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Recently, the focus of network research shifted to network control-
lability, prompting us to determine proteins that are important for
the control of the underlying interaction webs. In particular, we
determined minimum dominating sets of proteins (MDSets) in
human and yeast protein interaction networks. Such groups of
proteins were defined as optimized subsets where each non-MDSet
protein can be reached by an interaction from an MDSet protein.
Notably, we found that MDSet proteins were enriched with
essential, cancer-related, and virus-targeted genes. Their central
position allowed MDSet proteins to connect protein complexes
and to have a higher impact on network resilience than hub
proteins. As for their involvement in regulatory functions, MDSet
proteins were enriched with transcription factors and protein
kinases and were significantly involved in bottleneck interactions,
regulatory links, phosphorylation events, and genetic interactions.

Recently, the focus of modern network research shifted to the
determination of nodes that allow the control of an entire

network. In particular, Liu et al. (1) introduced a maximum
matching approach to predict nodes for the control of various
technical, social, and biological networks. Whereas their ap-
proach only applied to directed networks, Nacher and Akutsu (2)
suggested an equivalent optimization procedure to determine
minimum dominating sets (MDSets) of nodes that play an im-
portant role for the control of undirected networks. An intriguing
question, however, remains if such nodes carry important func-
tional characteristics. Generally, the importance of a protein in an
interaction network is frequently considered a question of the
number of interactions a given protein is involved in. For instance,
the so-called centrality–lethality rule was first suggested by Jeong
et al. (3) and Yu et al. (4), stating that highly connected proteins
tend to be essential. Furthermore, such hubs are also involved in
a rising number of protein complexes (5), suggesting that their
essentiality is a consequence of their complex involvement (6, 7).
In humans, human viruses and parasites target certain proteins
to seize control of a host cell (8, 9) whereas such proteins play
a decisive role in different cancer types (10, 11). Therefore, we
wondered whether protein sets that are predicted to be important
for the control of a protein interaction network would carry such
biological significance as well. In other words, we expected that
minimum dominating sets of proteins were enriched with, for
example, disease or essential genes. Focusing on the currently best
investigated interactomes we determined MDSets in human and
yeast. Such sets are defined as finite subsets of proteins from
where each remaining protein can be immediately reached by one
interaction. Strongly suggesting that such well-defined protein
groups have significance, MDSet proteins were indeed enriched
with essential, cancer-related and virus-targeted genes. Further-
more, we found that MDSet proteins were preferably placed in
central network positions, enabling MDSet proteins to connect
protein complexes and significantly appear in bottleneck inter-
actions, regulatory and phosphorylation events, and genetic
interactions.

Results
In a protein interaction network, an MDSet is defined as an
optimized subset of proteins from where each remaining (i.e.,
non-MDSet) protein can be reached by one interaction. There-
fore, each non-MDSet protein is connected to at least one MDSet

protein (Fig. 1A). In protein interactions of Homo sapiens and
Saccharomyces cerevisiae of the High-quality INTeractomes (HINT)
database (12) we determined corresponding minimum dominating
sets by solving an integer-based linear programming problem
(Methods). Although we considered their combination, we sep-
arately accounted for binary and cocomplex interactions in each
organism as well (Methods). The table in Fig. 1B indicates that
the corresponding MDSets of human and yeast interaction
networks involved fewer than 20% of all proteins. Compared
with the mean degree of 6.7 in the combined human interaction
network, the mean degree of MDSet proteins increased to 17.1.
In the combined yeast network, each protein was on average
involved in 10.0 interactions and the mean degree of MDSet
proteins rose to 23.8. Such trends also applied to binary and
cocomplex interaction sets of both organisms (Fig. 1B). Whereas
the degree distributions of all proteins in interaction networks
are generally characterized by fat tails (3, 13), the degrees of
MDSet proteins showed the same distribution (Fig. S1A). To
determine the enrichment of MDSet proteins as a function of
their number of interactions we grouped proteins according to
their degree in bins of logarithmic size. In each group we com-
pared the protein’s frequency distributions in the combined in-
teraction networks and the corresponding MDSets (Methods).
Fig. 1C clearly demonstrates that MDSets were mostly enriched
with proteins that roughly had more than 10 interactions. Fig.
S1B shows similar results in the binary and cocomplex in-
teraction sets of both organisms. Indicating a protein’s central
role in an interaction network, we calculated a protein’s be-
tweenness centrality. Fig. S2A shows that the frequency dis-
tributions of betweenness centralities of MDSet proteins in all
interaction sets have fat tails. In Fig. S2B, we grouped proteins in
bins of logarithmic size and compared the protein’s frequency
distributions in the underlying interaction networks and their
corresponding MDSets (Methods). Specifically, we observed that
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proteins with increasing betweenness predominantly appeared in
the corresponding MDSets of all different interaction datasets of
human and yeast.
To account for false positives in the underlying interaction

networks, we simulated their presence by randomly deleting a
certain fraction of interactions. To investigate the robustness of
MDSets toward such perturbations we evaluated the overlap of
MDSets in the actual and the randomized networks with a Jaccard
index. Fig. S3 shows that the overlap between the MDSets of the
actual and randomized networks decreased but seemed to steady
with an increasing rate of false positives. Notably, such trends
applied to yeast and human networks of all interaction types.
To indicate the biological significance of MDSet proteins in

a human interaction network we hypothesized that such sets may
be significantly enriched with proteins that govern diseases. In
particular, we collected 496 oncogenes and 876 tumor suppressor
genes from the CancerGenes database, totaling 1,370 cancer-
related genes (14). Applying Fisher’s exact test, we found that
cancer-related genes were indeed significantly enriched in the
MDSet of the combined human interaction network (P = 6.9 ×
10−9). In human binary and cocomplex interaction data we
obtained statistically significant enrichments of cancer genes
as well (P < 10−3, Fig. 1D). Analogously, we used 770 human
proteins that were involved in 4,474 interactions with proteins of
various human viruses from the Molecular INTeraction (MINT)
database (15). In all human interaction sets, targeted proteins
were significantly enriched in the corresponding MDSets (P <
0.01, Fig. 1D) with the binary network showing the strongest
signal (P = 1.4 × 10−12). To show the importance of MDSet
proteins in yeast interaction networks we determined the en-
richment of 1,110 essential genes in S. cerevisiae that were
compiled from the Database of Essential Genes (DEG) (16). We

observed that essential genes were significantly enriched in the
MDSets of all yeast interactions datasets (P < 0.01, Fig. 1D), with
the binary interaction network showing the strongest enrichment
(P = 1.8 × 10−8).
To compare the enrichment levels of disease and essential

genes we created sets of most connected proteins that matched
the size of the corresponding MDSets in each interactions
dataset. In Fig. S4A, we calculated the enrichment of cancer-
related genes and proteins that were targeted by human viruses.
We found that sets of most connected proteins showed much
stronger enrichments of such disease genes, results that applied
for essential genes in yeast as well. Analogously, we obtained
similar results with sets of most central proteins in human and
yeast interaction sets (Fig. S4B).
Protein complexes provide a different functional level of mo-

lecular organization, suggesting that MDSet proteins may appear
in more complexes. Using data from the CORUM (Compre-
hensive Resource of Mammalian protein complexes) database,
we collected 1,843 protein complexes in H. sapiens (17) and 409
protein complexes in S. cerevisiae from the CYC2008 database
(18). Fig. S5 clearly indicates that MDSet proteins in the com-
bined human interaction network appeared in significantly more
protein complexes than non-MDSet proteins (P = 2.6 × 10−8,
Wilcoxon test), results that also held for yeast protein complexes
(P = 4.1 × 10−5). Furthermore, we determined the complex
participation coefficient Pi of each protein i (19). Pi tends toward
1 if i interacts with proteins in the same protein complexes, and
vice versa. Because MDSets are most central to reach all other
proteins in a network, we hypothesized that MDSet proteins
preferably connect many different protein complexes through
their interactions. Therefore, we expected that MDSet proteins
have lower complex participation coefficients. Comparing the

Fig. 1. Definition and characteristics of minimum dominating sets. (A) In a toy network we illustrate the concept of an MDSet. Specifically, an MDSet is
defined as an optimized subset of nodes (orange squares) from where each remaining (i.e., non-MDSet) node (green circles) can be immediately reached by
one step. As a consequence, each non-MDSet protein is linked to at least one MDSet protein. (B) In the table we present statistics of protein interaction
networks and their corresponding MDSets in human and yeast. In particular, we accounted for binary and cocomplex interactions as well as combined in-
teraction datasets. (C) We grouped proteins in logarithmic bins according to their number of interaction partners in the combined networks. In each bin, we
separately calculated the frequency of proteins in the full networks and MDSets. In comparison, MDSet proteins mostly appeared enriched in groups of
proteins with roughly more than 10 interactions. (D) By applying a Fisher’s exact test, we found that cancer-related genes and proteins that are targeted by
human viruses are significantly enriched in human MDSets. Similarly, essential genes are significantly present in the corresponding yeast MDSets.
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coefficient distributions of (non)MDSet proteins in the com-
bined yeast interaction network in Fig. S6, we indeed found
that MDSet proteins provided lower values than non-MDSet
proteins (P = 3.3 × 10−17, Wilcoxon test), a result that also
applied to complexes in the combined human interaction
network (P = 2.4 × 10−38).
To measure a protein’s impact on an interaction network’s

resilience, we performed a robustness analysis. Using the com-
bined yeast network, we sorted all 629 MDSet proteins according
to their degree. To compare, we created sets of equal size of the
most connected yeast proteins as well as randomly picked pro-
teins. Starting with the most connected protein we gradually
deleted proteins and calculated the number of connected com-
ponents after each deletion step. Successive deletion of MDSet
proteins had a higher impact by producing more connected
components and removing fewer interactions than their hub
and random counterparts (Fig. 2A). In Fig. S7, we observed
that such perturbations provided similar results in the com-
bined human network.
Whereas single MDSet proteins generally showed strong

enrichments, we expected that similar signals emerge from to-
pological and functional interactions between MDSet proteins.
Specifically, we focused on bottleneck interactions, defined as
the top 10% of interactions with the highest edge betweenness
(20). In both the combined human and yeast networks we
counted the number of bottleneck interactions that involved
pairs of (non)MDSet proteins. As a null model, we randomly
sampled MDSet proteins 10,000 times and expected to find
similar numbers if their placement was a random process. After
determining the corresponding enrichment/depletion of such
bottleneck interactions we clearly observed that bottleneck
interactions were significantly enriched between MDSet proteins

whereas the opposite held for pairs of non-MDSet proteins (P <
10−4, Fig. 2B).
Genetic interactions can reveal important functional rela-

tionships between genes and pathways (21), suggesting that ge-
netic interactions may be overrepresented between MDSet
proteins. After collecting 108,899 genetic interactions between
5,364 genes in S. cerevisiae from the Biological General Re-
pository for Interaction Datasets (BioGRID) database (22), we
counted genetic interactions between (non)MDSet proteins.
Randomly sampling MDSets 10,000 times we clearly observed
that genetic interactions are significantly enriched when at least
one protein participated in the MDSet (Fig. 2C). In turn, the
opposite held for genetic interactions between non-MDSet
proteins (P < 10−4).
Assuming that MDSets may significantly contribute to control

processes we hypothesized that transcription factors and their
target genes may significantly appear in MDSets. Specifically, we
used 95,722 regulatory interactions between 209 human tran-
scription factors and 8,910 target genes from the TRANScription
FACtor (TRANSFAC) database (23, 24). Furthermore, we as-
sumed that the same logic applies to phosphorylation events and
collected 5,462 human phosphorylation events between 207
kinases and 1,661 from the networKIN database (25, 26). Ap-
plying Fisher’s exact test we found that transcription factors (P =
2.7 × 10−4) and kinases (P = 3.4 × 10−12) were significantly
enriched in the MDSet of the combined human interaction
network. Additionally, we counted how often a pair of tran-
scription factors and a given target gene appeared between
(non)MDSet proteins. Specifically, we observed that regulatory
interactions and phosphorylation events were significantly enriched
when corresponding transcription factors and kinases were in-
volved in the MDSet (P < 10−4, Fig. 2D). In turn, interactions

Fig. 2. Enrichment of topological and functional entities in MDSets. In A we sorted all MDSet proteins in the combined yeast interaction network according
to their degree. To provide an equivalent set of equal size we collected and sorted the highest connected hub proteins. Furthermore, we randomly sampled
a set of yeast proteins of the same size. Starting with the most connected protein, we gradually deleted proteins and calculated the number of connected
components in the altered network. In comparison, the deletion of MDSet proteins had a higher impact on the resilience of the underlying networks than
hubs alone. (B) Defined as the top 10% of interactions with the highest edge betweenness, we determined a set of bottleneck interactions in the combined
human and yeast networks, respectively, and counted their occurrence between (non)MDSet proteins (pA and pB). Randomly sampling MDSets 10,000 times,
we observed that bottleneck interactions were significantly enriched between MDSet proteins and depleted between non-MDSet proteins (P < 10−4). In C we
determined the enrichment of genetic interactions between yeast (non)MDSet proteins (pA and pB) in the combined network. Randomly sampling MDSet
proteins 10,000 times we clearly observed that genetic interactions preferably appeared between MDSet proteins, whereas the opposite applied for non-
MDSet proteins (P < 10−4). (D) Human phosphorylation events and transcriptional, regulatory interactions were significantly enriched when at least kinases or
transcription factors were involved in the MDSet of the combined human network (P < 10−4).
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between a transcription factor and a target gene seemed gener-
ally depleted when both were not involved in the MDSet (P <
10−4). In yeast, we used 48,082 regulatory interactions between
183 yeast transcription factors and 6,403 genes from the Yeast
Search for Transcriptional Regulators And Consensus Track-
ing (YEASTRACT) database (27). Furthermore, we obtained
3,466 experimentally determined interactions between 80 kinases
and 1,172 substrates from (28), allowing us to find similar, albeit
less significant, enrichment patterns (Fig. S8).

Discussion
Here, we determined minimum dominating sets of proteins in
interaction networks that were defined as the smallest group of
strategically placed proteins from where each remaining protein
(i.e., non-MDSet protein) can be immediately reached through
an interaction. As a consequence each non-MDSet protein
therefore interacts with at least one MDSet protein. Although
we observed that MDSet proteins are enriched among highly
connected proteins, a large degree is not necessarily a criterion
that qualifies a protein to participate in the MDSet. Notably, we
observed that the degree distributions of MDSet proteins have
fat tails, indicating that the majority of MDSet proteins have
a small number of interaction partners, and vice versa. Such
a characteristic is quite different compared with hubs that are
widely considered the topologically and functionally most im-
portant proteins in an interaction network. In particular, the only
criterion to consider a protein a hub is a preferably large number
of interaction partners. Furthermore, the definition of hubs
depends on an arbitrarily set threshold that only rigidly accounts
for the local vicinity of a node. In turn, the way to determine
MDSets considers the whole network, providing an optimal
smallest set of strategically placed proteins, a procedure that
does not need any arbitrary parameters. Still, MDSets manage
to capture a considerable amount of highly connected proteins.
Furthermore, MDSet proteins preferably appeared among pro-
teins of high betweenness (i.e., bottleneck nodes), an observation
that translated into bottleneck interactions as well. The direct
comparison of MDSets with sets of protein hubs is a difficult
undertaking, given that no generally applicable threshold or
method for the detection of hubs actually exists. However, we
generated sets of the most connected proteins that match the
size of MDSets as an approximation. To directly compare the
topological impact of MDSet proteins and hubs we sorted pro-
teins according to their degree and successively deleted proteins
from the underlying network. Notably, the deletion of MDSet
proteins had a higher disruptive effect on the underlying network
than hub proteins, demonstrating the topological relevance
of MDSets.
On a different, more biologically relevant, level of network

organization, we found that their strategic placement allowed
MDSet proteins to participate in significantly more protein
complexes than non-MDSet proteins. Furthermore, their inter-
actions enabled MDSet proteins to reach more proteins in other
complexes than non-MDS proteins. Whereas such observations
indicate that MDSet proteins reach other proteins effectively,
the question remains whether such characteristics translate into
a governing role in the underlying networks. Indeed, we found
that cancer-related genes and proteins that are targeted by
human viruses are enriched with MDSet proteins. Onco- and
tumorsuppressor genes play a fundamental causal role for the
emergence of tumors whereas proteins that are targeted by
viruses form a host–pathogen interface, allowing viruses to in-
terfere with functions in the underlying host cell. Therefore,
MDSet proteins may be important for the dissemination of
causal information because their central placement provides
a topological basis to reach all other proteins efficiently. In
a similar vein, the central placement of MDSet proteins may
complement functional interactions that exert biological control.

In particular, transcription factors govern the expression of their
underlying target genes, whereas kinases control the level of
phosphorylation of their substrates as an effective means to
process biological signals. Genetic interactions between genes
indicate potential synergies when mutations in two genes may
produce an unexpected phenotype given each mutation’s in-
dividual effects. Notably, genetic interactions preferably appeared
when the interacting proteins were involved in MDSets. The
strong involvement of MDSet proteins seems plausible, assuming
that a genetic interaction may provide control of compensatory
pathways or protein complexes. Considering expression and
phosphorylation events, we obtained strongest enrichment sig-
nals when both the controlling (i.e., transcription factors, kina-
ses) and controlled entity (i.e., target genes, substrates) occurred
in the MDSets. In turn, such interactions seemed most diluted
when both transcription factors/kinases and targets/substrates
did not participate in the underlying MDSet. Such observations
suggest that the topological characteristics of MDSets may be
tapped for the collection and dissemination of biological in-
formation by transcription factors and kinases. Given that MDSet
proteins connect to each remaining protein in the underlying
networks by at most one step a transcription factor or kinase that
participates in the MDSet may have an advantage to efficiently
receive signals through corresponding interactions. In turn, a sig-
nal that is mediated by the expression levels of a target gene or
the phosphorylation of substrate may have stronger efficacy
when distributed through the interactions of an MDSet protein.
Therefore, MDSets may be considered a complement that allows
transcription and phosphorylation events to efficiently control
biological processes.

Methods
Protein–Protein, Regulatory, and Phosphorylation Interactions.We used a total
of 28,627 high-quality protein interactions between 8,495 human proteins
as well as 22,243 interactions between 4,467 yeast proteins from the HINT
database (12). Accounting for methods that allow the detection of binary
and cocomplex interactions (29) we obtained 27,254 binary interactions
between 8,233 proteins and 7,692 cocomplex interactions between 3,188
proteins in human. As for yeast, we collected 11,435 binary interactions
between 3,653 proteins and 16,294 cocomplex interactions between 3,380
proteins. Checking the interaction’s quality, Fig. S9 shows that the majority
of binary interactions were confirmed by more than one publication. Cocom-
plex interactions were only accounted for when they were reported in at least
two publications.

We collected 95,722 links between 209 human transcription factor and
8,910 human genes from the TRANSFAC (24) database as provided by
mSigDB (23). As for regulatory interactions in yeast we used 48,082 regu-
latory interactions between 183 transcription factors and 6,403 genes from
the YEASTRACT database (27). Specifically, such regulatory interactions were
indicated if a binding site of given transcription factor appeared in the
promoter of the underlying genes.

As for phosphorylation events in human we obtained 5,864 interactions
between 63 kinases and 1,452 human proteins from the networKIN database
(25, 26). Such links represent a kinase specific phosphorylation site in a given
protein. Furthermore, we collected 3,466 experimentally determined phos-
phorylation events between 80 kinases and 1,172 substrates in yeast (28).

Determination of a Minimum Dominating Set. A set S⊆V of nodes in a net-
work G = (V, E) is defined as an MDSet if every node v ∈V is either an el-
ement of S or adjacent to an element of S. In other words, an MDSet is an
optimized subset of nodes from where each remaining node can be imme-
diately reached by one interaction (Fig. 1A). Specifically, we modeled and
solved a binary integer-programming problem where each protein v ∈V
that participates in interactions E in a protein interaction network G = (V, E)
is assigned a binary variable xv. If v is an element of the MDSet we defined
xv = 1, and 0 otherwise. We modeled the determination of an MDSet as
min

P
v∈V xv , subject to the constraint xv +

P
w∈ΓðvÞ xw ≥ 1, where Γ(v) was

the set of interaction partners of protein v. Because the domination problem
in graphs is NP-complete no algorithm necessarily exists that allows the
determination of a minimum dominating set in arbitrary graphs in poly-
nomial time (30). Specifically, we used a branch-and-bound algorithm (31)
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(see SI Methods and Fig. S10 for more details) as implemented by library
lpSolve of the R programming language to solve our binary integer-program-
ming problem.

Essential Genes in S. cerevisiae. We used 1,110 essential genes from the DEG
database, which collects data about essential genes from the literature (16).

Disease Genes in H. sapiens. We collected 496 oncogenes and 876 tumor
suppressor genes from the CancerGenes database (14), which collects such
information from the literature. Furthermore, we considered 4,474 inter-
actions between proteins of various human viruses and 770 human proteins
that the MINT database collected from the literature (15).

Protein Complexes. We used 1,843 protein complexes in H. sapiens from the
CORUM database (17) and 409 protein complexes in S. cerevisiae from the
CYC2008 database (18). Both databases collect information about experi-
mentally determined protein complexes from the literature.

Protein Complex Participation Coefficient. For each protein that is involved in
at least one protein complex, we defined the protein complex participation
coefficient of a protein i as Pi =

PN
s=1ðni,s=

Pn
S=1ni,sÞ2, where ni,s is the number

of links that protein i had to proteins in complex s out of N total complexes.
If a protein predominantly interacted with partners of the same complex,
P tended to 1, and vice versa (32).

Enrichment Analysis. Using a protein interaction network, we grouped pro-
teins according to their degrees or betweenness centrality in bins of loga-
rithmically increasing size. In each group i we determined the corresponding
frequency of proteins with a certain characteristic A, fA,i =NA,i=

P
iNA,i :

Analogously, we calculated the corresponding frequency of proteins
with characteristic A that appeared in a minimum dominating set
(MDSet), fMDSet

A,i =NMDSet
A,i =

P
iN

MDSet
A,i . Finally, we defined the enrichment of

proteins with characteristic A that appear in the MDSet in bin i as
EMDSet
A,i = lgðfMDSet

A,i =fA,iÞ. Therefore, EMDSet
A,i > 0 points to an enrichment of

feature A, and vice versa.
As for the enrichment of genetic interactions, regulatory interactions, or

bottleneck interactions between (non)MDSet protein pairs, we counted the
number of pairs that are connected by such links, NA. Randomly sampling
minimum dominating sets, we analogously counted the corresponding
random number, Nr,A, and defined the enrichment of such interactions as
EA = lgðNA=Nr,AÞ.

Betweenness Centrality. As a global measure of its centrality, we calculated an
edges betweenness, indicating an interactions appearance in shortest paths
through the whole network. In particular, we defined betweenness centrality cB
of an edge e as cBðeÞ=

P
s≠t∈V σstðeÞ=σst , where σst was the number of shortest

paths between proteins s and t and σst (e) was the number of shortest paths
running through e. Analogously, we determined the betweenness centrality of
node v as cBðvÞ=

P
s≠t≠v∈V σstðvÞ=σst . Furthermore, we normalized a node v’s

centrality by ðN− 1ÞðN− 2Þ=2, where N is the total number of nodes in
the network.
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