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Noise in gene expression can lead to reversible phenotypic switching.
Several experimental studies have shown that the abundance dis-
tributions of proteins in a population of isogenic cells may display
multiple distinct maxima. Each of these maxima may be associated
with a subpopulation of a particular phenotype, the quantification of
which is important for understanding cellular decision-making. Here,
we devise a methodology which allows us to quantify multimodal
gene expression distributions and single-cell power spectra in gene
regulatory networks. Extending the commonly used linear noise ap-
proximation, we rigorously show that, in the limit of slow promoter
dynamics, these distributions can be systematically approximated as a
mixture of Gaussian components in a wide class of networks. The
resulting closed-form approximation provides a practical tool for
studying complex nonlinear gene regulatory networks that have thus
far been amenable only to stochastic simulation. We demonstrate the
applicability of our approach in a number of genetic networks, un-
covering previously unidentified dynamical characteristics associated
with phenotypic switching. Specifically, we elucidate how the inter-
play of transcriptional and translational regulation can be exploited to
control the multimodality of gene expression distributions in two-pro-
moter networks. We demonstrate how phenotypic switching leads to
birhythmical expression in a genetic oscillator, and to hysteresis in
phenotypic induction, thus highlighting the ability of regulatory net-
works to retain memory.

gene expression noise | chemical master equation

An increasing number of single-cell experiments have been
reporting bimodal gene expression distributions (1–3), pro-

viding evidence that gene regulatory interactions encode distinct
phenotypes in isogenic cells. Cellular decision-making is under-
mined by epigenetic stochasticity, in that fluctuations allow cells to
switch reversibly between distinct phenotypic states, as has been
observed in bacteria (4), yeast (5), and cancer cells (6). It has been
argued that such stochastic transitions in gene activity can affect
stem cell lineage decisions (7, 8). Similarly, they may present ad-
vantageous strategies when cells make decisions in changing envi-
ronments (9). Here, we develop a quantitative methodology which
allows us to explore the implications of phenotypic switching, and
the phenomena associated with it.
It is known that gene regulatory networks involving slow

promoter switching may lead to distinct expression levels having
significant lifetimes; hence, overall expression levels are char-
acterized by bimodal distributions (10–12) or, more generally, by
mixture distributions. However, it remains to be resolved how
modeling can generally describe and parameterize these dis-
tributions. A positive resolution is crucial for the development of
testable quantitative and predictive models, e.g., when investigating
the sensitivity of bimodality against variation of model parameters,
for estimating rate constants from experimentally measured dis-
tributions, in the design of synthetic circuitry with tunable gene
expression profiles, but, most importantly, when determining the
implications of phenotypic decision-making.
A class of theoretical models based on the Chemical Master

Equation (CME) predicts bimodal protein distributions in the
absence of bistability in the corresponding deterministic model
(12, 13), some of which have been verified experimentally (1, 4,
14). Recent efforts to quantify this type of cell-to-cell variability
have been limited to particular simple examples (8, 12, 13),

which is mainly due to the difficulty of obtaining analytical sol-
utions from the CME. It therefore remains unclear when bi-
modality is observed in more complex gene regulatory networks,
and how the resulting phenotypic variability can be quantified.
The conventional linear noise approximation (LNA) of the

CME represents a systematic and commonly used technique for
the quantification of gene expression noise (15). Whereas the
LNA is valid for many common biochemical systems, it fails to
predict distributions with more than a single mode, as its solution
is given by a multivariate Gaussian distribution which is strictly
unimodal. The reason is that the implicit assumption underlying
the LNA, namely, that all species are present in large molecule
numbers, cannot be justified for general gene regulatory net-
works, because most genes occur in only one or two copies in
living cells. Hence, the conventional LNA is too restrictive to
describe distributions that are observed in gene regulation.
Here, we present a methodology which extends the range of

validity of the LNA to gene regulatory networks that, in the
absence of deterministic multistability, display more than a single
mode in distribution. The underlying key idea is to treat pro-
moter dynamics exactly using the CME, while approximating
mRNA and protein distributions in the limit of large molecule
numbers via a conditional LNA. The overall cell-to-cell vari-
ability can then be decomposed into individual Gaussian com-
ponents, each of which is characterized by three quantities: the
fractional lifetime of each state, as well as the mode and the
width of each distribution component. Explicit (closed-form)
expressions are presented here for all of these quantities.
Our approach thus allows us to explore phenomena accom-

panying multimodality that, to the authors’ knowledge, could not
be investigated previously. In the process, we identify a tradeoff
between transcriptional and posttranscriptional control as being
key for the regulation of phenotypic diversity. We analyze how
slow noise in protein production rates can be integrated into
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digital responses by genetic oscillators including birhythmicity
and all-or-none responses. In contrast with current thought (16),
we demonstrate that bistability is not required for generating
hysteretic responses in gene regulatory networks, and we identify
an optimal time window for this effect to be observed.

Results
General Model Formulation. We consider general gene regulatory
networks which are composed of a number of promoters that can be
in NG states and a set of NZ corresponding gene expression product
species. The overall state of the network is then described by the
vector G= ðnG1 ; nG2 ; . . . ; nGNG

Þ, where nGi denotes the number of
promoters in state i, as well as by the vector of concentrations of
gene expression products Z= ðnZ1=Ω; nZ2=Ω; . . . ; nZNZ

=ΩÞ, which
comprises all RNA and protein species of interest; here,Ω is the cell
volume. Assuming well-mixed conditions, the joint probability dis-
tribution ΠðG;Z; tÞ is described by the CME (SI Appendix 2) for the
regulatory network illustrated in Fig. 1. We assume promoter state
transitions to occur either via unspecific effects such as chromatin
remodeling or DNA looping, or via transcriptional regulation. Apart
from transcription and translation, we allow for gene products to be
involved in general posttranscriptional, posttranslational, as well as
translational regulation.
The above formulation involves two biochemical timescales of

interest: those of reactions that change the promoter state, and
those of reactions which involve only gene products. Specifically,
it follows that, if the former reactions occur less frequently than
the latter or vice versa, the timescales of promoter and gene
product species must be well separated. In effect, the corre-
sponding CME can be decomposed into an equation for the
conditional fast species and one for the slow ones (17). Further,
one can show (SI Appendix 4) that fast promoter dynamics
implies unimodality in the absence of bistability. We derive a
conditional LNA that predicts multimodal mixture distributions
in the case of slow promoter dynamics. Later, we also demon-
strate how this extended LNA can be applied to obtain estimates
for gene expression distributions that are uniformly valid over
all timescales.

Gene Expression Distributions from Slow Promoters. Gene regula-
tory networks expressing more than a single phenotype can be
characterized by mixture distributions (18). Intuitively, it might
be expected that we can describe the probability distribution

ΠðZjG; tÞ, given a certain promoter state G, under the assump-
tion that any reactions affecting promoters vary on a much
slower timescale than those that affect only gene products. Av-
eraging these conditional distributions over all possible promoter
states then yields

∏ðZ; tÞ=
X

G

∏ðG; tÞ∏ðZjG; tÞ; [1]

as can be deduced using Bayes’ theorem. Qualitatively, we may
associate (i) the set of the different modes of the mixture com-
ponents with the set of distinguishable phenotypes, (ii) their
relative weights with the probability for a given phenotype to
be observed, and (iii) the spread of these components with the
phenotypic variability.
Quantitatively, the question of when the mixture distribution

ΠðZ; tÞ is multimodal can only be answered once the components
ΠðZjG; tÞ and the associated weights ΠðG; tÞ in Eq. 1 have been
derived from the CME; in practice, however, these cannot be
evaluated in closed form. We address this issue by defining
a systematic approximation procedure that makes use of the
system size expansion for the gene expression products while
retaining the discreteness of promoter states. In the limit of
sufficiently large molecule numbers of gene products, these
distributions can then be approximated via an LNA for the
conditional variables of the CME (SI Appendix 3.2). We there-
fore introduce the ansatz

ZjG= ½ZjG�+Ω−1
2eZjG [2]

for the conditional LNA which, for each promoter state,
separates the gene product concentration into its conditional
average ½ZjG� and the fluctuations eZjG about it. Similarly to the
conventional LNA, the conditional averages in the above equa-
tion are determined from a set of conditional rate equations at
quasisteady state,

0=
d
dt
½ZjG� = S   f ðG; ½ZjG�Þ; [3]

where we only account for those reactions in Fig. 1 that affect
gene products; moreover, because we assume that the latter are
fast, we evaluate Eq. 3 at steady state. Here, S denotes the
corresponding stoichiometry, whereas f ðG; ½ZjG�Þ are the associ-
ated rate functions, with the promoters being in state G.
A particular advantage of the above procedure is that it allows

us to predict the relative weight of the mixture components in
Eq. 1. These are given by the probability of the promoter state
ΠðG; tÞ, and determine the variability on the slow timescale.
Specifically, under stationary conditions, they may be interpreted
as the fractional lifetimes of a certain phenotype. The CME
governing the slow promoter transitions can then be derived
using the ansatz in 2 (see also SI Appendix 3.2), and is given by
averaging over the fast conditional protein fluctuations:

d
dt
∏ðG; tÞ=

XNR

j=1

aj
�
G−Rj;

�
ZjG−Rj

��
∏
�
G−Rj; t

��

−ajðG; ½ZjG�Þ∏ðG; tÞ�: [4]

Here, the vector Rj represents the stoichiometry of the jth of NR
slow promoter transitions for j= 1; . . . ;NR, whereas ajðG; ½ZjG�Þ
is the associated propensity, where protein concentrations have
been replaced by their conditional averages, as given by Eq. 3. The
above CME can typically be solved in a straightforward manner, as
(i) its state space is necessarily finite due to promoter conserva-
tion, (ii) it involves only linear reactions, and (iii) physiological
copy numbers concern only one or two individual promoters.

Fig. 1. Modeling gene regulatory interactions. Representation of a regula-
tory network consisting of promoters from which mRNA is transcribed, fol-
lowed by translation of protein in accordance with the central dogma. Each
gene expression pathway involves reactions that modify gene expression
products posttranscriptionally and posttranslationally, as well as regulatory
interactions that change the promoter state such as chromatin remodeling
or DNA looping. In addition, we consider upstream regulation via tran-
scription factors (transcriptional feedback) or via RNA-binding proteins
(translational feedback). We define a slow promoter network as one in
which reactions that alter its state are less frequent (light arrows, slow)
compared with ones that leave it unchanged (heavy arrows, fast). The sep-
aration of physiological abundances, with only one or two copies of each
promoter per cell, but few to tens of mRNA and tens to thousands of protein
molecules, is taken into account explicitly by the conditional LNA.
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Specifically, for a single promoter with NG internal states, the
right-hand side of Eq. 4 reduces to NG linear rate equations,
where the rates only depend on the conditional means of gene
product concentrations from which a solution for multiple identi-
cal gene copies can be derived (SI Appendix 3.7).
The remaining quantity to be determined is the conditional

distribution by means of the LNA of the CME. Recalling that
reactions affecting the promoter state are slow, it can be shown
(SI Appendix 3) that the conditional gene product distribution
assumes a quasistationary state: πðZjGÞ= limμ→∞ΠðZjG; tÞ, where
μ is the ratio of slow and fast reaction timescales. We note that, in
contrast with the case of fast promoter fluctuations, the above
equation implies NG conditional product distributions. It follows
from the system size expansion that the conditional distribution
πðZjGÞ is approximately Gaussian in the limit of sufficiently large
molecule numbers of gene products (SI Appendix 3.2.1) and,
hence, that the modes of the mixture components are given by the
gene product concentrations about which the conditional dis-
tributions are centered:

πðZjGÞ= ð2πÞ−NZ=2

det
�
ΣZjG

�1=2 e
−1
2ðZjG− ½ZjG�ÞTΣ−1

ZjGðZjG−½ZjG�Þ: [5]

In particular, the set of significantly different modes determines
the set of distinguishable phenotypes that are expressed. By the
Gaussian property, these are equal to the expectations of gene
product concentrations ½ZjG�, conditioned on the promoter state.
The size of fluctuations and, ultimately, the form of the resulting
conditional distributions, is determined by the conditional cova-
riances ΣZjG =Ω−1heZjGeTZjGi, which satisfy the linear matrix equa-
tion J  G   Σ  ZjG + Σ  ZjG  J  TG +Ω−1  D  G = 0. Here, J  G is the Jacobian of
the conditional rate equations, Eq. 3, expressed as function of G;
similarly, D  G = S diag f ðG; ½ZjG�ÞST. Specifically, the stationary
covariance ΣZjG is then a measure for the variability of each phe-
notype over short timescales.
In sum, the procedure outlined above thus yields closed-form

expressions for (i) the component modes ½ZjG� that determine
the set of observable phenotypes, (ii) the relative weights ΠðG; tÞ
in the mixture, which measure phenotype stability, and (iii) the
covariance matrices ΣZjG of the conditional distributions that
quantify the variability of each phenotype. The decomposition
given by the solutions of Eqs. 3–5 fully determines the gene ex-
pression distribution in Eq. 1 and, hence, characterizes general
gene regulatory networks that involve slow promoters.
Next, we demonstrate the utility of this conditional LNA for

the quantification of multimodality by applying it to a number of
exemplary gene regulatory networks. In the process, we elucidate
several phenomena that are known to be induced by slow pro-
moter fluctuations, but that are beyond the scope of standard
solution techniques for the CME, or of the conventional LNA.

Binary Promoter Switching: Interpolation of Unimodal and Bimodal
Distributions. In eukaryotic gene regulation, the action of RNA
polymerases and transcription factors (TFs) can be hindered by
the fact that the chromatin structure is dynamic, rendering binding
sites temporarily inaccessible (19). A recent study suggests that
bimodal gene expression of the lactose operon of Escherichia coli
relies on similar long-lived states, which, however, stem from TF-
mediated looping of DNA (4). These additional promoter states
can be described by a simple two-stage model of gene expression
involving transcription from a promoter that fluctuates randomly
between two different states of gene activity (Fig. 2A); see also
refs. 10, 11, 19.
The limiting distributions for this simple model are shown in

Fig. 2B for different values of promoter switching and protein
lifetimes. For slow promoter fluctuations, one observes the
characteristic bimodal distribution that results from the mixture
of two Gaussian distributions, as predicted by our theory (solid
red) derived in SI Appendix 3.4 and verified by stochastic

simulation (dotted). For fast fluctuations, the distribution is
clearly unimodal and follows closely the conventional LNA (solid
gray). Subsequently, we assume that the intermediate regime in
which there is no timescale separation can be fit by an in-
terpolation formula between the solution of the conventional
LNA ðΠf Þ and that of the conditional LNA ðΠsÞ,

∏intðZÞ=
1

1+ μ
∏f ðZÞ+

μ

1+ μ
∏sðZÞ; [6]

here, we have defined μ as the ratio of protein degradation and
the sum of promoter off rates and on rates. The overall good
accuracy of this interpolation (solid blue), including the case
where promoter switching and protein lifetimes are of the same
order, is encouraging (Fig. 2B). The conditional LNA thus rep-
resents a simple tool for predicting the modality of gene product
distributions in gene regulatory networks over broad ranges of
timescale separation.

Global Control of Gene Expression Promotes Multimodality. During
the development of hematopoietic stem cells, the two antago-
nistic TFs Gata and Pu are responsible for the erythroid-myeloid
lineage decision. The underlying two-gene regulatory motif con-
sisting of two mutually repressing genes represents a toggle switch
(20) and has been shown to exhibit multimodal protein dis-
tributions, including committed and primed states in cell differ-
entiation, even in the absence of cooperative binding (8). Here, we
study how fine-tuning of this transcriptional response can be
achieved through translational feedback control. We model the
latter by inhibition of target mRNA (shown in yellow in Fig. 3A)
by the repressor protein (shown in red), which is actively degraded
upon binding.

A

B

Fig. 2. Binary promoter switching. (A) Gene expression from a single pro-
moter switching between states of low or high activity. (B) The resulting
gene product distributions show a strong dependence on the timescale of
promoter switching (μ). For fast promoter fluctuations, the protein distri-
bution is clearly Gaussian, and well predicted by the conventional LNA (solid
gray). For slow fluctuations, however, the distribution displays two modes,
corresponding to either state of promoter activity, and is well described by
the conditional LNA (solid red). The intermediate regime for which protein
lifetimes become comparable to switching frequency is approximated by the
above interpolation formula (Eq. 6, solid blue); that formula is in good
agreement with stochastic simulation of the full network via SSA (dotted)
over the whole range of promoter timescales. Parameter values are given in
SI Appendix, Table S1.
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We compare the corresponding probability distributions in
three regimes: (i) exclusive translational regulation, (ii) exclusive
transcriptional regulation, and (iii) both transcriptional and
translational regulation, which we term global control. The CME
derived from Eq. 4 describing the slow switching of both promoters
is given by a Markov chain with four states (Fig. 3B) and is ana-
lytically tractable (SI Appendix 5.1). We now discuss the qualita-
tively different solutions that are obtained in the three regimes. In
regime (i), i.e., with translational control ða1 = b1 = a−1 = b−1 = 0Þ,
we expect unimodality, as posttranscriptional regulation does
not affect promoter activity (Fig. 3C, green). In regime (ii), with
transcriptional control, we have ½P1j0; 0�= ½P1j0; 1� and ½P2j0; 0�=
½P2j1; 0�; hence, the transition graph (Fig. 3B) shows that
promoter binding occurs independently for the two proteins. We
observe a bimodal protein distribution that is characteristic of
a toggle switch (Fig. 3C, blue). Finally, in regime (iii), we have
½P1j0; 0�≠ ½P1j0; 1� and ½P2j0; 0�≠ ½P2j1; 0� due to global control,
which implies that repressor binding changes the rate of target
protein binding (and vice versa) and, hence, that regulation is
allosteric. We note that such regulation can also be achieved for
promoters positioned at distant loci on the chromosome. In the
latter case, we observe up to four modes in the target protein
distribution (Fig. 3C, red), each corresponding to a combinato-
rial state of the two promoters. We emphasize that our condi-
tional LNA correctly predicts all three regimes, as well as that it
contains the conventional LNA (Fig. 3C, green) as a special case.

Thus, we have shown that allosteric regulation of two-gene
networks can be achieved through a combination of both slow
transcriptional and fast translational regulation. Next, we in-
vestigate if there exists an optimum for which the gene expres-
sion products are highly regulated. To that end, we calculate the
mutual information of the two protein species as a measure of
regulation strength. The mutual information can be readily
found from the explicit form of the probability distribution, as
predicted by the conditional LNA (SI Appendix 5.1); its use is
motivated by the belief that, in highly regulated systems, there is
a high degree of statistical dependence between the two protein
species. However, for the case of the globally regulated circuit,
both types of regulation contribute to the overall promoter state
for the mutual information at its optimum (Fig. 3D), as can be
seen from the transition graph (Fig. 3B). The target protein
distribution resulting from optimal regulation is displayed in Fig.
3C. Specifically, as the protein species share roughly two bits of
information at that optimum, we are able to distinguish all four
different phenotypes among a cell population. As we have
demonstrated, this diversity cannot be realized by transcriptional
or translational regulation alone, but rather through an allosteric
effect induced by global control.

Birhythmicity in the Expression of a Genetic Oscillator. Many physi-
ological properties are encapsulated in the dynamics of gene
regulatory networks. In human cancer cells, the response of the
p53-Mdm2 feedback loop to irradiation is binary, with some cells
displaying noisy oscillations, whereas others show no rhythmic
expression (21). Here, we explore the possibility that similar

A B

C D

Fig. 3. Global control of gene expression promotes multimodality. (A)
Noncooperative transcriptional regulation of two mutually repressing pro-
moters including translational regulation which is mediated by binding of
the repressor protein (red) to the mRNA species of the target protein (yel-
low). (B) The transition graph of the CME for the two-promoter network
derived from Eq. 4 contains four slow states: (0,0) – no TF bound; (1,0) –
repressor P1 bound; (0,1) – target P2 bound; and (1,1) – both TFs bound. The
parameters a1,−1 and b1,−1 correspond to the rate constants of DNA binding
and unbinding of repressor and target proteins, respectively. (C) We com-
pare the effect of exclusive translational (green), exclusive transcriptional
(blue), and global control (red) on the modality of the target protein dis-
tributions: the conditional LNA (solid) predicts that these are uni-, bi-, and
tetramodal, respectively, which is in excellent agreement with stochastic
simulation of the full network via SSA (dotted). (D) We analyze the mutual
information shared between repressor and target proteins (as a measure of
regulation), calculated from the conditional LNA as a function of the inverse
promoter binding constant (K) and the inverse mRNA inhibition constant
ðKIÞ. We find that optimization of the mutual information is a tradeoff
between both types of regulation (K−1 =2:8, K−1

I = 28:5, 2 bits of in-
formation). The optimal target protein distribution corresponds to (B, red).
Parameter values are given in SI Appendix, Table S2.

A B

C D

Fig. 4. Birhythmicity in the expression of a genetic oscillator. (A) Binary
expression of a protein P that activates a kinase of an ultrasensitive signaling
cascade involving kinases Y and R. The latter also down-regulates gene ex-
pression through negative feedback, causing the expression levels of all in-
volved proteins to oscillate. Promoter switching is caused by DNA damage
and repair triggered by weak irradiation. (B) Sample paths for all protein
concentrations from stochastic simulation are shown for DNA damage and
repair events. We observe that the oscillation baseline of P (blue) displays
only little variation over large variations in the oscillator period. By contrast,
the binary behavior of the oscillation baseline is amplified downstream in
the ultrasensitive cascade, leading to switching between oscillatory and si-
lent oscillator modes (blue). (C) Baseline variations are quantified by prob-
ability distributions which discriminate well the binary switch in the
oscillator output (R, blue) that is not present in the input distribution (P,
green; concentration scaled by a factor of 2). (D) We analyze the power
spectra of both kinases, observing birhythmic behavior in Y (red), but only
a single frequency in R (blue), the oscillator output, which demonstrates the
amplification of the all-or-none response. We note the increase at low fre-
quencies, which is a reminiscence of phenotypic switching over long time-
scales. Our theoretical predictions for the distributions and power spectra
(solid) agree well with stochastic simulation of the full network via SSA
(dotted). Parameter values are given in SI Appendix, Table S3.
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responses can be induced by a stochastic phenotypic switch based
on a negative feedback network whose deterministic counterpart
exhibits neither oscillatory nor bistable behavior. In particular,
using analytical expressions for the power spectra characterizing
stochastic oscillations (SI Appendix 3.6), we demonstrate how slow
promoter fluctuations can induce birhythmicity or phenotypic
switching between oscillatory and steady-state expression levels.
We consider the binary expression of a regulatory protein due to

DNA damage and repair under weak irradiation conditions. The
protein activates a kinase of an ultrasensitive signaling cascade that
is composed of two reversible phosphorylation modules (Fig. 4A).
The phosphorylated kinase in the second module, which is consid-
ered the output of the system, also down-regulates gene expression
through negative feedback and, hence, induces oscillatory dynamics.
Comparing the oscillatory time courses for all three components,

as obtained using the stochastic simulation algorithm (SSA), we
find that the regulatory protein and the two signaling proteins
display binary variation in their oscillation baseline and period (Fig.
4B). Specifically, the baselines of the protein expression levels are
indistinguishable in both the on state and the off state, whereas
those of the signaling proteins show significant variation. This
amplification is due to the high sensitivity of the signaling module
to protein variation, which is well represented by the distributions
of signaling proteins displaying two modes (Fig. 4C).
However, these stationary distributions cannot capture the

period variability that is observed in the oscillatory time series
(Fig. 4B); the latter are quantitatively better described by the
corresponding power spectra, which can be derived in closed
form using the conditional LNA (SI Appendix 5.2). The bir-
hythmicity of the first signaling protein is well captured by the
predicted power spectrum (Fig. 4D), which shows two distinct
frequencies. Instead, in the output of the signaling cascade, we
observe only a single frequency, which is due to ultrasensitivity
almost fully depleting the off state, as can be seen by the large
component near zero in distribution (Fig. 4C). These findings
are confirmed by stochastic simulation, via SSA, of the full net-
work (Fig. 4 C and D, dotted). Remarkably, for a variant of this
circuit with two gene copies, our theory predicts an additional
rhythm that does not correspond to those of any of the individual
promoter states, but that arises as an emergent property of the
mixture (SI Appendix, Fig. S3). We hence conclude that slow gene
expression noise, amplified by ultrasensitive pathways, can dras-
tically change the dynamics of intracellular networks.

Phenotype Induction: Transient Bimodality and Hysteresis. Bi-
modality is often observed transiently during stress responses
such as osmotic, oxidative, or heat shock. Transient activation
of the HOG pathway in budding yeast cells, for example,
results in bimodal protein distributions of the induced genes
after rapid nuclear translocation of TFs (2). An open question
is whether isogenic cells exposed to the same, but changing,
stress conditions express the same phenotypes (22). Here, we
argue that slow promoter kinetics can account for these dif-
ferences in phenotype induction due to hysteresis.
Intuitively, it is clear that slow promoter kinetics can lead to

different transient phenotypes during induction, e.g., when the
promoter is neither fully activated nor repressed. It is, however,
less obvious what memory effects are associated with that
switching. We consider a hypothetical induction experiment in
which an externally controlled inducer activates the expression of
TF (Fig. 5A). Note that the corresponding deterministic system
exhibits no bistability irrespective of TF concentration because of
noncooperative binding. We then compare two experimental
protocols: (i) an increasing induction ramp which carries the
promoter from the inactive to the active state, and (ii) the

A

B

C

D

Fig. 5. Phenotype induction. (A) We consider a hypothetical induction ex-
periment in which a TF induces the expression of a slow promoter, such as,
for instance, in response to osmotic or heat shock. Here, the external stim-
ulus is assumed to be controlled via a ramp of TF input (or production) rate.
Because TF degradation is assumed to be fast, its concentration follows the
instantaneous induction rate. (B) The probability distribution of protein
obtained from an induction experiment which carries the promoter from the
inactive to the induced state displays transient bimodality. Here, the stimulus
is assumed to be a ramp between times 10 and 20, as shown in A. (C) The
same experiment is carried out in the reverse direction: A decreasing ramp
leading from the fully induced to the depleted promoter state also shows
transient bimodality which is, however, persistent for much longer times.
The resulting probability distribution is reminiscent of the induction history,
indicating hysteresis. We also note that, at each time point, the protein
distributions obtained from stochastic simulation of the full network (Left)
agree well with the predictions of our conditional LNA (Right). (D) We
quantify the apparent hysteresis phenomenon associated with an increasing
and then decreasing stimulus by comparing the global modes of either

distribution, i.e., the most probable protein concentrations, which result in
a hysteresis loop. The difference between forward and reverse induction, as
predicted by the conditional LNA (solid), is in good agreement with simu-
lation (dotted). Parameter values are given in SI Appendix, Table S4.
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corresponding reverse experiment. In the case where both
experiments yield similar results, the system is memoryless,
whereas it displays hysteresis otherwise.
We characterize the hysteresis effect based on analytical sol-

utions to the protein distributions for both experiments (SI Ap-
pendix 5.3). When the induction rate is increased from zero to
some high value, the conditional LNA predicts transient bi-
modality immediately after the onset of the ramp (Fig. 5B). The
reverse experiment (Fig. 5C) is realized by decreasing the in-
duction rate from that high value to zero, starting from the in-
duced state. Although transient bimodality is again observed, it
persists for a much longer time, and even after the induction rate
has dropped to zero, which indicates memory of the induced
state. Given that TF dynamics is much faster than the induction
kinetics, this asymmetry is caused by the interplay of slow pro-
moter binding and induction timescales.
A quantitative measure is provided by the global maxima of

the distributions which correspond to the most likely concen-
trations observed in either experiment. The maximum switches
rapidly after TF concentration is increased, whereas switching
occurs only after TF has been removed in the reverse experiment
(Fig. 5D). Hence, reversible induction results in a hysteresis loop,
which is also well predicted by the conditional LNA.
Finally, the maximum hysteretic response is achieved when

the induction rate is much faster than the promoter dynamics,
but slower than TF degradation, i.e., when the induction ramp
can be approximated by a step function. In that limit, we compare
the timescale of induction ðτf Þ to that of the reverse experiment
ðτrÞ; their ratio measures the degree of hysteresis (SI Appendix 5.3):

τr
τf
= 1+

½TF�
Keq

; [7]

where Keq is the DNA-dissociation constant and ½TF� denotes the
concentration of TF after induction. It follows that a memory
effect is observed either for strong binding sites, or when the
perturbation ½TF� is sufficiently large. The hysteresis phenomenon
persists when induction rate and promoter dynamics evolve on
similar timescales (Fig. 5 C and D); it is, however, absent for very
slow induction, as expected. The existence of such optimal time
windows for observing hysteresis hence provides an experimentally
testable protocol with which to probe slow promoter dynamics.

Discussion
We have presented an analytical methodology for the quantita-
tive study of multimodal distributions that arise from gene

regulation involving slow promoters. In the literature, different
methodologies have been used to describe simple gene regula-
tion models on the basis of a separation of timescales. Qian et al.
(12) obtain a factorization of the stationary probability density
for an autoregulated gene; similarly, Innocentini et al. (23) have
considered a multistate promoter without feedback. These
methodologies require the corresponding protein distributions to
be obtained analytically, which becomes generally intractable
when posttranscriptional mechanisms based on bimolecular
protein interactions are considered or when the full time de-
pendence of the distribution function is desired. A promising
approach that is based on conditional moments (24) overcomes
many of the limitations imposed by timescale separation; how-
ever, it does not yield systematic estimates for the distributions of
the more abundant species. Our conditional LNA thus fills a gap
in the modeling literature, as it is, to our knowledge, the first
methodology to provide closed-form expressions for gene prod-
uct distributions in general regulatory networks. Whereas our
LNA-based approach correctly takes into account physiological
gene copy numbers, it can become inaccurate when some gene
products of interest are present only in very low molecule
numbers (SI Appendix 3.4, Fig. S1). Finally, we note that our
gene-centric methodology does not incorporate effects of cell
growth and division and, hence, cannot account for growth
phenotypes that have been described (25).
As we have shown, our approach provides a simple tool (i) to

identify cellular phenotypes in such networks that cannot be
quantified via deterministic models, (ii) to study a wide class of
network architectures, and to identify parameter ranges over
which multimodality can be observed, and (iii) to identify dy-
namical characteristics of multimodal systems that have not been
described previously. Specifically, we have demonstrated how the
interplay of transcriptional and translational feedback may be
exploited to encode complex phenotypes in many-gene networks.
We have quantified how phenotypic switching shapes birhythmic
expression patterns in genetic oscillators. Further, we have proposed
a previously unidentified mechanism for generating hysteresis in
gene induction experiments that display transient bimodality. Re-
markably, our procedure remains highly accurate when the un-
derlying gene regulatory network is also deterministically multistable
(SI Appendix 5.4, Fig. S4). The conditional LNA presented here
hence serves to advance our understanding of cellular memory
and decision-making.
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