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Abstract

Purpose Tacrolimus (Tac) and cyclosporine (CsA) are mainly
metabolized by CYP3A4 and CYP3AS5. Several studies have
demonstrated an association between the CYP345 genotype
and Tac dose requirements. Recently, CYP3A44, PPARA, and
POR gene variants have been shown to influence CYP3A
metabolism. The present study investigated potential associa-
tions between CYP3A45*3, CYP3A44*22, PPARA ¢.209-
1003G>A and ¢.208+3819A>G, and POR*28 alleles and
dose-adjusted concentrations (C/D) of Tac and CsA in 177
renal transplant patients early post-transplant.

Methods All patients (n=177) were genotyped for
CYP3A44*22, CYP3A5*3, POR*28, PPARA c¢.209-1003G>A,
and PPARA ¢.208+3819A>G using real-time polymerase
chain reaction (PCR) and melting curve analysis with allele-
specific hybridization probes or PCR restriction fragment
length polymorphisms (RFLP) methods. Drug concentrations
and administered doses were retrospectively collected from
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patient charts at Oslo University Hospital, Rikshospitalet,
Norway. One steady-state concentration was collected for
each patient.

Results We confirmed a significant impact of the CYP3A45*3
allele on Tac exposure. Patients with POR*28 and PPARA
variant alleles demonstrated 15 % lower (P=0.04) and 19 %
higher (P=0.01) Tac Co/D respectively. CsA C,/D was 53 %
higher among CYP3A44*22 carriers (P=0.03).

Conclusion The results support the use of pre-transplant
CYP3A45 genotyping to improve initial dosing of Tac, and
suggest that Tac dosing may be further individualized by
additional POR and PPARA genotyping. Furthermore, initial
CsA dosing may be improved by pre-transplant CYP3A44*22
determination.

Keywords Calcineurin inhibitors - Pharmacokinetics -
CYP3A - POR - PPARA - Kidney recipients

Introduction

Calcineurin inhibitors (CNI), cyclosporine (CsA) and tacroli-
mus (Tac), are potent immunosuppressive drugs and are wide-
ly used in solid organ transplant recipients [1]. Both drugs are
characterized by a narrow therapeutic window and high inter-
individual pharmacokinetic variability [2]. Consequently,
therapeutic drug monitoring (TDM) is mandatory to optimize
CNI therapy in transplant recipients. However, patients still
experience significant CNI over- or underexposure in the
critical immediate phase after transplantation.

Part of the great variability in CNI pharmacokinetics
among individuals may be explained by differences in genes
encoding drug metabolizing enzymes or drug transporters [3].
Both CsA and Tac are metabolized by cytochrome P450 3A
(CYP3A) enzymes. The CYP3AS5 activity is largely
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determined by the single nucleotide variant (SNV) CYP345*3
(c.219-237A>G; 1s776746), which results in alternate mRNA
splicing and a truncated and non-functional protein [4, 5]. The
CYP3A5%*3 variant is the predominant allele in many popula-
tions, and the majority of Caucasians (approximately 80 %)
lack functional CYP3AS5 [4-6]. The association between
CYP3A45 genotype and CNI pharmacokinetics is well
established [7-11], and patients expressing functional
CYP3AS5 (one or two CYP3A45*1 alleles), need approximately
double starting doses of Tac [12]. CsA appears to be oxidized
predominantly by CYP3A4 [13]. However, some of the major
CsA metabolites are also formed by CYP3AS, and the
CYP3A45 genotype has been shown to have a significant
impact on CsA pharmacokinetics [7, 8, 12]. The expres-
sion and activity of the CYP3A4 enzyme varies widely
among individuals, but the contribution of specific ge-
netic factors remains uncertain. A recent study identified
a functional SNV in intron 6 of the CYP344 gene
(€.522-191C>T; 1s35599367; CYP3A44*22) associated
with reduced CYP3A4 activity [14, 15]. The allele
frequency is relatively low in Caucasians (3—8 %), but
nonetheless clinically relevant in patients carrying the
CYP3A44%22 allele [16-19].

Genes located outside the CYP34 locus may also influence
CYP3A phenotype. Two sequence variants in the gene
encoding the nuclear receptor peroxisome proliferator-
activated receptor alpha (PPAR-alpha) have recently been
recognized as potential contributors to intra- and inter-
individual variability in CYP3A expression and activity [14,
16]. The PPARA variants, ¢.209-1003G>A (rs4253728) and
¢.208+3819A>G (rs4823613), have been reported to explain
8-9 % of the variability in hepatic CYP3A activity in humans
[16].

Cytochrome P450 oxidoreductase (POR) is another system
influencing CYP3A activity. POR is a microsomal electron
transfer flavoprotein and an indispensable element of a variety
of CYP enzymes, and other enzymatic complexes [20].
Human POR is highly polymorphic (http://www.cypalleles.
ki.se/por.htm) [21] and the most common sequence variant,
POR*28 (c.1508C>T; rs1057868), induces an amino acid
substitution (p.Ala503Val), which influences the electron
binding moiety of POR [22]. POR*28 has been associated
with different effects depending on the CYP enzyme and
substrate investigated [23-26]. CYP3AS5 expressers carrying
one or two POR*28 alleles have shown a 45 % lower
midazolam metabolic ratio [23] and higher Tac dose
requirements compared with CYP3AS5 expressers without
POR*28 [24].

The aim of the present study was to assess the effect of the
CYP3A45%3, CYP3A4*22, PPARA ¢.209-1003G>A, PPARA
c.208+3819A>G, and POR*28 alleles on Tac and CsA
dose-adjusted concentrations (C/D) in renal transplant recipi-
ents early post-transplant.
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Materials and methods
Patients

The patients received immunosuppressive treatment based on
either CsA or Tac, in combination with mycophenolate and
steroids. None was concomitantly treated with potential
CYP3A4 inhibiting drugs or statins, but all received proton
pump inhibitors at the time of drug concentration measure-
ment. TDM was performed at least twice weekly in this early
post-transplant phase and Tac and CsA doses were individu-
ally adjusted to achieve predefined target ranges; Tac trough
concentrations between 3 and 7 pg/L and CsA C, concentra-
tions between 800 and 1,100 png/L respectively.

At our transplant center all patients are scheduled for a
routine in-depth examination at the research laboratory at
8 weeks and 1 year post-transplantation. From 2 January to
2 July 2012 a total of 229 patients met for an 8-week or 1-year
examination. Two hundred patients gave written informed
consent prior to inclusion. Of these 200 patients only 42
had CsA trough concentrations measured in the relevant
post-transplant period and were not included in this
analysis. Adequate data from 158 patients (Tac, n=123
/CsA, n=35) were used in the present analysis in addi-
tion to data from 19 CsA patients previously presented
(NCT00139009) [27].

The study was approved by the regional ethics committee
and performed in accordance with local laws and regulations.

Study design

Drug concentrations and administered doses were retrospec-
tively collected from patient charts at Oslo University
Hospital, Rikshospitalet, Norway. One steady-state concentra-
tion was collected for each patient in the early post-transplant
phase, i.e. 2 to 7 weeks after transplantation. Steady-state was
defined as at least 3 days after last dose adjustment for Tac and
4 days for CsA.

All patients (n=177) were genotyped for the sequence
variants CYP3A45*%3, CYP344%22, PPARA ¢.209-1003G>A,
PPARA ¢.208+3819A>G, and POR*28.

Analytical methods

Whole blood Tac concentrations were measured using the
CMIA (chemiluminescent microparticle immunoassay) on
the Architect instrument (Abbott Laboratories, Lake Forest,
IL, USA) and CsA concentrations using the CEDIA PLUS
assay (Cloned Enzyme Donor Immunoassay; Microgenics
Corporation, Fremont, CA, USA) on a Modular P800 analyz-
er (Roche Diagnostics, Rotkreuz, Switzerland).
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Genotype analyses

Genomic DNA was extracted from whole blood samples
using the MagNA Pure LC DNA Isolation Kit I (Roche) on
the automated MagNA Pure LC Instrument (Roche).
Genotyping of POR*28, PPARA ¢.209-1003G>A, and
PPARA ¢.208+3819A>G were performed using polymerase
chain reaction restriction fragment length polymorphism
(PCR-RFLP) methods. Primer sequences and restriction en-
zymes are listed in Supplementary Material 1. PCR was
performed using DNA Engine Dyad® Thermal Cycler (Bio-
Rad Laboratories, Hercules, CA, USA). PCR products were
digested with 1 U of the associated restriction enzyme
(Supplementary Material 1), and the digested products were
separated by electrophoresis on a 3 % agarose gel and visual-
ized under ultraviolet light after staining with GelRed™. The
assays were validated by sequencing a selection of wild-type
and variant samples. CYP345*3 (NM_000777.3:¢c.219-
237A>G) and CYP3A44*22 (NM_001202855.2:¢.522-
191C>T) alleles were analyzed using real-time PCR and
melting curve analysis with allele-specific hybridization
probes on the LightCycler® 480 instrument (Roche) as pre-
viously described for CYP345*3 [28]. Amplification condi-
tions, oligonucleotide sequences, and reaction mixtures are
listed in Supplementary Materials 2, 3, and 4. Absence of
variant alleles was interpreted as the presence of the wild-type
allele (*1).

Data and statistical analyses

The potential association between CYP3A5*3, CYP3A44*22,
PPARA, POR*28 genotypes and steady state dose-adjusted
Tac Cq (Co/D, ug*L’l/mg) or CsA C, (Cy/D, ug*L'l/mg)
concentration, 2—7 weeks post-transplantation was investigat-
ed. Dose-adjusted concentrations were calculated by dividing
the C, or C, by the evening or morning dose respectively.
Statistical analyses were performed using SPSS software
(version 20, IBM SPSS Statistics, Chicago, IL, USA). The
Kolmogorov—Smirnov test was used to evaluate the distribu-
tion of continuous data, and if appropriate, data were logarith-
mically transformed to obtain normal distribution. The
impact of CYP3A45*%3, CYP3A4*22, PPARA c.209-
1003G>A, PPARA ¢.208+3819A>G, and POR*28 alleles
on dose-adjusted Tac or CsA concentrations was investigated
by a univariate analysis of variance (ANOVA). ANOVA
coefficients were back-transformed to present geometric
means and SEM. The interaction effect between the different
sequence variants was evaluated and excluded from the anal-
ysis if not statistically significant. Associations between cate-
gorical data (e.g., PPARA c.208+3819A>G genotype) were
analyzed using Fisher’s exact test. Spearman’s rho was
assessed to study the correlation between continuous and

dichotomous variables. P values less than 0.05 were consid-
ered to be statistically significant.

Results
Patients

Data from the 177 (Tac, n=123/CsA, n=54) included patients
were obtained on average 1845 days after transplantation.
Patient demographics for the two groups are summarized in
Table 1. The patients included were not demographically
different from those 79 who during the same period
underwent the in-depth evaluation, but were not included
(data not shown). Time after transplantation, age, weight,
height, body mass index (BMI), bilirubin levels, diabetes
mellitus (DM) status or use of dihydropyridine derivatives
did not significantly correlate with drug concentration, and
these covariates were therefore not included in the multivari-
ate analyses.

Gene allele frequencies

Genotype and allele frequencies of the CYP345*3 and
CYP3A44*22 variants are presented in Table 2. We observed
no significant linkage disequilibrium between CYP3A44*22
and CYP345*3 alleles (P=0.69). We observed significant
linkage disequilibrium between the two PPARA sequence
variants (P<0.001). Owing to this significant correlation,
these genotypes were combined into a new ad hoc variable
for further analysis; PPARA variant allele carriers (one or two
variant alleles of either PPARA ¢.209-1003G>A or PPARA
c.208+3819A>G, n=60) and PPARA wild-types (n=63).
None of the genotype frequencies deviated from the Hardy—
Weinberg distribution, P>0.7, Chi-squared test (Table 2).

Impact of genotypes on tacrolimus Cy/D ratio

Heterozygous CYP3A45*1 recipients showed 42 % lower
mean Cy/D ratio (1.38+1.07 pg*L"'/mg) compared with ho-
mozygote carriers of CYP3A45%3 (2.34+1.04 pg*L™'/mg;
P<0.001; Fig. 1). A multivariate analysis accounting for the
other genotypes investigated showed that the CYP345* 1 al-
lele was an independent explanatory factor for the Tac Co/D
ratio. A correlation analysis revealed that the CYP345*1
genotype explained approximately 25 % of the interindividual
variability in Tac dose-adjusted trough concentration (r*=
0.249, n=177, P<0.001). No association was found between
the CYP344*22 and Tac Cy/D ratio (Fig. 1, Table 3).
Application of the CYP34 genotype-based classification sys-
tem published by Elens et al. with combined CYP34 allelic
status did not give any additional information in this study
(data not shown) [19].
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Table 1 Demographic data, median (range), at the time of data collection

Demographics

Tac Cy group

CsA C, group

n=123 n=>54
Male/female (1) 87/36 41/13
Age, years 48 (20-79) 60 (21-81)
Height (m) 1.75 (1.54-2.06) 1.76 (1.55-1.90)
Weight (kg) 74.2 (43.6-158.0) 76.7 (46.9-118.0)
BMI (kg/m?) 24.7 (16.4-40.7) 24.4 (19.5-38.9)
Diabetes mellitus () 21 5
Bilirubin (pmol/L) 6 (2-15) 10 (5-25)
Treated with dihydropyridine derivatives (1) 70/123 22/54
Treated with statins () 0/123 0/54
Treated with glucocorticoids () 123/123 54/54
Treated with proton pump inhibitor (1) 123/123 54/54
CNI dose (mg/day) 3.5(1.5-9.0) 175 (100-425)
Blood concentration (p1g/L) 7.0 (4.1-13.8) 1252 (620-3,240)
C/D ratio® (ug*L™"'/mg) 2.0 (0.6-5.5) 7.2 (2.2-16.2)
Time after transplantation (days) 15 (14-31) 18.5 (14-48)

BMI body mass index (kg/m? ), CNI calcineurin inhibitor

? Steady-state dose-adjusted concentration (C/dose)

The Tac Cy/D ratio was 15 % higher (P=0.08) in PPARA
variant allele carriers (PPARA ad hoc variable), 2.24+
1.06 pg*L™'/mg compared with 1.95+1.05 ug*L'/mg in
PPARA wild types. After adjusting for the other genotypes
(POR*28, CYP3A45*3, and CYP3A44%*22), Tac dose-adjusted
trough concentrations were significantly higher among
PPARA variant allele carriers; 1.93+1.09 pg*L"/mg vs 1.63+
1.09 ug*L'/mg in wild-type carriers (19 %, P=0.01).
However, individual analyses of each PPARA variant allele
indicated some differences in the effect of the two var-
iants. A one-way analysis of variance with PPARA
c.208+3819A>G as the only independent variable re-
vealed a non-significant 15 % higher Cy/D ratio for

PPARA ¢.208+3819 G variant (2.24+1.06 pg*L™'/mg)
vs wild-type allele carriers (1.95+1.05 pg*L™'/mg), P=0.08.
When additionally accounting for CYP3A5*3, CYP3A4*22,
PPARA ¢.209-1003G>A, and POR*28 genotypes, the Cy/D
ratio was, however, significantly higher (35 %, P=0.02)
in patients carrying at least one PPARA c¢.208+3819 G
allele (AG/GG 2.06+1.11 pg*L™'/mg vs AA 1.52+
1.11 pg*L"'/mg), indicating that PPARA ¢.208+
3819A>G has an independent impact on Tac Cy/D ratio
(Fig. 1).

There was a 44 % higher Tac Cy/D ratio for homozygote
PPARA ¢.209-1003AA carriers (2.92+1.16 ug*L"'/mg) com-
pared with homozygote PPARA ¢.209-1003GG carriers

Table 2 Genotype and allele frequencies in the study population (n=177) compared with allele frequencies reported in the literature

Genotype frequencies, 1 (%) Allele frequencies (%) Reported allele frequencies
in Caucasians® (%)
AA Aa aa
CYP345%*3" 142 (80) 34 (19) 1(1) 90 81-96
CYP344*22 168 (95) 9(5) 0 (0) 3 3-6°
PPARA ¢.209-1003G>A 108 (61) 59 (33) 10 (6) 22 21-24
PPARA ¢.208+3819A>G 100 (56) 63 (36) 14 (8) 26 25-26
POR*28 82 (46) 78 (44) 17 (10) 32 28-31

AA homozygote carriers of the major allele, Aa heterozygote carriers, aa homozygote carriers of the minor (variant) allele

Variant allele is predominant in Caucasians

® hitp://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/

¢ Allele frequency based on published studies [14, 17-19, 31, 32]
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Fig. 1 Tacrolimus Cy/D ratio
(ug*L'/mg) as a function of
CYP3A5*3, CYP344*22, PPARA
¢.209-1003G>A, PPARA ¢.208+
38194> G, and POR*28. The
box-and-whisker plots indicate
interquartile ranges (boxes),
medians (horizontal lines in the
boxes), and the highest and lowest
values (whiskers above and below
the boxes). P values are related to
the ANOVA test, described under
Results. Cy/D, dose-adjusted | =
concentrations before dosing;

Tac Cy/D ratio (ug*L'/mg)
w

* P<0.001

*

Tac Cy/D ratio (g*L™'/mg)

& |

CYP, gene encoding cytochrome

P450; PPARA, gene encoding the *3/%3, n=96 *1/%3 and *1/%1, n=27 *1/%1, n=117 #1/%22 and *22/*22, n=6
nuclear receptor peroxisome CYP3A5*3 CYP3A4%22
proliferator-activated receptor
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(2.02+1.05 pg*L'/mg; P=0.03; Fig. 1, Table 3). Including
CYP3A45*3, CYP344*22, PPARA ¢.208+3819A>G, and
POR*28 as fixed factors in the analysis of variance, the impact
of PPARA ¢.209-1003G>A on Tac trough concentrations was
reduced. No significant difference was detected between
PPARA ¢.209-1003GG carriers and heterozygote carriers of
the variant allele or the group of homo- and heterozygote
carriers of the PPARA ¢.209-1003A allele and PPARA ¢.209-
1003GG@ carriers.

POR*28

Carriers of the POR*28 variant allele carriers tended to
have a lower Tac Co/D ratio (10 %) 1.99+1.05 ug*L"'/mg
compared with 2.21+1.06 ug*L'/mg in POR*28 wild type
(P=0.19). After including CYP345*3, CYP344*22, and
PPARA genotype as fixed factors, homozygous and heterozy-
gous POR*28 carriers demonstrated significantly lower Cy/D
ratio (1.65+1.09 pg*L"'/mg) compared with patients homo-
zygous for the POR wild-type allele (1.90+1.09 pg*L'/mg;
15 %, P=0.04; Fig. 1).
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Table 3 Tacrolimus and cyclo-
sporine median C/D ratios in dif-
ferent genotypes

Data are presented as median
(range) unless otherwise stated

Fig. 2 Cyclosporine C,/D ratio
(ug*L'/mg) as a function of
CYP3A45*3, CYP344*22, PPARA
¢.209-1003G>A, PPARA ¢.208+
3819A>G, and POR*28. The
box-and-whisker plots indicate
interquartile ranges (boxes),
medians (horizontal lines in the
boxes), and highest and lowest
values (whiskers above and below
the boxes). P values are related to
the ANOVA test, as described
under Results. C,/D, dose-
adjusted concentrations before
dosing; CYP, gene encoding
cytochrome P450; PPARA, gene
encoding the nuclear receptor
peroxisome proliferator-activated
receptor alpha; POR, gene
encoding cytochrome P450
oxidoreductase
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CsA C,/D ratio (ug*L™/mg)

Tac Cy/D ratio (ng*L'/mg) n n
CYP345*3
*1/*%1 - 0 6.89 1
*1/*3 1.38 (0.61, 3.67) 27 7.62 (6.53, 10.93) 7
*3/%3 2.37(0.98, 5.47) 96 7.16 (2.24, 16.20) 46
CYP3A44*22
*1/*1 2.03 (0.61, 5.47) 117 7.11 (2.24, 16.20) 51
*1/%22 2.07 (1.30, 4.70) 6 11.12 (8.70, 11.17)
*22/%22 - 0 -
PPARA ¢.209-1003G>A
GG 1.93 (0.61, 5.47) 71 7.06 (2.46, 16.20) 37
GA 2.01 (0.99, 4.73) 44 7.60 (2.24, 11.17) 15
AA 3.20 (1.47,4.70) 8 6.36 (5.48,7.25) 2
PPARA ¢.208+3819A>G
AA 1.83 (0.61, 5.47) 64 7.09 (2.46, 16.20) 36
AG 2.27(0.99, 4.73) 47 7.58 (2.24, 11.17) 16
GG 2.70 (1.30, 4.70) 12 6.36 (5.48, 7.25) 2
POR*28
*1/*1 2.27(0.61, 5.47) 54 7.24 (2.24, 11.12) 28
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Impact of genotypes on cyclosporine C»/D ratio

In the CsA group the CYP345*3 genotype did not show any
statistical significant influence on C,/D ratio (P=0.31; Fig. 2).
However, renal transplant recipients carrying the CYP344*22
allele showed significantly higher dose-adjusted CsA C, levels.
Univariate analysis revealed that CYP3A4*1/*22 carriers dem-
onstrated 50 % higher mean C,/D ratios (10.26+1.20 pug*L™"/
mg) compared with homozygote CYP3A44*1/*1 carriers (6.84+
1.04 pg*L"'/mg; P=0.04; Fig. 2, Table 3). Adjusting for the
other genotypes in a multivariate analysis confirmed an indepen-
dent effect of CYP344*22 on CsA pharmacokinetics, with a
53 % higher CsA Cy/D ratio (10.91£1.22 ug*L"'/mg) among
variant allele carriers compared with wild-type carriers (7.12+
1.07 ug*L™'/mg), P=0.03.The CYP344*22 allele explained ap-
proximately 12 % of the interindividual variability in the CsA Cy/
D ratio (r=0.35, P<0.01).

No statistical significant associations were observed be-
tween PPARA (P=0.85, P=0.74) or POR*28 (P=0.27, P=
0.52) sequence variants and the CsA C,/D ratio.

Discussion

The present study demonstrated that Tac and CsA pharmaco-
kinetics are influenced by sequence variants in several genes.
We confirmed the previously well-described effect of
CYP3A45*1 on Tac exposure, but did not find any association
between CYP3A45* ] and CsA exposure. PPARA variant alleles
and the POR*28 allele were associated with higher and lower
Tac Cy/D ratios respectively, while the CYP3A44*22 allele
influenced CsA C,/D ratios.

Carriers of functional CYP345*1 alleles demonstrated a
58 % lower Tac Cy/D ratio (P<0.001). This confirms the
significance of the CYP3A45 genetic polymorphism on Tac
metabolism previously shown in several publications, where
carriers of CYP345*1 alleles (CYP3AS expressers) have been
reported to require about twice the doses of Tac compared
with CYP3A5%*3/*3 individuals [9, 10, 29]. Thus, pre-
transplant CYP3A5 genotyping may be a useful approach for
better prediction of individual Tac starting doses.

Based on the CsA C, data, the present study also supports the
significant impact of the newly identified CYP344*22 allele on
the metabolism of CYP3A substrates [14]. Even though the
effect of knowing this genotype in a Caucasian population is
limited, the individual influence in those few carrying this variant
allele is substantial. A rough estimate is that recipients with one
or two CYP344*22 alleles need half the dose of CsA to reach the
therapeutic target. Somewhat surprisingly, we did not observe
any association between CYP344*22 genotype and Tac Cy/D
ratios. This observed differential effect of the CYP3A44*22 geno-
type on Tac and CsA pharmacokinetics, may be due to a differ-
ence in preferred metabolic pathways, CYP3A4 vs CYP3AS, for

the two drugs. Additionally, there were no recipients homozy-
gous for the CYP3A44*22 variant allele among the 123 patients
treated with Tac, which may have confounded the results. In
contrast to the present findings, Elens et al. reported a significant
association between CYP3A44*22 and both Tac and CsA phar-
macokinetics, reporting higher dose-adjusted CsA and Tac con-
centrations in kidney transplant recipients [15, 18, 19]. However,
these authors failed to confirm the association between CsA C/D
ratio and CYP3A44*22 in an independent cohort [30]. Although
there seems to be an international agreement on the reduced
CYP3A4 metabolic capacity among CYP3A4*22 carriers, fur-
ther investigations are required to clarify the clinical relevance of
this sequence variant in patients treated with Tac and CsA.

To our knowledge, this is the first study showing the potential
impact of the PPARA genetic variations on Tac exposure in
kidney transplant recipients. Owing to the strong correlation
between PPARA ¢.209-1003G>A and PPARA c.208+
3819A>G, the combined effect of these two sequence variants
was analyzed. The independent effect of expressing at least one
PPARA variant allele was significantly associated with a higher
Tac Cy/D ratio (P=0.01), when adjusting for the other sequence
variants (POR*28, CYP3A45*3, and CYP3A44*22). A detailed
analysis of the two PPARA sequence variants showed significant-
ly increased Tac exposure in homozygote PPARA ¢.209-
1003G>A carriers. These results are in concordance with the
reduced CYP3A4 protein/activity levels previously presented
[16]. However, inclusion of the other sequence variants assessed
in the present study reduced the effect of PPARA ¢.209-1003G>A
on Tac Cy/D ratios, indicating other possible explanatory vari-
ables in addition to the difference observed in Tac Cy/D ratios
between homozygote PPARA ¢.209-1003G>A carriers and ho-
mozygote PPARA ¢.209-1003G carriers. On the other hand,
expression of at least one PPARA ¢.208+3819G allele was an
independent explanatory factor for higher Tac exposure. This
suggests that PPARA ¢.208+3819A>G is the PPARA sequence
variant with the strongest influence on Tac pharmacokinetics.

Despite the statistically significant effect of PPARA sequence
variants on Tac exposure, no significant effect was shown on
CsA C,/D ratios. Although the mechanism is not fully under-
stood, activation of PPAR-alpha has been shown to increase
expression of CYP3A4. Consequently, PPAR-alpha activity
should theoretically also have influenced CsA pharmacokinetics
[16]. However, there are inconsistent reports on whether the
regulation of CYP3A4 occurs directly or indirectly by PPAR-
alpha [16, 31, 32]. Recently, the sequence variants PPARA ¢.209-
1003G>A and PPARA ¢.208+3819A>G were associated with
reduced expression of PPAR-alpha, and consistently related to
lower CYP344 mRNA levels, protein expression, and enzymatic
activity [16, 33]. PPAR-alpha has been linked to CYP3A4
expression, but an association between PPAR-alpha and
CYP3AS expression and activity has not yet been reported.
The association between PPARA gene variants and Tac, but not
CsA, pharmacokinetics may be at least partly related to different
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metabolic pathways and different regulation mechanisms of
CYP3A4 and CYP3AS expression and activity.

The significantly lower Tac Co/D ratio observed among
POR*28 allele carriers after correction for CYP3A5*3,
CYP3A44*22 and PPARA genotype supports the previous find-
ings of De Jonge et al. and Oneda et al. [24, 25], reporting a
lower Tac Cy/D ratio among POR*28 allele carriers express-
ing functional CYP3AS. However, the present study did not
show any significant impact of the POR* 28 allele on Tac Co/D
ratio in the sub-group of patients expressing functional
CYP3AS. The POR*28 allele has the potential to explain
interindividual variability in CYP3A capacity. However, the
proposed link between CYP3AS and the POR*28 allele needs
further elucidation.

Study limitations

The sample size of the CsA subgroup may limit some aspects
of the present study, and low CYP3A44*22 and CYP3A45*1
allele frequencies may also explain part of the discrepancy
between observations in the present study and the literature.
Only one recipient homozygous for CYP345* I were detected
in this study, and we therefore cannot exclude a potential
effect of CYP345*1 status on POR*28, nor can we exclude
an association between CYP344*22 and Tac pharmacokinet-
ics. The rarity of the minor homozygous allele populations of
all the SN'Vs tested, in addition to multiple testing, will have a
significant impact on the power of the study.

Clinical relevance

The results suggest an impact of the two linked PPARA se-
quence variants and POR*28, in addition to CYP345*3, on
Tac pharmacokinetics, as well as an influence of CYP3A44*22
on CsA pharmacokinetics. Genotyping pre-transplant may
allow better individualization of initial CNI doses and thereby
reduce the risk of CNI over- and under-exposure in the critical
phase immediately after transplantation. Determination of a
combination of relevant gene variants seems to allow even
more optimal dosage predictions than CYP345 genotyping
alone. However, because of the relatively small effect size of
the two SNV in PPARA and POR*28, the clinical applicability
of the genetic testing of these sequence variants needs to be
further investigated in even larger cohorts.

Conclusion

In conclusion, we confirmed that CYP3A5*] is significantly
associated with lower Tac C/D ratio in kidney transplant recip-
ients. Further, our results suggest that POR*28 and PPARA
variant alleles (c.209-1003G>A and ¢.208+3819A>G), in addi-
tion to CYP345*3, might influence Tac exposure, and that

@ Springer

CYP3A44%*22 status is of importance for CsA pharmacokinetics.
Interestingly, the POR*28 allele influenced Tac exposure inde-
pendent of the CYP345*3 status, contrary to what has previously
been hypothesized, and the CYP344*22 allele was identified as a
significant independent predictor of CsA exposure. Pre-
transplant genotyping of these sequence variants may help to
identify renal transplant recipients at risk of CNI over- or under-
exposure, and contribute to reducing CNI-related adverse events
by more optimal determination of individual starting doses.
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