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Abstract
Helicobacter pylori  (H. pylori ) infection is one of the 
most common infections in human beings worldwide. H. 
pylori  express lipopolysaccharides and flagellin that do 
not activate efficiently Toll-like receptors and express 
dedicated effectors, such as γ-glutamyl transpeptidase, 
vacuolating cytotoxin (vacA), arginase, that actively 
induce tolerogenic signals. In this perspective, H. pylori 
can be considered as a commensal bacteria belonging 
to the stomach microbiota. However, when present in 
the stomach, H. pylori  reduce the overall diversity of 
the gastric microbiota and promote gastric inflammation 
by inducing Nod1-dependent pro-inflammatory program 
and by activating neutrophils through the production 
of a neutrophil activating protein. The maintenance of 
a chronic inflammation in the gastric mucosa and the 
direct action of virulence factors (vacA and cytotoxin-
associated gene A) confer pro-carcinogenic activities 
to H. pylori . Hence, H. pylori  cannot be considered as 
symbiotic bacteria but rather as part of the pathobiont. 
The development of a H. pylori  vaccine will bring health 
benefits for individuals infected with antibiotic resist-
ant H. pylori  strains and population of underdeveloped 
countries.
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Core tip: Helicobacter pylori  (H. pylori ) infection is one 
of the most common infections in human beings world-
wide. H. pylori  actively induce tolerogenic signals and 
can be considered as a commensal bacteria belong-
ing to the stomach microbiota. However, H. pylori  also 
promote a chronic inflammation in the gastric mucosa 
and the direct action of virulence factors confers pro-
carcinogenic activities to H. pylori . Hence, H. pylori 
cannot be considered as symbiotic bacteria but rather 
as part of the pathobiont. The development of a H. 
pylori  vaccine will bring health benefits for individuals 
infected with antibiotic resistant H. pylori  strains and 
population of underdeveloped countries.
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INTRODUCTION
Helicobacter pylori (H. pylori) infection is one of  the most 
common infections in human beings worldwide[1]. After 
entering the stomach, this spiral, Gram-negative, micro-
aerophilic bacterium penetrates the mucus gastric layer[2] 
but does not traverse the epithelial barrier[3], and there-
fore it is considered as a non-invasive bacteria. Most of  
H. pylori organisms are free living in the mucus layer, but 
some organisms attach to the apical surface of  gastric 
epithelial cells[3] and small numbers have been shown to 
invade epithelial cells[4]. Humans carry an estimated of  
104 to 107 H. pylori CFU per gram of  gastric mucus[5].
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Upon infection, H. pylori uses urease and α-carbonic 
anhydrase to generate ammonia and HCO3

2- which miti-
gate the effects of  low pH[6,7]. Moreover, thanks to its 
flagella and shape, H. pylori penetrate the mucus layer. 
H. pylori null mutant defective in production of  flagella 
are unable to colonize gnotobiotic piglets[8]. Once estab-
lished in the inner mucus layer, several outer membrane 
proteins, including BabA, SabA, AlpA, AlpB and HopZ 
can mediate bacterial adherence to gastric epithelial 
cells. Once attached, bacterial effector molecules, both 
secreted [vacuolating cytotoxin (VacA) and cytotoxin- 
associated gene A (CagA)] or attached [components of  
the type Ⅳ secretion system (CagL)], modulate gastric 
epithelial cell behaviour leading to loss of  cell polarity, 
release of  nutrients and chemokines [e.g., interleukin 
(IL)-8], and regulation of  acid secretion via control of  
gastrin and H+/ K+ ATPase[9,10].

The infections are acquired during childhood; frequent 
clonal transmission of  H. pylori between first degree rela-
tives demonstrates intra-familial transmission of  H. pylori 
in developed countries. In developing world, members 
of  the same family can be infected with widely diverse 
strains, and multiple infections were common arguing 
for horizontal transmission of  H. pylori infection[11]. Af-
ter ingestion, there is a period of  intense bacterial prolif-
eration and gastric inflammation. Concomitant with the 
intense gastritis is hypochlorhydria. Fecal shedding of  H. 
pylori is maximal during this period, facilitating transmis-
sion to new hosts. Ultimately, the inflammatory response 
is reduced to a low-level stable state, normal gastric pH 
is restored, and most of  the infected person becomes 
asymptomatic[12]. This outcome persists for years or 
decades and appears to predominate in the population. 
Depending on H. pylori virulence factors, environmen-
tal factors and the host response to bacterial infection, 
H. pylori infection can be associated with several clini-
cal complications such as gastritis, peptic ulcer disease, 
gastric cancer and mucosa-associated lymphoid tissue 
(MALT) lymphoma[13-15]. H. pylori eradication therapies 
have revolutionised the natural course of  peptic ulcer 
disease[13]. Antibiotic treatment of  H. pylori infection is 
relatively successful, with the organism being eradicated 
from around 80% of  patients[16].

IMMUNE RESPONSE TO H. PYLORI 
INFECTION
Immune responses to H. pylori infection have been stud-
ied in twenty adult volunteers experimentally infected 
with H. pylori[17]. Gastric biopsies performed 2 wk after 
infection showed infiltration of  lymphocytes and mono-
cytes, along with significantly increased expression of  
IL-1, IL-8, and IL-6 in the gastric antrum[17]. Anti-H. 
pylori immunoglobulin (Ig)M and IgG responses were 
detected in the serum of  infected individuals. In addi-
tion, 4 wk after infection, the numbers of  gastric CD4+ 
and CD8+ T cells were increased compared to preinfec-
tion levels[18]. These data provide evidence that gastric 

and systemic immune responses develops within a short 
period of  time after H. pylori infection.

Gastric mucosal biopsies from humans persistently 
infected with H. pylori reveal an increased infiltration of  
various types of  leukocytes compared to biopsies from 
uninfected humans[19]. Lymphocytes (T and B cells), 
monocytes, eosinophils, macrophages, neutrophils, mast 
cells and dendritic cells are usually present[19,20]. B cells 
and CD4+ T cells together with dendritic cells (DC) 
sometimes organize into lymphoid follicles[21] reflect-
ing ongoing antigen presentation and chronic immune 
responses. H. pylori-specific CD4+ T cells are detectable 
in the gastric mucosa and peripheral blood of  infected-
individuals but not uninfected humans[22]. Levels of  
cytokines [interferon-γ (IFN-γ), tumor necrosis factor-α 
(TNF-α), IL-1, IL-6, IL-7, IL-8, IL-10, and IL-18] are 
increased in the stomach of  H. pylori-infected humans 
compared to uninfected humans[23]. IL-4 has not been 
detected in the gastric mucosa of  most H. pylori-infected 
individuals[24]. Therefore, it has been concluded that H. 
pylori infection leads to a T helper cell (Th)1-polarized 
response. H. pylori infection has also been associated 
with upregulation of  IL-17A expression in the gastric 
mucosa[25]. IL-17A is the most widely studied member 
of  the IL-17 family of  cytokines (IL-17A-F), and is 
produced by Th17 CD4+ T cells as well as other subsets 
of  immune cells[26]. Extracellular bacterial and fungal 
infections elicit strong IL-17A responses that stimulate 
stromal and epithelial cells to release pro-inflammatory 
cytokines and chemokines, e.g., TNF-α, IL-1β, IL-6, 
CXCL1, CXCL2, CCL2, CCL7, CCL20, which recruit 
neutrophils, macrophages and lymphocytes to the site of  
infection[27]. Furthermore, it has been described that H. 
pylori infection also leads to the generation of  regulatory 
T cells (Treg)[28-30]. Depletion of  Treg through injection 
of  anti-CD25 antibodies to mice before H. pylori infec-
tion promoted gastritis and reduced bacterial load[31]. 
Very elegant studies originated from the group of  PD 
Smith clearly showed that in children[30,32], H. pylori in-
fection is associated with low Th17 and Th1 responses, 
high Treg response and reduced gastritis as compared 
with adults, suggesting that H. pylori specific Treg play 
key roles in bacterial persistence.

Associated with cellular responses, a humoral im-
mune response is elicited in nearly all H. pylori-infected 
humans[33]. Serum IgA and IgG antibodies in chronically 
infected persons are directed toward many different H. 
pylori antigens[33]. A local antibody response directed to-
ward H. pylori antigens is also detectable with chronic H. 
pylori infection. These subjects have remarkably higher 
frequencies of  total IgA- and IgM-secreting cells than 
the noninfected subjects, while the frequencies of  IgG-
secreting cells were virtually the same in the different 
groups[34]. Notably, H. pylori infection induces autoanti-
bodies reactive with gastric epithelial cells, which could 
drive gastritis[35]. These autoantibodies could be directly 
cytolytic to epithelial cells through activation of  comple-
ment, inducing apoptosis or triggering an antibody-
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dependent cellular cytotoxicity reaction leading to the 
tissue destruction.

GASTRO-INTESTINAL TRACT IMMUNE 
DEFENCES
H. pylori colonizes the gastro-intestinal tract, thus there 
is a need to study the immune responses directed toward 
H. pylori in the context of  the general functioning of  the 
gastro-intestinal tract immune defences. In the following 
paragraph, we will briefly summarize our current un-
derstanding of  the functioning of  the mucosal immune 
responses.

The mucosal defences are multiple and might be physi-
cal, chemical and immune-mediated. The mucosal epi-
thelium blocks invasion by pathogenic and commensal 
bacteria by forming multiple layers of  physical (tight 
junctions), chemical nitric oxide and immune protec-
tion (local secretion of  defensins, anti- and/or pro-
inflammatory chemokines/cytokines and IgA/IgG/IgM 
transport). In addition, numerous bone marrow-derived 
cells belonging to the innate or adaptive immune systems 
colonized the intestinal mucosa to fight the invaders, but 
at steady state the same cells have to tolerate commen-
sals.

IgA response
A major defensive mechanism that excludes commen-
sals and pathogens from the mucosal surface involves 
IgA[36]. Mucosal IgA comprises antibodies that recognize 
antigens with high- and low-affinity binding modes. In 
general, high-affinity IgA neutralizes microbial toxins 
and invasive pathogens, whereas low-affinity IgA con-
fines commensals in the intestinal lumen. High-affinity 
IgA is thought to emerge in Peyer’s Patches (PPs) and 
mesenteric lymph nodes (MLNs) from follicular B cells 
stimulated via T cell-dependent pathways, whereas low-
affinity IgA likely emerges in PPs, MLNs and lamina 
propria from B cells stimulated via T cell-independent 
pathways[36]. IgA response is powerfully induced by the 
presence of  commensal microbes in the intestine[37,38] 
and has been shown to promote the maintenance of  
appropriate bacterial communities in specific intestinal 
segments[39]. In contrast to the lungs, vagina and most 
of  the gastrointestinal tract, the healthy mammalian 
stomach produces very low level of  polymeric immu-
noglobulin receptor (pIgR)[40,41], the receptor mediating 
IgA transport into the gastrointestinal lumen. Studies 
in H. pylori-infected humans have shown that baseline 
pIgR expression by the gastric epithelium can be up-
regulated in response to gastric inflammation[42] due to 
increased local IFN-γ production[43]. However, despite 
significantly increased pIgR expression and IgA plasma 
cell infiltration in response to H. pylori infection[44] there 
is no concomitant increase in IgA secretion into the 
stomach; and it is non-secretory monomeric IgA which 
predominates in the stomach of  H. pylori-infected indi-
viduals[45]. Hence, the IgA that is present in the gastric 

lumen would be unstable, susceptible to degradation by 
proteases. These observations suggest that, the stomach 
anti-H. pylori IgA responses do not play similar biological 
roles as compared with anti-commensal or anti-pathogen 
IgA response taking place in the intestine.

IgG response
In unmanipulated specific pathogen-free animals it has 
been showed that there was no specific serum IgG re-
sponse detectable directed against commensal bacteria[46]. 
In pathogen-free mice, the systemic immune system ap-
peared to remain ignorant of  the commensal microbes. 
However, in human, a certain degree of  systemic expo-
sure to gut commensal bacteria and the associated prim-
ing of  systemic immune response seems to be well tol-
erated, harmless and common in healthy humans since 
systemic antibody responses against live gut commensal 
bacteria and fungi can be detected[47]. Most of  the H. 
pylori infected individuals develop systemic anti-H. pylori 
IgG responses[18]. Recently, Ben Suleiman et al[48] detected 
the expression of  neonatal Fc receptor in gastric epithe-
lial cells, this receptor was shown to transport IgG into 
gastric secretion. These results indicate that systemic 
anti-H. pylori IgG response might gain access to the gas-
tric mucosa and exert some anti-bacterial and/or pro-
inflammatory activities.

CD4+ T cell responses
Since H. pylori is an extra-cellular bacteria, anti-H. pylori 
specific CD8+ T cell responses are inadequate to protect 
the host against such pathogen. Hence, in this review we 
will only describe the priming of  CD4+ T cell response. 
As discussed above for IgA response, CD4+ T cell re-
sponses are initiated within the PPs and MLNs. DC 
capture, process and present antigens to naive T cells in 
PPs and MLNs. In the stomach, DCs are penetrating the 
mucosa[49] to sample luminal antigens and migrate to the 
stomach lymph node[50].

At steady state, mucosal CD4+ T cells are tolerant 
to microbiota-derived antigens[51]. Remarkably, systemic 
CD4+ T cells are not tolerant to microbiota-derived an-
tigens and conserved a naïve state to these antigens[52]. 
It has recently been suggested that antigen-specific in-
testinal IgA play a critical role in inhibiting the systemic 
CD4+ T-cell responses to commensal antigens by pro-
viding immune exclusion[51].

At mucosal surfaces, DCs maintain homeostasis by 
dampening inflammatory Th1 and Th17 cell respons-
es[53]. Mucosal DCs are particularly skilled in eliciting 
these anti-inflammatory responses because they receive 
conditioning signals from intestinal epithelial cells 
(IECs)[54,55]. One of  these signals is provided by thymic 
stromal lymphopoietin (TSLP), that shifts the Th1/Th2 
balance toward Th2 polarization by attenuating DC 
production of  IL-12 but not of  IL-10[56]. In addition to 
TSLP, IECs release transforming growth factor (TGF)-β 
and retinoic acid, which stimulate the development of  
CD103+ DCs[53]. These DCs promote the formation of  
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Treg cells via TGF-β and retinoic acid and suppress the 
development of  inflammatory Th1 and Th17 cells[53].

In addition to initiating responses that create an over-
all tolerant state towards harmless intestinal antigens, 
mucosal DCs are also implicated in the generation of  
protective immune responses aimed at the clearance of  
enteric pathogens. A fundamental difference between 
the steady state and a state of  infection may lie in the 
greater propensity of  pathogens to invade and penetrate 
beneath the epithelial-cell layer. Invasion of  IECs would 
allow for the activation of  cytosolic pattern-recognition 
receptors, TLRs and both quantitative and qualitative 
changes in the secretion of  pro-inflammatory cytokines 
and chemokines. Consistent with this, IECs produce 
CXC-chemokine ligand 8 (CXCL8) when infected with 
strains of  Salmonella spp. that are both invasive and flag-
ellated[57]. CXCL8 may serve to attract neutrophils to the 
site of  infection, furthering the inflammatory milieu. As 
a result, the rate of  blood-borne DC precursors migrat-
ing into the tissues and becoming DCs will increase. 
These cells will not have been subjected to IECs condi-
tioning and can be directly activated by a combination of  
pathogens that have breached the epithelial-cell barrier 
and the pro-inflammatory cytokine milieu. Experimental 
data support this scenario; human monocyte-derived 
DCs conditioned with IEC supernatants are impaired in 
their ability to secrete IL-12 and drive Th1-cell responses 
following exposure to pathogenic Salmonella spp[56] but 
can drive Th1-cell responses if  they encounter bacteria 
before conditioning by IEC-derived factors. One other 
possible route for the generation of  protective immunity 
to pathogens may be the uptake of  pathogenic species 
by DCs that are normally resident in the MLNs. In this 
respect, CD103- MLN DCs have been shown to produce 
higher levels of  pro-inflammatory cytokines than their 
intestinal-derived CD103+ counterparts and drive IFNγ 
and IL-17 production by CD4+ T cells[53].

Collectively, since H. pylori is mostly a non-invasive 
bacteria living within the stomach mucosa, these ob-
servations suggest that, the CD4+ T cells responses di-
rected against H. pylori, initiated within PPs, MLNs and 
stomach draining lymph node, might be naturally more 
tolerogenic than pro-inflammatory. This assumption is 
corroborate by the recent demonstration that in chil-
dren, H. pylori infection is associated with low Th17 and 
Th1 responses and high Treg response[32]. However, the 
detection of  H. pylori specific Th17/Th1 in chronically 
infected individuals[24,25] shows that the initial tolerogenic 
response is progressively lost, showing that with time the 
mucosal immune system identified H. pylori as a patho-
gen.

Intra-epithelial lymphocytes, innate immune cells and 
others
Intra-epithelial cells[58], innate immune cells[59], natural 
killer cells[60], neutrophils[61], mast cells[62], eosinophils[63], 
macrophages[64], monocytes[64], suppressive myeloid cells[65] 
are playing roles in the functioning of  the mucosal im-

mune system, however due to space limitation we will 
not discuss their roles in the context of  H. pylori infec-
tion.

STOMACH MICROBIOTA
It was previously admitted that the stomach was a sterile 
organ and that pH values < 4, peristalsis and high bile 
concentration were able to sterilize the stomach, but in 
the past 30 years with the discovery of  H. pylori it is now 
known that the stomach supports a bacterial community 
with hundreds of  phylotypes[66-68] Although, the stom-
ach, along with the esophagus and the duodenum, are 
the least colonized regions of  the gastro-intestinal (GI) 
tract, in contrast to the high bacterial counts (1010 to 1012 
CFU/g) observed in the colon. While it has been pos-
tulated that the indigenous stomach microbiota might 
be a reflection of  transient bacteria from the mouth and 
esophagus, three separate studies demonstrated that in 
spite of  high inter-subject variability, the gastric micro-
biota were distinguishable from microbiota found in the 
mouth, nose, and distal GI tract[69]. The most abundant 
phyla in H. pylori positive subjects are Proteobacteria, Fir-
micutes and Actinobacteria. In the absence of  H. pylori, the 
most abundant phyla are Firmicutes, Bacteroidetes and Ac-
tinobacteria[69].

In the gastro-intestinal tract, the microbiota has a 
major impact on the functioning of  the mucosal im-
mune system and vice versa. Germ-free mice have small 
size of  PPs, decrease number of  lamina propria IgA 
secreting-plasmocytes, low levels of  serum immunoglob-
ulin and demonstrate no Th17/Th1 in the intestine[70]. 
The composition of  the intestinal flora modulates the 
functioning of  the immune system, for instance, the 
presence of  Segmented filamentous bacteria (SFB) in the mi-
crobiota is associated with the development of  Th17 in 
the intestinal lamina propria[71]. The presence of  some 
Clostridia strains within the human intestinal microbiota 
has been recently associated with the development of  
intestinal Treg[72]. In addition, some commensal bacte-
ria and microbiota-derived metabolites like short-chain 
fatty acids have been shown to inhibit inflammatory 
reactions at intestinal levels and promote pathogen clear-
ance[59,73,74]. Inversely, defects in antibody response lead 
to a modification of  the bacterial composition of  the 
intestinal flora[39]. Collectively, these observations suggest 
that the colonization of  the stomach mucosa by H. pylori 
and/or the associated microbiota might also impact the 
functioning of  the immune system of  the host and vice 
versa.

TOLEROGENIC ACTIVITIES OF H. PYLORI
Studies indicate that H. pylori-derived factors are capable 
to inhibit T-cell proliferation. Using normal T cells and 
Jurkat cells, a human T-cell line, it was demonstrated 
that VacA interfered with calcium-signaling events in-
side the cell and prevented activation of  the calcium-
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dependent phosphatase calcineurin[75,76]. The subsequent 
dephosphorylation of  nuclear factor of  activated T 
cells (NFAT), a transcription factor that regulates im-
mune responses, was suppressed resulting in inhibition 
of  IL-2 expression and proliferation of  T cells. Similar 
anti-proliferative effect on T cells was reported for the 
γ-glutamyl transpeptidase (γ-GGT), this immunosup-
pressive factor inhibits T-cell proliferation by induction 
of  a cell cycle arrest in the G(1) phase[77]. In addition to 
VacA and γ-GGT, H. pylori arginase can impair T-cell 
function during infection. Using Jurkat T cells and hu-
man normal lymphocytes, it was found that a wild type H. 
pylori strain, but not an arginase mutant strain, inhibited 
T-cell proliferation, depleted L-arginine, and reduced the 
expression of  the CD3 chain of  the T-cell receptor[78]. 
Most (80%-90%) H. pylori strains display Lewis blood-
group antigens on their LPS, and these are similar to the 
Lewis blood-group antigens that are expressed on the 
mucosal surface of  the human stomach[79]. Lewis posi-
tive H. pylori variants are able to bind to the C-type lectin 
DC-SIGN and present on gastric DCs, and demonstrate 
that this interaction blocks Th1 development[80].

In addition to suppress T cell activation, H. pylori has 
been demonstrated to decrease the functioning of  the 
innate immune system. For instance, efficient phagocy-
tosis and killing of  H. pylori is prevented by the presence 
of  the cag pathogenicity island[81,82] and H. pylori induces 
but survives the extracellular release of  oxygen radicals 
from professional phagocytes using its catalase activity[83]. 
Importantly, at the opposite to the LPS and flagellins of  
others gram-negative bacteria, the LPS and flagellins of  
H. pylori do not adequately activate the antigen present-
ing cells via the Toll-like receptors[84,85].

Collectively, H. pylori counteract innate and T cell 
responses and clearly exhibited tolerogenic activities 
on the immune system. It can be suggested that these 
tolerogenic activities participate to the H. pylori persis-
tence within the stomach mucosa.

VACCINE-INDUCED PROTECTIVE 
IMMUNE RESPONSES
H. pylori infection is the main cause of  gastritis, peptic 
ulcers, and gastric adenocarcinoma. It is believed that 
H. pylori contributes to gastric cancer development by 
direct action of  its virulence factors and indirectly by 
initiation and maintenance of  a chronic inflammation in 
the gastric mucosa[86]. Hence, gastroenterologists use a 
combination of  anti-secretory and antimicrobial agents 
to eradicate H. pylori[16]. Similar to other antimicrobial 
treatments, the therapy may select resistant H. pylori 
strains[16]. Therefore, alternative therapies to eradicate H. 
pylori infection have been evaluated like the development 
of  a vaccine against H. pylori.

In the seminal work reported in 1990 by Lee et al[87] 

demonstrated the feasibility to study different aspects of  
the pathology and the immune response induced by Heli-
cobacter species in mice. These investigators using germ-

free mice and H. felis, a bacteria that naturally infects cats 
and dogs, achieved successful long-term colonization 
and associated gastritis in these mice. This model be-
came very popular and a large number of  immunization 
studies were performed in H. felis infected mice. This 
was made possible by the fact that vaccine candidate 
antigens are shared between H. felis and H. pylori species 
(i.e., urease and heat shock proteins). Thereafter, H. pylori 
strains have been adapted to the mouse stomach and 
this experimental model reproduces several aspects of  
the human infection[88-90]. Successful colonization with H. 
pylori has been reported in rats, guinea pigs, Mongolian 
gerbils, Gnotobiotic pigs, cats and Beagle dogs[90]. H. 
pylori naturally infects some species of  nonhuman pri-
mates, with pathological changes in the stomach result-
ing from H. pylori infection being very similar to those 
observed in humans[91].

Numerous studies in animals suggested that T cells, 
mast cells and neutrophils are of  prime importance for 
protection, while B cells (antibodies) are dispensable for 
protection[61,62,92,93]. However some studies suggested that 
antibodies can also participate to the vaccine-induced H. 
pylori clearance in some circumstances[94-98]. Indeed, vac-
cination-induced protection against H. pylori in mice re-
quires major histocompatibility complex class II-restrict-
ed CD4+ T cells[90,92], Th-1, Th-2 and/or Th-17 CD4+ T 
cell responses and the α4β7 integrin-mediated homing 
process[99] have been implicated in protection[100-103]. Re-
cently, the production of  IL-17, by Th17 cells, has been 
clearly identified as a key player in the vaccine-induced 
H. pylori clearance. IL-17 has also been linked to neutro-
phil recruitment and activation through the induction of  
granulocyte-stimulating factor and IL-8[104] and to resis-
tance against extracellular microbial infections[105], lead-
ing to the conclusion that IL-17 production by H. pylori 
specific Th17 cells can mediate the vaccine-induced H. 
pylori clearance (Figure 1).

Collectively, it was clearly demonstrated that H. pylori 
infections could be substantially prevented, reduced or 
even eliminated by prophylactic and therapeutic mucosal 
and systemic vaccinations[106-110]. This result is of  great 
interest not only for the development of  H. pylori vaccine 
but also for vaccine strategy aimed at clearing commen-
sal bacteria with genotoxic and mutagenic activities[111].

CONCLUSION
H. pylori can be considered as a commensal bacteria be-
longing to stomach microbiota. Indeed, H. pylori promote 
the generation of  H. pylori specific Treg. The tolerogenic 
environment created by H. pylori might explain that 
H. pylori seropositivity was inversely related to recent 
wheezing, allergic rhinitis, dermatitis, eczema, asthma or 
rash[112]. Very elegant pre-clinical studies conducted by 
the group of  A Müller recently gave support to this as-
sumption by showing that H. pylori infection during the 
neonatal period promote the development of  Treg re-
sponses that protect adult mice from asthma[113]. Hence, 
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Figure 1  Schematic representation of the vaccine-induced Helicobacter pylori clearance. During Helicobacter infection of vaccinated hosts, memory T helper 
(Th)17 cells (mTh17) are primed by protease-activated receptor (PAR)2-dependent dendritic cell (DC)[126] directly in the stomach and/or in the stomach draining lymph 
nodes (conventional DCs). Effector memory Th17 cells originated from the stomach and/or from the stomach draining lymph nodes will produce high levels of inter-
leukin (IL)-17 leading to recruitment of neutrophils and to Helicobacter clearance. In naïve hosts, DCs mainly prime regulatory T cells (Treg), leading to Helicobacter 
persistence.
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H. pylori, like other commensal bacteria such as SFB[71], 
Calibacterium prausnitzi[74], Lactobacillus reuteri[59], Lactobacil-
lus Acidophilus[59], and Clostridia[72] profoundly impact the 
functioning of  the immune system of  the colonized 
host.

Although H. pylori infection can be beneficial for the 
host, when present in the stomach, H. pylori reduce the 
overall diversity of  the gastric microbiota[114] and pro-
mote gastritis. The modification of  the stomach micro-
biota might, independently or not of  the presence of  H. 
pylori, modulate the susceptibility of  the host to immune-
mediated diseases. The H. pylori-induced gastritis is 
most probably cause by the type Ⅳ secretion apparatus-
dependent introduction of  muropeptides into epithelial 
cells, that promote Nod1-dependent induction of  a 
proinflammatory program[115]. In addition H. pylori pro-
mote gastric inflammation through the production of  a 
neutrophil activating protein[116]. In spite of  the natural 
tolerogenic environment provided by the stomach mu-
cosa and the tolerogenic activities of  H. pylori, these pro-
inflammatory signals initiating systemic and local pro-
inflammatory Th1/Th17 responses[22-24].

Since H. pylori possess pro-carcinogenic activities via 
maintenance of  a chronic inflammation in the gastric 
mucosa and by direct action of  its virulence factors (vacA 
and cagA), H. pylori cannot be considered as symbiotic 
bacteria but rather as part of  the pathobiont[117]. Hence, 
H. pylori has to be eliminated when individuals are prone 
to develop duodenal and stomach ulcers[118,119] to pre-
vent further major diseases development like MALT 
lymphoma and stomach adenocarcinoma. Although, the 
design of  a vaccine directed H. pylori is challenging since 
it has to overcome the natural tolerogenic environment 
provided by the stomach mucosa and the tolerogenic 
activities of  H. pylori, its development will bring health 
benefits for individuals infected with antibiotic resis-
tant H. pylori strains and population of  underdeveloped 
countries[120-125].
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