
INVESTIGATION

Genomics of CpG Methylation in Developing and
Developed Zebrafish
David M. McGaughey, Hatice Ozel Abaan, Ryan M. Miller, Peter A. Kropp, and Lawrence C. Brody1

Molecular Pathogenesis Section, Genome Technology Branch, National Human Genome Research Institute, National
Institutes of Health, Bethesda, Maryland

ABSTRACT DNA methylation is a dynamic process through which specific chromatin modifications can be
stably transmitted from parent to daughter cells. A large body of work has suggested that DNA methylation
influences gene expression by silencing gene promoters. However, these conclusions were drawn from data
focused mostly on promoter regions. Regarding the entire genome, it is unclear how methylation and gene
transcription patterns are related during vertebrate development. To identify the genome-wide distribution
of CpG methylation, we created series of high-resolution methylome maps of Danio rerio embryos during
development and in mature, differentiated tissues. We found that embryonic and terminal tissues have
unique methylation signatures in CpG islands and repetitive sequences. Fully differentiated tissues have
increased CpG and LTR methylation and decreased SINE methylation relative to embryonic tissues. Un-
supervised clustering analyses reveal that the embryonic and terminal tissues can be classified solely by
their methylation patterning. Novel analyses also identify a previously undescribed genome-wide exon
methylation signature. We also compared whole genome methylation with genome-wide mRNA expression
levels using publicly available RNA-seq datasets. These comparisons revealed previously unrecognized
relationships between gene expression, alternative splicing, and exon methylation. Surprisingly, we found
that exonic methylation is a better predictor of mRNA expression level than promoter methylation. We also
found that transcriptionally skipped exons have significantly less methylation than retained exons. Our
integrative analyses reveal highly complex interplay between gene expression, alternative splicing, devel-
opment, and methylation patterning in zebrafish.
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The recognition of cytosine methylation in DNA predates the discov-
ery of the structure of DNA byWatson and Crick (Wyatt 1951). By the
1980s it was recognized that although DNA sequence is largely fixed
across the cells of an organism, DNA methylation varies across the
genome and between cell types. More specifically, CpG methylation is
tissue-specific and species-specific and correlates in some cases with
transcriptional activity (Cooper 1983). By the 1990s the importance of
CpG methylation in imprinted genes, which are expressed differen-

tially on maternally and paternally derived chromosomes depending
on methylation marks (Li et al. 1993), was clear. The recognition of
this heritable non-DNA sequence–based mark has spurred the de-
velopment of the study of epigenetics.

Classically, CpG methylation analysis was performed using
methylation-sensitive enzymatic reactions or with bisulfite con-
version coupled to Sanger sequencing (Dahl and Guldberg 2003).
These methods allowed methylation states to be determined with
high resolution, albeit at a severely restricted number of loci. Two
newer methods can be used to score methylation at the whole
genome level. The highest resolution of these is whole genome
sequencing of bisulfite converted DNA. This technique allows
for genome-wide coverage of methylation at base pair (bp) reso-
lution (Frommer et al. 1992; Meissner et al. 2008). While robust,
this approach is costly to apply when a study requires sequencing
multiple samples. A modification of the previous approach, called
reduced representation bisulfite sequencing, sequences a subset of
regions adjacent to CCGG sequences (Meissner et al. 2008). This
latter approach covers only regions of high CpG density.
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We used an alternative to the techniques mentioned above,
methyl-CpG binding domain protein-enriched genome sequencing
(MBD-seq). MBD-seq uses methyl-CpG binding proteins or anti-
methylated CpGs antibodies to purify methylated DNA from the
genome. This isolated DNA is then assayed using high-throughput
sequencing (Bock et al. 2010).

Zebrafish (Danio rerio) are a popular organism for the study of
vertebrate development and gene function. The zebrafish genome
contains approximately 26,000 genes, most of which contain several
exons with large intronic space (Howe et al. 2013). Despite the large
evolutionary distance between human and zebrafish, 70% of human
genes have a clear zebrafish ortholog (Howe et al. 2013). The rapid
early development of nearly transparent and externally fertilized em-
bryos of zebrafish allows for relatively easy collection and drug treat-
ment of early embryonic stages (Dooley and Zon 2000; Lawson and
Wolfe 2011).

The methyl groups used in CpG methylation come from the
universal methyl donor S-adenosylmethionine (SAM). SAM is
a product of the one-carbon metabolic pathways that obtains its
substrates from dietary, folate, and choline (Chiang et al. 1996;
Niculescu and Zeisel 2002). The methyl groups are placed or main-
tained on cytosines, usually in the context of CpG in vertebrates, by
DNA methyl transferase 1 (DNMT1), DNMT3a, and DNMT3b (Li
et al. 1992; Okano et al. 1999). Zebrafish have orthologs to the
mammalian DNMTs and deleting these genes in fish produces phe-
notypes that are comparable with mammals in which these genes
have been disrupted (Rai et al. 2006, 2010). To better understand the
changes that occur in the context of development, we undertook an
analysis of genome-wide CpG methylation in animals at four develop-
mental stages [sperm, one-cell, mid-blastula transition (mbt), �3.5 hr
post-fertilization, and 3 d post-fertilization (3dpf)] and four fully
differentiated (eye, brain, heart, and liver) tissues. We also disrupted
one-carbon metabolism via drug treatment to see if changing the
availability of one-carbon units changed the methylome. To examine
the relationship between DNA methylation and gene expression, we
merged our data with RNA-seq datasets derived from the same de-
velopmental stages or tissues.

MATERIALS AND METHODS

Zebrafish stocks and sample collection
Tübingen/AB fish were used for all methylome analyses and cared for
using standard practices (Westerfield 2000). Genomic DNA was col-
lected from the sperm of 10 tricaine-killed males, more than 20,000 one-
cell stage embryos, more than 10,000 mbt (�3.5 hr post-fertilization)
embryos, and 100 3dpf embryos. Embryos were staged by visual exam-
ination of anatomical markers (Kimmel et al. 1995). Chorions were
removed with pronase for one-cell, mbt, and 3dpf. Ten adult females
(�11 months old) were tricaine-killed and dissected to collect eyes,
brains, hearts, and livers. All tissues were flash-frozen with either liquid
nitrogen or dry ice/ethanol, and the genomic DNA was extracted with
the PureGene reagents (Gentra). Bisulfite conversion for specific loci
analysis was performed using the EZ DNA Methylation Kit (Zymo) per
the manufacturer’s protocol.

Methotrexate treatment
We applied 400 mM methotrexate (MTX; NDC 63323-123-10
102310; APP Pharmaceuticals) to one-cell zebrafish in E3 embryo
medium. One hundred of these MTX-treated zebrafish were raised
to 3dpf. Genomic DNA was extracted from these embryos as
reported above.

Methylation enrichment
Genomic DNA was sonicated to 300-bp fragments with a Covaris S2
with the following settings: 10% duty cycle; 4 intensity; and 200 cycles/
burst for 90 sec in 130 ml Tris-EDTA. No more than 10 mg gDNA was
used per sonication reaction. DNA was concentrated in a Speed Vac
SC110 A. Methylation enrichment was performed using EpiMark
DNA Enrichment kit (New England Biolabs). Both the captured
(methylated) DNA and flow-through (unmethylated) DNA were
retained for downstream analysis. The degree of enrichment was
assessed with SYBR quantitative PCR on the Applied BioSystems
7900HT with both the DNA Methylation control package (EF-100-
0040; Diagenode) and custom primers designed to amplify the zebra-
fish tert and sox2 loci, previously reported to be methylation-rich and
methylation-poor, respectively (Lindeman et al. 2010). The methyla-
tion enrichment was calculated by comparing the Ct value of the
methylated loci to the unmethylated loci in the captured DNA and
the flow-through DNA (Supporting Information, Table S1).

Sequencing
Multiplex libraries were created using ChIP-Seq DNA Sample Prep
Kit (Illumina) and sequenced with 101-bp paired-end reads with an
Illumina HiSeq 2000.

Bioinformatics analysis
Illumina Fastq files were aligned to the zebrafish Zv9 build using
BWA (Li and Durbin 2009). See Table S2 and Figure 2 for read
information. Only properly paired reads with mapQ .5 were used.
Peaks were called using MACS2 2.0.10.20120703 (Zhang et al. 2008).
Through the use of technical replicates, we found that variation in
peak width was driven more from experimental factors than biological
variation. In contrast, peak location was highly reproducible. As such,
we used the centers of the peaks and expanded them by 100 bp in each
direction for our analyses. Raw genome-wide histone localization data
were obtained from Ulitsky et al. (2011) and the reads were aligned
with BWA and peaks were called with MACS2. RNA-seq datasets for
one-cell and mbt are under accession number SRX025029. The 3dpf
RNA-seq datasets used combined data from accession numbers
SRR065196 and ERX008921. Brain RNA-seq datasets used com-
bined data from accession numbers ERX009448 and ERX013540.
Heart RNA-seq datasets used combined data from accession
numbers ERR023145 and ERR023145. Liver RNA-seq datasets used
combined data from accession numbers SRR392106 and SRR392106.

Illumina-based sequencing reads were aligned with STAR 2.1.2
(Dobin et al. 2013) against the Zv9 zebrafish build. ABI-based se-
quencing reads were aligned with LifeScope 2.5.1. mRNA transcrip-
tion scores were calculated, making counts with HTSeq and
calculating RPKM with cqn correction in R (Anders 2010; Hansen
et al. 2012). Running analyses without cqn correction yields similar
results.

The meta-gene was created using custom Unix, Python, and R
scripts as well as BEDTools and ggplot2 (Quinlan and Hall 2010;
ggplot2 - Elegant Graphics for Data Analysis). Briefly, ensembl68
zebrafish gene annotations were used to identify exons, introns, and
UTRs. In cases where there were multiple overlapping features, i.e.,
overlapping exons with slightly different stop and start positions, the
feature was expanded to encompass all annotations. Promoters were
defined as 2000 bp 59 of the transcriptional start site. Any promoters
that overlapped another annotated gene were removed. The upstream
and downstream regions were defined as 10,000 bp upstream and
downstream of the promoter and 39 UTR, respectively. Any upstream
or downstream region overlapping an annotated gene was removed.
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Exons and introns were split into quarters and thirds by position in
the gene, respectively. Methylation ratio scores were calculated in 20
windows per element (see below). The features with their subdivided
windows were then averaged across the entire genome and plotted.

Methylation enrichment is calculated by comparing the peak/feature
intersection numbers to peak/feature intersections where the peak
positions are randomized by BEDTools shuffle 1000 times. This
provides the enrichment of methylation compared with a situation in
which the peaks are randomly distributed. The 1000-fold bootstrapping
procedure allows us to calculate a standard deviation for these values.

The methylation ratio score is similar to an RPKM score and
is calculated with the following equation: (number of methylation-
enriched sequencing reads in window/total methylation-enriched
sequencing reads) / (number of methylation-unenriched reads in
window/total methylation-unenriched reads). The windows are 5% of
the length (in bp) of the feature. We found that correcting for CpG
content did not improve the concordance of methylation scoring
between biological or technical replicates.

The aligned reads were used by ChromHMM to determine two
states: methylated or unmethylated for 200-bp windows across the
genome (Ernst and Kellis 2012). The ChromHMMmakesegmentation
script was used to output the posterior probabilities for methylation at
each 200-bp window for the different tissues. The posterior probabil-
ities were used by kmeans clustering in R to create a heatmap of
methylation relationships between the tissue types. The clustering
was performed more than 12 times, demonstrating that 14 clusters
were found to provide the most reproducible and consistent organi-
zation of clusters across the different tissue types.

Spliced-out exons were identified by using splice junctions detected
by STAR and intersecting them with Ensembl gene models. More
specifically, custom Unix and Python scripts were used with BED-
Tools to identify cases where the 59 and 39 ends of the splice junctions
are in different exons. If there is a single annotated exon between the
aligned exons, then this is declared a skipped exon. Peaks were inter-
sected against the identified splicing exon/intron classes. Enrichment
was calculated by taking the results of bootstrapping 1000 fold with
position-randomized peaks and comparing against the original peaks.
The SD was calculated from the distribution of the 1000 fold
bootstrapping.

Data
Peak files and raw sequencing files are available under GEO accession
GSE52110.

RESULTS

Genome-wide methylation patterning of zebrafish is
similar to humans
To study the methylomes of developing and developed zebrafish, we
purified DNA from cells and tissues by first independently pooling the
sperm of 10 males, 20,000 one-cell embryos, more than 10,000 mbt
embryos, and 100 3dpf embryos, and the eyes, brain, hearts, and livers
of 10 females. Methylation-rich DNA regions were selected and the
methylation-enriched fraction (with no NaCl extraction) and the
methylation-poor flow through were sequenced with an Illumina
HiSeq 2000. More than 10 million unique properly paired reads were
generated for each sample (Table S1).

To independently assess the MBD-seq technique, we compared
our data with those obtained from whole-genome bisulfite sequencing.
We downloaded whole-genome bisulfite sequencing data derived
from mbt stage embryos (GSM1133397) (Jiang et al. 2013). Read

coverage and methylation ratio scores (see Materials and Methods
for methylation ratio calculation) from these data were compared with
our MBD-seq data from the same developmental stage. We found
a substantial concordance between the two techniques. At least one
read from our methylation-enriched regions covered 70% of called
methylated CpGs and the methylated CpGs called by Jiang et al.
(2013) had a significantly higher MBD-seq methylation ratio score
than their unmethylated CpGs (Figure S1).

The MACS2 peak caller was used to identify highly methylated
regions (Zhang et al. 2008). The sample with the fewest peaks (45,785)
was the eye, and one-cell embryos had the most peaks (178,587)
(Figure 1A). These peaks are evenly spread across the zebrafish chro-
mosomes (Figure 1B). The peak caller also provides magnitude scores
for each peak. To confirm enrichment for methylation and to see
whether the score correlated with methylation, we examined numer-
ous bisulfite converted regions in 3dpf zebrafish embryos using Sanger
sequencing (Figure S2). This confirmed that peak regions are highly
methylated, relative to non-peak regions. However, we noted that
there was no relationship between the peak “score” generated by
MACS2 and the amount of CpG methylation.

The distribution of peaks across the zebrafish was overlaid on
genomic features taken from UCSC Zv9 build and Ensembl-annotated
genes. Enrichment was calculated by using a bootstrapping approach
(Figure 1C) (see Materials and Methods). In all tissues, peaks are
highly enriched across CpG islands, in contrast to the findings of Lister
et al. (2009) in human samples. These peaks cluster more tightly across
the CpG islands of the terminal tissues. It has been suggested that CpG
island prediction algorithms are inaccurate in non-mammalian verte-
brates and provide an experimentally derived non-methylated island
(NMI) set as a substitute for CpG islands for the zebrafish (Long
et al. 2013). Consistent with the data from Long et al. (2013), we also
found significant under-enrichment of our peaks in NMIs (approx-
imately half as many peaks as expected by chance; data not shown).
This result may explain our disparate CpG island methylation find-
ings in zebrafish as compared to the findings in humans by Lister
et al. (2009).

There are more than 12,000 CpG islands in the Zv9 zebrafish
genome, as defined by UCSC; 1411 of these islands overlap promoters.
We found that, as expected, CpG islands in promoters are slightly
methylation-poor in the embryonic tissues. Terminal tissues differ
slightly in their CpG methylation patterning. In the terminal tissues,
CpG islands in promoters, although far less methylated than CpG
islands overall, are still slightly methylation-rich.

In zebrafish, promoter regions, defined as 2000 bp upstream of
annotated genes, are methylation-poor, similar to humans and other
species (Feng et al. 2010). Ensembl-annotated exons and introns show
little enrichment of methylation. We note that gene deserts, regions
more than 250,000 bp from annotated genes, are slightly methylation-
poor in all tissues, suggesting that methylation is being targeted to-
ward gene-rich areas. Because variation in local GC or CpG content
could drive these differences, we calculated GC and CpG content of
gene deserts and exons. We found that the density of these dinucleo-
tides is approximately the same in gene deserts and exonic regions
(data not shown).

To see whether histone modifications that are important in
transcription correlate with methylation patterning, we examined
the relationship between H3K4me3 and H3K36me3 histone marks
using 3dpf zebrafish ChIP-seq data from Ulitsky et al. (2011).
H3k4me3 is associated with promoters and active enhancers, whereas
h3k36me3 is associated with transcriptionally active gene-bodies
(Kouzarides 2007; Wang et al. 2008). We found weak methylation
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signal in the former and strong methylation signal in the latter.
These results match previously published results in human cells
(Hawkins et al. 2010).

LINEs and SINEs have different methylation patterns in
embryonic and terminal tissues
Because methylation of repetitive elements is known to be dynamic
during development, we examined the distribution of peaks in three
major classes of repetitive elements: LINEs, SINEs, and LTRs (Smith
et al. 2012). We found that these three classes have distinct patterns
across the different tissues, with LTRs and SINEs having differential en-
richment in embryos compared to terminal tissues. LTRs are methylation-
rich in all tissues, with the terminal tissues having stronger enrichment,
whereas SINEs have the opposite pattern with low methylation sig-
nal overall and even lower signal in the terminal tissues. LINEs are
methylation-poor in all tissues and do not show the embryonic/
terminal differential methylation signal.

Unsupervised clustering reveals that genome-wide
methylation signals can reliably distinguish tissues
To analyze genome-wide methylation patterning in a more agnostic
manner, we used ChromHMM on the filtered sequencing reads to

identify methylation-positive and methylation-negative states (Ernst
and Kellis 2012). Those states were clustered with an unsupervised
k-means algorithm (see Materials and Methods). We found 14 clus-
ters to create the most stable divisions of the data (Figure 2A). Of note,
these clustering algorithms produce clusters that segregate embryonic
and terminal tissues. The 3dpf tissue type is a partial exception to this
rule. Approximately half of the time the k-means clustering placed this
stage with the terminal tissues (data not shown).

To better understand the relationships between the different
tissues, the cluster data were further subdivided to resolve genomic
features overlapping the coordinates of each cluster (Figure 2B). Clus-
ters 1 and 10, which have no or little methylation signal, have enrich-
ment of no particular genomic feature. In contrast, cluster 3, which
has the genomic coordinates where all tissues are methylated, is
enriched for CpG islands and LTR. Cluster 14, which is similar to
cluster 3 except that the 3dpf tissues are not highly methylated, has
a similar pattern.

Most segments of methylated DNA are in similar
positions across the zebrafish tissues
The clustering also allows us to see how methylation patterns are
shared across the tissues. Most prominent is that the majority of the

Figure 1 Distribution of highly methylated regions (peaks) across the genome among different zebrafish tissues. (A) The number of MACS2 called
peaks in the eight different tissues assayed. (B) The number of peaks in the eight tissues in each of the 25 different zebrafish chromosomes. (C)
The enrichment of methylation peaks relative to randomly distributed peaks across common genomic elements. All values have P, 0.001, except
for 3dpf Intron (P = 0.15). Error bars show SD. (D) Enrichment of methylation peaks in 3dpf zebrafish at h3k4me3 (P = 0.013) and h3k36me3
(P , 0.001) histone marks. Error bars show SD (not shown where error bars are smaller than symbol).
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methylation signal is at the same positions (Figure 2C, cluster 3) in the
genome across the different tissues. The terminal tissues, brain, heart,
and liver, have more than 60% of their methylation signal in cluster 3,
whereas the eye has more than 40%. With the exception of the one-
cell stage, the majority of methylation in embryonic tissues is associ-
ated with cluster 3. The embryonic tissues share more than 15% of
their methylation signal in cluster 11, which is enriched for CpG
islands. The one-cell stage has a unique set of signals in cluster 7.
However, this cluster does not have any unique enrichment in geno-
mic features or GO terms (data not shown).

Compressing genome-wide methylation data into the
meta-gene reveals asymmetric methylation
across genes
To assess whether methylation was differentially positioned in the
“average” gene, we overlaid our data onto a representative “meta-
gene” (Figure 3A). The meta-gene was created by first parsing each
Ensembl gene into several elements: 10,000 bp upstream and down-

stream of the genes; promoters; and 59 and 39 UTR. Because the
average zebrafish gene has approximately four exons, we distributed
exons into quarters by position across the gene flanked by the first and
last exons and calculated methylation ratio in windows (see Materials
and Methods).

This visualization of methylation reveals patterns shared across all
of the tissues (Figure 3A). First, as has been previously reported,
methylation decreases across the 59 UTR and increases after the tran-
scriptional start site (Feng et al. 2010). Second, the last exons tend be
more methylated than interior exons. Overall, the last exons are ap-
proximately two-fold enriched for methylation (Figure 3B). This pat-
tern was consistent in all embryonic stages and terminal tissues. Exons
and introns show a characteristic \ shape, which is reminiscent of
methylation patterning in humans and invertebrates (Lister et al.
2009; Nanty et al. 2011; Gelfman et al. 2013). The relative levels of
methylation between introns and exons are approximately the same in
the embryonic tissues while the introns tend to be more methylated
than the exons in the terminal tissues. As has been previously

Figure 2 Unsupervised clustering of methylation signal reveals relationships shared and unique methylation patterning between embryonic and
terminally differentiated tissues. (A) K-means clustering of the genomic locations with ChromHMM calculated probability of methylation status.
Each cluster contains genomic coordinates. Darker blue indicates higher methylation levels. The length of the branches in the dendograms
illustrates the relatedness of the clusters and tissues. (B) Each cluster was assayed to determine which genomic features are over-represented in
each cluster. Enrichment is calculated as described previously by comparing the features overlapping cluster genomic coordinates relative to
randomly distributed coordinates. (C) Proportion of methylation signal in each cluster, calculated by adding the number of methylated regions
assigned to each cluster.
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reported, methylation gradually increases across the gene 59 to 39
(Feng et al. 2010).

Comparisons of methylation and transcriptional data
sets demonstrate that promoter methylation is not the
strongest determinate of gene expression
To study the relationship between gene transcription and methylation,
we used publicly available RNA-seq datasets for wild-type zebrafish
one-cell, mbt, and 3dpf embryos and for brain, heart, and liver (Rösel
et al. 2011; Yang et al. 2012; Aanes et al. 2011) (see Materials and
Methods). We reprocessed the raw RNA-seq data to quantify gene
transcription and to identify splicing events (see Materials and Meth-
ods). We divided the meta-gene into deciles by gene transcription
levels to determine if differentially expressed genes had unique methyl-
ation patterns (Figure 4A). Because only genes with associated pro-
moters were used, approximately 5000 out of the approximately
17,000 genes were not used in these analyses. We found that the methyl-
ation and expression were most strongly correlated not at the promoter,
as has been widely reported, but with regions 10,000 bp upstream and
downstream from the gene. We also observed that while the last exons
show a dramatic positive trend between increasing methylation and
increasing transcription, the magnitude of the spearman correlation
when assessing all genes is not very strong (Figure 4D).

Work in other organisms has demonstrated that the presence of
CpG islands in the promoter disrupts the relationship between
expression and promoter methylation (Varley et al. 2013). We found
a similar result, with the correlation between promoter and methyla-
tion and transcription weakening if there is a CpG island in the
promoter. Interestingly, we also found that the negative correlation
between methylation and transcription in the upstream/downstream
regions is also diminished when a CpG island is present in the
promoter (Figure 4B).

Skipped, alternatively spliced exons have differential
methylation levels
Because work by Shukla et al. (2011) mechanistically links DNA
methylation to exon splicing, we asked if zebrafish genome methyla-
tion has a relationship to splicing. We first identified skipped exons in
the six RNA-seq datasets and compared methylation enrichment at
the skipped exon with the surrounding retained exon and intervening
introns (Figure 4C). We found that embryonic and terminal tissues
have different methylation patterns around spliced out exons, with the
embryonic tissues having stronger methylation enrichment in the
exons relative to the introns and the terminal tissues having similar
methylation between the introns and exons. Between the two types of
exons (skipped and retained), we note that in the embryonic tissues
there is not a large difference in methylation between the two types. In
contrast, the terminal tissues have a more distinct pattern, with the
skipped exons having lower methylation levels than the retained exons.

Methotrexate treatment reduces overall methylation
levels and subtly influences gene-specific
methylation patterns
MTX is a potent inhibitor of the dihydrofolate-reductase enzymatic
conversion of dihydrofolate to tetrahydrofolate. The block of this
reaction prevents the conversion of homocysteine to methionine,
a necessary molecule for the creation of the universal methyl donor
s-adenosyl methionine. Application of MTX to early zebrafish embryos
results in shortened anterior–posterior axis, cardiac defects, perturbed
cell cycles, and highly increased mortality (Lee et al. 2012). We
treated one-cell embryos with MTX and collected DNA at 3dpf.
Methylation was analyzed in the same manner as before (see Mate-
rials and Methods).

There are three probable outcomes from the MTX treatment in
genome-wide methylation patterning. First, there may be no signif-
icant difference in methylation. Second, methylation could be reduced
globally. Third, methylation intensity could be different at specific
genomic positions. We found that genome-wide methylation pattern-
ing is largely identical between MTX-treated 3dpf and untreated 3dpf
zebrafish (Figure 2A, Figure 5A). There are some subtle differences.
The MTX-3dpf zebrafish have several thousand fewer detected meth-
ylation peaks (Figure 5A) consistent with reduced availability of
methyl donors. The MTX-3dpf zebrafish have lower methylation in
introns and exons (Figure 5B). We identified peaks that, among all
3dpf peaks, were unique to MTX treatment and unique to the no-
treatment set. The MTX treatment–unique peaks, compared with
the peaks unique to no-treatment, are much less likely to be in
CpG islands and exons and more likely to be in LTRs (Figure 5C).
GO term analysis of the genes with unique peaks in exons of the
MTX-treated set with WebGestalt reveal that there is a weak enrich-
ment of the molecular functional category methyltranferase activity,
consistent with the role of MTX in the creation of SAM (Figure S3)
(Zhang et al. 2005).

Figure 3 The meta-gene reveals unique methylation patterning across
gene elements in the zebrafish genome. (A) The relative methylation of
the gene elements was calculated in 20 bins per feature and then
averaged for all gene elements in the genome. Exons and introns were
further subdivided by first, last, and quartiles by their relative position
in a given gene. (B) Methylation enrichment was calculated by
a different method: relative enrichment of peaks in the last exons over
chance. This demonstrates the strong enrichment of methylation in the
last exons of genes. All enrichments differ from randomly distributed
peaks (empirical P , 0.001). Error bars show SD.

866 | D. M. McGaughey et al.

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.009514/-/DC1/FigureS3.pdf


DISCUSSION

Methylation across the zebrafish genome
is unevenly distributed
Despite a long history of studying DNA methylation, only recently has
it become possible to analyze, in high-resolution, DNA methylation
across the genome. Here, we successfully performed MBD-seq
covering the entire zebrafish genome in eight different embryonic
tissues and stages and examined the influence of a drug that
interferes with the methyl donor producing pathway. At the macro
level, methylation is evenly distributed across the 25 chromosomes
of the zebrafish. While appearing to be uniform when averaged over
long distances, methylated CpGs are not randomly spread across the
genome. As expected, methylation density is concentrated in CpG
islands and moderately enriched in LTRs. In contrast, LINEs and
promoters have lower methylation signals. We also note that terminal

tissues and embryonic tissues have different proportions of meth-
ylation across the genomic elements, which can be seen most clearly
in LTRs, SINEs, and CpG islands.

Clustering reveals unique methylation signatures for
each tissue and corroborates whole-genome bisulfite
sequencing analyses
Our unsupervised clustering analysis allows us to distinguish between
embryonic and terminal tissues using global methylation patterns
alone, which demonstrate that each tissue or time point carries
a unique methylation signature. In addition, the distribution of
methylation across the clusters produced highlight two trends. First,
the majority of the genome-wide methylation signal assayed is shared
in a common set of genomic coordinates in the embryonic tissues and
a majority in the terminal tissues. Second, the embryonic tissues

Figure 4 Gene-body methylation is correlated with transcriptional levels and alternative splicing. (A) The metagene for 3dpf zebrafish is split into
deciles, by transcription, measured by RPKM (with 10 being the highest expressing decile). (B) The 3dpf zebrafish methylation ratio for the entire
element is split by transcription expression deciles (with 10 being the highest expression decile). The data are further split into two groups: one
showing the effects of only considering genes where there is a CpG island in the promoter and a second set of genes with promoters lacking CpG
islands. (C) Skipped exons were identified and the methylation enrichment was plotted for the skipped exon and the surrounding introns and
retained exons. Error bars show SE. (D) Spearman correlations for 10 kb upstream and downstream, promoter and last exon, further split by
presence or absence of a CpG island in the promoter (��P , 10225; �P , 1027). Error bars show SE.

Figure 5 Methotrexate (MTX) treatment
of 3dpf zebrafish reduces genome-wide
methylation in specific regions. (A)
Methylation peak locations were com-
pared between the untreated and
MTX-treated 3dpf zebrafish samples.
(B) Methylation ratio of 1000 bp of an
intron and 100 bp of the adjacent exon,
averaged for the entire genome. Un-
treated 3dpf in blue, MTX-treated 3dpf
in red. (C) Enrichment of methylation
peaks for peaks unique to the un-
treated 3dpf (blue), unique to MTX-
treated 3dpf (red), and shared (purple)
among common genomic elements.
CpG refers to CpG islands. Error bars
show SD.
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have more diverse and widespread methylation signal, suggesting that
as tissues differentiate CpG methylation is selectively removed or lost.

Publications by Jiang et al. (2013) and Potok et al. (2013) have re-
cently assessed genome-wide methylation patterning with whole-genome
bisulfite sequencing. These authors found that the maternal methylation
state predominates after fertilization until approximately the mbt stage,
when the embryo more closely resembles the sperm methylome. While
we did not evaluate the oocyte methylome, our clustering places the
sperm methylome most closely with the mid-blastula stage, in agreement
with the results of Jiang et al. (2013) and Potok et al. (2013).

Meta-gene analysis demonstrates that gene-body
methylation is stable across time, but unique among
different elements of the gene
We created the meta-gene to represent the methylation anatomy of
the “average” gene. These analyses reveal a previously undescribed
pattern of methylation signals across the average gene. Specifically,
last exons appear to contain a disproportionate amount of methyla-
tion. The meta-gene also demonstrates that across the tissues and time
points assayed, that gene-body element methylation patterning is
largely stable. The only notable difference between embryonic and
terminal tissues is that exon methylation is a bit lower compared to
intron methylation as the tissues develop.

The relationship of CpG methylation with transcription
is not limited to promoter methylation
Because CpG methylation is classically reported as influencing gene
transcription, we merged published RNA-seq datasets with our
genome-wide methylation data. This allowed us to probe the
relationship between gene-body methylation and transcriptional
levels. In contrast to expectation, we found that promoter methyl-
ation is not the strongest determinate of transcription levels.
Methylation signal in the last exon of a gene is a better predictor
than promoter methylation, with increasing methylation associated
with higher transcript levels. We note that regions upstream and
downstream of genes show stronger correlation between methyla-
tion and transcriptional levels than promoter methylation. We also
examined the relationship between DNA methylation and patterns
of alternative exon splicing. This revealed that methylation status of
alternatively spliced exons differs from that of constitutively
expressed exons. This observation held true for embryonic and
terminal tissues, suggesting that different processes are used to mark
spliced out exons in differentiated tissues.

The influence of methoxtrexate on zebrafish
methylation levels and patterning suggest a model for
its chemotherapeutic effects
MTX is used in humans as a chemotherapeutic agent and in low doses
to treat rheumatoid arthritis. It is a strong inhibitor of the DHFR,
which catalyzes the conversion of DHF to THF. This has a major
effect on the nucleotide pools available for DNA synthesis. This
inhibition is also predicted to reduce the number of methyl donors
potentially available for DNA methylation reactions. Previous research
has demonstrated that this drug also disrupts zebrafish development.
We found that it appears to reduce methylation across the genome,
with the strongest effects happening at CpG islands and exons. This
suggests that a downstream effect of this drug, besides its known role
in nucleotide metabolism, may be to disrupt the methylation
patterning of important genome elements and proteins, potentially
disrupting transcriptional and protein activity.

Our analysis of methylation patterning in zebrafish reveals that
this important model organism has similar canonical methylation
patterning as other vertebrates and mammals.

SUMMARY
In this study, we leverage our datasets against other ChIP-seq and
RNA-seq datasets to demonstrate the complexity of methylation
patterning in relation to histones, alternative splicing, and transcrip-
tion. Analysis of disparate genome-wide datasets allows us to make
generalizations about the relationships between epigenetic modifica-
tions and gene expression, which especially demonstrates the need to
re-evaluate the emphasis on promoter methylation being important in
modifying gene expression. Our novel meta-gene analysis provides
a useful template for analyzing the effects of methylation changes on
the gene-body across the genome and highlights how methylation
changes across the gene. Further research is needed to determine
whether methylation is driving these processes or is a passenger mark.
Our work confirms that methylation is a dynamic process. It also
highlights the power of using genome-wide analyses, without which
the importance of DNA methylation outside of gene promoters would
remain hidden from view.
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