflammation, 
the gut barrier and the gut peptide secretion[121]. A sum-
mary of  these findings is illustrated in Figure 3.

PROBIOTICS: EPITHELIUM, IMMUNE 
RESPONSES AND THERAPEUTICS
Probiotics have been described as a “beneficial live 
microbial supplement which improves the intestinal 
microbial balance”[124]. The mechanisms of  action of  
probiotics have been thoroughly discussed. It has been 
demonstrated that they are capable of  modulating the 
permeability of  epithelial barriers, changing the inflam-
matory potential of  epithelial cells, or directly modulat-
ing the activity of  immune cells[125-127]. 

The immune system of  the intestinal mucosa plays 
a key role in defending against pathogens. The potential 
role of  probiotics in the function of  immune cells, such 
as DCs, suggests that certain species of  probiotics could 
be used to modify T lymphocyte responses[128]. Certain 
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probiotics that have the property of  inhibiting IL-12 se-
cretion can be extremely important in Th1-mediated dis-
eases due to their ability to restore the homeostasis of  the 
intestinal immune system[129,130]. Probiotics have also been 
described as being capable of  inducing Foxp3+ Treg cells 
or developing TGF-β-bearing Treg cells[131,132]. Further-
more, stimulation of  the immune system with probiotics 
can contribute to the production of  IL-10, an essential 
cytokine for intestinal homeostasis maintenance[22,115,132]. 
Moreover, probiotics have been described as antagonists 
of  pathogenic bacteria because they trigger effects such 
as reduction of  luminal pH, inhibition of  bacterial adher-
ence, and production of  antimicrobial molecules[4].

The use of  probiotics can promote improvement 
in several diseases; for example, they cause diminished 
symptoms of  IBD[124]. Most of  the currently used probi-
otics belong to the genera Lactobacillus and Bifidobacterium. 
In EAE mouse models, L. paracasei and L. plantarum 
induced CD4 + CD25 + Foxp3 + T cells in the mesenteric 
lymph nodes, leading to increased TGF-β expression and 
reduced inflammation in the central nervous system[132]. 
Other studies have confirmed this immunomodulatory 
effect of  Lactobacillus, showing that it leads to augmenta-
tion of  IL-10 levels[129,132,133] and to a reduction of  pro-in-
flammatory cytokines such as IL-6 and TNF-α[134]. Other 
probiotics are able to inhibit NF-κB, such as L. plantarum, 
suggesting that it induces tolerance to food antigens[135].

Some studies also highlight Lactobacillus as an ac-
tivator of  conventional DCs and Bifidobacterium as an 
activator of  CD103+ DCs[70]. Bermudez-Brito et al[136] 
showed that Lactobacillus paracasei Collection Nationale 
de cultures de microorganismes I-4034 treatment led to 
a suppressed pro-inflammatory cytokine and chemokine 
profile in human intestinal DCs challenged with Salmo-
nella in a TLR2-dependent manner. In addition, probi-
otics may induce functional changes in epithelial cells. 
It is not clear which soluble factors are released in the 
conditioned medium by LGG, but they are suggested as 
regulators of  the expression of  heat shock proteins 25 
and 72 in intestinal epithelial cells in vitro[137], conferring 
protection against oxidative stress-mediated apoptosis. 
Another probiotic, L. plantarum WCFS1, modulates 
the expression of  tight junction proteins in humans via 
TLR2 signaling pathways[116]. Probiotics may also lead 
to increased production and secretion of  IgA through 
modulating cytokine expression in the intestine[138].

INTERACTIONS BETWEEN MICROBIOTA, 
THE IMMUNE SYSTEM AND ORGANS
Despite our growing understanding about the conse-
quences of  the host-microbiota interaction for the im-
mune function in the intestine, the extent to which the 
intestinal flora contribute to immunity at distal sites re-
mains an enigma. 

The skin provides the first line of  defense by the 
host immune system against invading pathogens. There 
are several commensal communities residing on the 

skin[139]; inflammatory skin diseases, such as psoriasis and 
dermatitis, have been associated with imbalanced skin 
microbiota[140,141]. 

Naik et al[142] showed that the commensal microbiota 
of  the skin is necessary for an appropriate immune re-
sponse. Protective immunity to a pathogen on the skin 
was considered critically dependent on the microbiota of  
the skin, and not of  the intestine. These cutaneous com-
mensal microorganisms exert their effects by increasing 
IL-1 signaling and amplifying responses according to the 
site of  inflammation. Therefore, through their ability to 
promote IL-1 signaling and, thus, the function of  effec-
tor T cells, commensals of  the skin are likely drivers and 
amplifiers of  pathologies of  the skin[142]. 

Commensal bacteria, such as Streptococcus epidermidis, 
produce ligands that are capable of  activating the TLR 
pathway. To investigate whether commensal bacteria 
influence the skin inflammatory response, Lai et al [143] 
treated primary human keratinocytes with a TLR ligand, 
poly(I:C), which was able to activate TLR3 signaling, 
causing an increase in the expression of  TNF-α and 
IL-6. The authors also observed that staphylococcal 
lymphotoxin is a selective suppressor of  TLR3-mediated 
inflammation in the skin.

The investigation of  lung microbiota is relatively new 
and may lead to new discoveries about respiratory diseas-
es. The lungs of  healthy humans were previously believed 
to be sterile. However, studies have shown that the lungs 
of  healthy patients are colonized by some communities 
of  bacteria[144,145]. The results of  published studies dif-
fer, but Proteobacteria, Firmicutes and Bacteroidetes are 
commonly identified at the phylum level. At the genus 
level, Pseudomonas, Streptococcus, Prevotella, Veillonella and Fu-
sobacteria predominate with minor contributions from po-
tential pathogens, including Haemophilus and Neisseria[146].

Low levels of  bacterial products can be detected in 
systemically infected patients and, to a lesser degree, in 
healthy people, suggesting that the products of  intesti-
nal microbiota can activate TLR and NLR in the liver. 
Numerous studies indicate that macrophages are also 
sensitive to physiologically relevant levels of  microbial 
products reaching the liver as these cells respond to low 
concentrations of  LPS through the activation of  NF-κB 
and production of  pro-inflammatory cytokines[147]. 

Alteration of  the permeability of  the intestine is the 
primary means by which intestinal microbiota alterations 
activate innate immunity in the liver. Therefore, liver in-
jury mediated by endotoxin can be reversed by removing 
Kupffer cells or by neutralizing TNF-α with anti-TNF-α 
antibody[148]. Recent evidence also demonstrated the 
involvement of  microorganisms in less severe forms of  
liver disease. More specifically, intestinal microbiota can 
have a central role in liver fibrosis as evidenced by results 
with mice showing that chemically induced fibrosis is as-
sociated with increased bacterial translocation[149]. 

CONCLUSION
Understanding the interaction between commensal mi-
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croorganisms and the host contributes to comprehend-
ing the functionality of  a new organ, the microbiota, 
which is responsible for the maturation and modulation 
of  many systems, such as the immune and metabolic 
systems. Although many of  these microorganisms per-
form functions that are essential for maintaining the 
homeostasis of  the immune system, they pose a threat if  
the intestinal barrier is impaired and may lead to numer-
ous pathologies, such as inflammatory bowel disease and 
metabolic syndrome. Further investigations are necessary 
to increase the understanding of  how the microbiota in-
fluence the development of  the immune system and cell 
differentiation as well as how these changes are able to 
stimulate responses in distant organs.
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