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ABSTRACT Population stratification is an important task in genetic analyses. It provides information about
the ancestry of individuals and can be an important confounder in genome-wide association studies. Public
genotyping projects have made a large number of datasets available for study. However, practical
constraints dictate that of a geographical/ethnic population, only a small number of individuals are
genotyped. The resulting data are a sample from the entire population. If the distribution of sample sizes is
not representative of the populations being sampled, the accuracy of population stratification analyses of
the data could be affected. We attempt to understand the effect of biased sampling on the accuracy of
population structure analysis and individual ancestry recovery. We examined two commonly used methods
for analyses of such datasets, ADMIXTURE and EIGENSOFT, and found that the accuracy of recovery of
population structure is affected to a large extent by the sample used for analysis and how representative it is
of the underlying populations. Using simulated data and real genotype data from cattle, we show that
sample selection bias can affect the results of population structure analyses. We develop a mathematical
framework for sample selection bias in models for population structure and also proposed a correction for
sample selection bias using auxiliary information about the sample. We demonstrate that such a correction
is effective in practice using simulated and real data.
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Population stratification is an important task in genetic analyses. It
provides information about the genetic ancestry of individuals and
evolutionary history of populations (Rosenberg et al. 2002) and can be
used to correct for confounding effects in genetic association studies
(Price et al. 2006). A large number of human genetic datasets such
as the HAPMAP (Gibbs 2003), Human Genome Diversity Project
(Cavalli-Sforza 2005) along with a smaller number from other organisms
are available for study. Datasets that sample a number of individuals
from a specific region also have been analyzed to look for evidence of
population stratification. These datasets contain individuals from geo-
graphically and ethnically diverse populations. Due to practical con-

straints, only a small number of individuals from each population are
genotyped, and the resulting data are a sample from the entire pop-
ulation. This often means that the sample selected for analysis is a bi-
ased sample from the underlying populations. This problem is also
encountered when multiple datasets are combined to detect popula-
tion structure analysis with better resolution.

We hypothesize that if the distribution of sample sizes is not
representative of the populations being sampled, the accuracy of
population stratification analyses of the data could be affected because
a fundamental assumption of statistical learning algorithms is that the
sample available for analysis is representative of the entire population
distribution. Although most algorithms are robust to minor violations
of this assumption, sampling bias in the case of genetic datasets may
be too large for algorithms to accurately recover stratification.

In this work, we develop a mathematical framework for modeling
sample selection bias in genotype data. Our experiments on simulated
data show that accuracy of population stratification and recovery of
individual ancestry are affected to a large extent by the sampling bias
in the data collection process. Both likelihood-based methods and
eigenanalysis show sensitivity to the effects of sampling bias. We show
that sample selection bias can affect population structure analysis of
genotype data from cattle. We also propose a mathematical framework
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to correct for sample selection bias in ancestry inference reduce
its effects on ancestry estimates. We show how such a correction
can be implemented in practice and demonstrate its effectiveness
on simulated and real data.

RELATED WORK
We briefly examine methods that can be used for population structure
analysis and the factors that affect their accuracy. We also examine
related work on addressing the problem of sample selection bias in
different contexts.

Methods of population structure analysis
A variety of methods have been developed for detecting population
structure. The two main classes of methods used for detecting
population structure are model-based methods and eigenanalysis.
Model-based methods use an explicit admixture model of how the
population sample was formed from its ancestral populations. The
STRUCTURE model by Pritchard et al. (2000) was one of the early
methods of this class that is commonly used. Extensions to the
STRUCTURE method have been proposed to account for other ob-
served evolutionary processes (Falush et al. 2003; Huelsenbeck and
Andolfatto 2007; Shringarpure and Xing 2009). The frappe method by
Tang et al. (2005) and the ADMIXTURE method by Alexander et al.
(2009) are alternative ways of solving the optimization problem un-
derlying the STRUCTURE model. They allow us to efficiently analyze
datasets of large size.

The eigenanalysis methods proposed by Price et al. (2006) and
Patterson et al. (2006) project genetic data from individuals into
a low-dimensional space formed from the eigenvectors of the genetic
sample. Since they do not assume a specific model of population
evolution, they can be used in a variety of evolutionary scenarios.

Engelhardt and Stephens (2010) showed that the model-based
approach and the eigenanalysis-based approach to stratification could
both be interpreted as different ways of factorizing the genotype ma-
trix of the given data, which suggests that both methods are related
despite their apparent differences.

Factors affecting the accuracy of stratification
A number of factors are known to affect the accuracy of population
stratification and individual ancestry recovery. In one of the early works
on model-based methods for population stratification, Pritchard et al.
(2000) showed that the number of loci available for analysis had a sig-
nificant effect on the recovery of individual ancestry using STRUCTURE.
Kaeuffer et al. (2007) studied the effect of linkage disequilibrium on
recovery of population structure using simulated data. McVean (2009)
suggested an interpretation of the eigenanalysis method that is the basis
of the EIGENSOFT method in terms of the coalescence times of indi-
viduals. They also examined the performance of eigenanalysis in diverse
demographic scenarios. In the following, we discuss the problem of
sample selection bias and some related work about the effect of biased
sampling on accuracy of population stratification.

Sample selection bias
A common assumption of statistical algorithms is that the available sample
is representative of the underlying population. In reality, this assumption
may not always be true. Sample selection bias is any systematic difference
between the sample and the population. It affects the internal validity of an
analysis by leading to inaccurate estimation of relationships between
variables. It also can affect the external validity of an analysis because the
results from a biased sample may not generalize to the population.

The problem of sample selection bias was first widely studied in
econometrics, where it appeared as a bias among survey responders.
Heckman (1979) provided a method of addressing this problem in
linear regression models by estimating the probability of an individual
being included in the sample. Sample selection bias also has been
addressed in the statistics and machine learning literature by attempts
to understand its effect on classifiers and how estimation and pre-
diction can be made correctly in the presence of sampling bias (Vella
1998; Zadrozny 2004; Davidson and Zadrozny 2005; Cortes et al.
2008). Zadrozny (2004) discusses the properties of learning algorithms
and the effect of sample selection bias on their accuracy. It also out-
lines a possible way of correcting for sample selection bias, provided
we know the bias. Sample selection bias is also studied in ecology
when one is trying to model species distributions using presence-only
data (Phillips et al. 2009).

In population genetics, sample selection bias could be a serious
problem because the estimates of ancestry obtained from stratifi-
cation analyses often are used to make inferences about the genetic
ancestry of the sampled individuals. The inferred individual
ancestries also are used as input in correcting for stratification in
association studies [for instance, in ADMIXMAP (Hoggart et al.
2003)]. Pritchard et al. (2000) suggest that detecting stratification is
difficult unless a significant number of unmixed individuals from
each ancestral (or pseudo-ancestral) population is present in the
sample. This observation was verified by Tang et al. (2005) through
experiments on a small number of simulated datasets. To our
knowledge, there has not been a systematic study of the effect of
sample selection bias on the accuracy of population structure re-
covery and individual ancestry recovery.

We propose to study the effect of sample selection bias on the
accuracy of population stratification and individual ancestry recovery
using a model-based approach (ADMIXTURE) and an eigenanalysis-
based approach (EIGENSOFT). Since the analysis of McVean (2009)
provides guidelines on the effect of sampling bias on stratification
accuracy using eigenanalysis, we will focus our attention mainly on
probabilistic models such as ADMIXTURE.

A MATHEMATICAL FRAMEWORK FOR SAMPLE
SELECTION BIAS
We will consider the problem of studying genotype data using
a probabilistic model. Ordinarily, for probabilistic modeling, we would
assume that we have genotypes (g) drawn independently from a dis-
tribution D (with domain G) over the feature space G. We assume that
our points (g, u, s) are drawn independently from a distribution D
over G · U · S, where G is the space of genotypes, U are some
auxiliary features of the data that are not of direct interest for mod-
eling and S is a binary space. The variable s controls the selection of
points (1 means the point is selected and is observed in our sample,
0 means the point is not selected). Our observed sample contains only
points that have s = 1. We will refer to this as the selected sample and
refer to its distribution as D9.

We consider the setting where s is independent of g given u, that is
P(s|g, u) = P(s|u). This setting, where the selection is controlled by
features different from the genotype we want to model, arises fre-
quently in real applications. In population genetics, whether an in-
dividual is included in a genotyping study often depends on factors
such as geographical location.

Sample selection bias correction
It is easy to see that if g is independent of u in the previous setting,
then sample selection bias has no effect and the probability of g in the
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selected sample is the same as probability of g under D (asymptotically).
If g and u are not independent, then we can write using Bayes rule:

Pðg; uÞ ¼ Pðs ¼ 1ÞPðg; ujs ¼ 1Þ
Pðs ¼ 1jg; uÞ (1)

¼ Pðs ¼ 1ÞPðg; ujs ¼ 1Þ
Pðs ¼ 1juÞ (2)

which can be rewritten as

PDðg; uÞ ¼ Pðs ¼ 1ÞPD9ðg; uÞ
Pðs ¼ 1juÞ (3)

where D9 represents the distribution of the selected sample. Since the
term P(s = 1) is constant with respect to (g, u), we can say that

PDðg; uÞ ¼ c · PD9ðg; uÞ
Pðs ¼ 1juÞ (4)

where c is a constant that need not be evaluated for tasks such as
learning model parameters. Therefore, to model PD(g, u) accurately
to a multiplicative constant, we can follow the procedure below:

1. Compute PD9(g, u) using a model learned on the selected sample.
2. Apply a correction using the term P(s = 1|u). This can be done in

two ways:
(a) If we know the selection procedure, we know P(s = 1|u) and

can directly use it in the model.
(b) If the selection procedure is not known, but we have access to

large number of points for which we know (u, s), but not g,
we can estimate P(s = 1|u). In the population genetics exam-
ple, this would correspond to knowing the language or geo-
graphical region of an individual and whether or not they
could have been included in the study (since genotyping
individuals to find g for a large number of individuals would
be expensive).

However, this analysis, which can accurately correct for sample
selection bias in the described setting, requires a model of both g and
u. In most applications, we are interested in only modeling g and not
u. For instance, although there is interest in modeling the distribution
of genotypes, distributions of language or geography are not of direct
interest in genetics. Therefore, we consider a similar analysis in the
case where we only model P(g) and attempt to derive a correction for
sample selection bias.

Approximate correction
We consider the case when we only want to model P(g). Proceeding in
a similar way as before, we can write

PðgÞ ¼ Pðs ¼ 1ÞPðgjs ¼ 1Þ
Pðs ¼ 1jgÞ (5)

which can be restated as

PDðgÞ ¼ c · PD9ðgÞ
Pðs ¼ 1jgÞ (6)

A correction for sample selection bias could therefore be found if
we could estimate P(s = 1|g). However, g is typically high-dimensional—

in genetics applications, g may have dimensions from 1000 to 1,000,000.
P(s = 1|g) is therefore hard to estimate from the small selected sample.
We propose that since g and u are dependent and u typically has
much lower dimensionality than g, we can approximate P(s = 1|g)
by P(s = 1|u). We can therefore write the correction for sample
selection bias as

PDðgÞ � c · PD9ðgÞ
Pðs ¼ 1juÞ (7)

with the quality of the approximation varying as a function of the
dependence between g and u. In practice, we find that the approxi-
mate correction method is adequate for most applications, since prob-
abilistic models are often robust to some differences between the true
distribution of the data and the distribution of the selected sample.

It is important to note that even if the selection is determined in
reality by the u variables only, the correction proposed in Equation 7
is only an approximate correction. The exact correction would require
computing the term P(s = 1|g) which can be written asP

uPðs ¼ 1juÞPðujgÞ. The second term is a distribution conditioned
on g and is hard to specify due to the high dimensionality of g.

Implementing correction in learning: Although applying the pro-
posed correction for accurate probability modeling only requires
an extra multiplication step, implementing the correction in
learning models consistent with the true distribution is more
complex. This problem is well-studied as cost-sensitive learning. A
discussion of the ways in which the correction can be applied to
classifiers can be found in Zadrozny et al. (2003). In this work, we
will use sampling with replacement to implement the correction.
To perform sampling with replacement, we sample points in the
selected sample (with replacement) with probability proportional
to their correction factor (1/p(s = 1|u)). If the selected sample
contains N points, the probability of inclusion for the ith point is

given as 1=pðs¼1juiÞPN

j¼1
1=pðs¼1jujÞ

. Since we sample with replacement, our cor-

rected sample can include non-unique points from the selected
sample.

METHODS
We will demonstrate the effects of sample selection bias on the
accuracy of ancestry recovery by using experiments on simulated and
real data. We will also show how the approximate correction for
sample selection bias is effective in practice.

Simulation experiments
To examine the recovery of individual ancestry, we simulated data
from a two-population admixture scenario using populations
from HapMap Phase III as the ancestral populations. We used 50
unrelated individuals each from the CEU (Utah residents with
ancestry from northern and western Europe) and YRI (Yoruba in
Ibadan, Nigeria) populations as the two ancestral populations.
Using a forward simulator (see File S1), we simulated a 50-50
admixture in a single generation followed by six generations of
random mating to create a simulated population of 800 diploid
individuals. For our experiments, we used a 102-Mb region from
chromosome 1 containing 52,040 single-nucleotide polymor-
phisms (SNPs). The recombination rate was set to be 1028 per
site per generation and the mutation rate was set to be 1028 per
site per generation. Figure 1 shows the proportion of YRI ancestry
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among the individuals in the simulated population. From the
figure, we can see that most individuals are admixed, and there-
fore we refer to this simulated population as admixed. For our
ancestry inference experiments, we also included the remaining
CEU-unrelated individuals (38 in total) and the remaining YRI-
unrelated individuals (50 in total) in the analysis as proxies for the
ancestral populations. In our experiments, we will refer to the
CEU and YRI individuals as unmixed individuals.

We use the proportion of YRI ancestry, denoted as ui to represent
the ancestry of the ith individual. The population used for our experi-
ments therefore contained the following three groups:

1. 100 CEU individuals obtained by duplicating (and in some cases
triplicating) 38 unrelated CEU individuals, ui = 0

2. 100 YRI individuals obtained by duplicating 50 unrelated YRI
individuals, ui = 1

3. 800 admixed individuals, with ui 2 (0, 1)

To study the effects of sampling bias, we sample individuals from
the dataset with replacement to generate a dataset of size x + y + z,
where x is the number of CEU individuals, z is the number of YRI
individuals, and y is the number of admixed individuals. By varying x,
y, and z, we can generate smaller datasets with different kinds of bias
and deviations from the original dataset. We choose x and z from
{10,30,50,100} and y from {10,30,100,200,400,700}. Thus, the smallest
possible dataset is {10,10,10} (30 individuals), and the largest possible
dataset is {100,700,100} (900 individuals). We will use Sxyz to refer to
the dataset {x, y, z}.

In this case, g comprises the 52,040-dimensional genotypes of the
individuals and u comprises the group memberships of each individ-
ual according to their ancestry (u 2 {1, 2, 3} with the three groups as
defined earlier). In general, the probability distribution of u may not
be known. Therefore, as a first guess, we will assume that u has
a uniform distribution, i.e., PðuÞ ¼ 1

3 for any value of u. This assump-
tion means that an individual (regardless of inclusion in the study
sample) is equally likely to be from the CEU, YRI, or the admixed
population. By design, s depends only on u, and we can write the
probability distribution P(s = 1|u) as:

Pðs ¼ 1ju ¼ 1Þ ¼ Pðu ¼ 1js ¼ 1ÞPðs ¼ 1Þ
Pðu ¼ 1Þ ¼ x

x þ y þ z
Pðs ¼ 1Þ

1=3

(8)

Pðs ¼ 1ju ¼ 2Þ ¼ Pðu ¼ 2js ¼ 1ÞPðs ¼ 1Þ
Pðu ¼ 2Þ ¼ z

x þ y þ z
Pðs ¼ 1Þ

1=3

(9)

Pðs ¼ 1ju ¼ 3Þ ¼ Pðu ¼ 3js ¼ 1ÞPðs ¼ 1Þ
Pðu ¼ 3Þ ¼ y

x þ y þ z
Pðs ¼ 1Þ

1=3

(10)

which we can simplify to write

Pðs ¼ 1ju ¼ 1Þ ¼ x · C (11)

Pðs ¼ 1ju ¼ 2Þ ¼ z · C (12)

Pðs ¼ 1ju ¼ 3Þ ¼ y · C (13)

where C is a constant given by
3Pðs ¼ 1Þ
x þ y þ z

.

Evaluation measure
A fair evaluation of the results for both ADMIXTURE and
EIGENSOFT is difficult to achieve because the individual ancestries
produced by ADMIXTURE and EIGENSOFT are different in nature.
With K ancestral populations, an individual ancestry vector produced
by ADMIXTURE has the form {q1, . . ., qk} such that

PK
k¼1qk ¼ 1.

Thus, it has only K 2 1 independent components. An equivalent
representation of ancestry can be produced by projecting an individual
on the first K2 1 eigenvectors produced by EIGENSOFT. The ancestry
vectors that we store as the true ancestry when generating the simula-
tion data have the same form as those produced by ADMIXTURE.

We use squared correlation between the true ancestry and inferred
ancestry as the measure for evaluating the accuracy of ancestry
inference. For the dataset Sxyz, let Q = {u1, . . ., ux+y+z} denote the true
proportion of YRI ancestry of the individuals. Let Q1 = {q1,1,. . .,
q1,x+y+z} denote the ancestry proportions in cluster 1 inferred by
ADMIXTURE for dataset Sxyz with K = 2, where the second subscript
indexes the individuals in the dataset (and therefore we have that Q2 =
{q2,1,. . .,q2,x+y+z} = {1 2 q1,1, . . ., 1 2 q1,x+y+z}. Then the accuracy
metric for ADMIXTURE is correlation(Q, Q1)2 (which is equal to
correlation(Q, Q2)2). The corresponding accuracy measure can be
constructed for EIGENSOFT by replacing Q1 by the projections of
the individual genotypes on the first eigenvector of the Sxyz genotype
matrix. For robustness, we report the mean and standard error of the
squared correlation over 30 datasets for each parameter setting.

RESULTS

Sample selection bias in a simulated CEU-YRI admixture
We examined the effect of biased sampling of individuals by constructing
subsets of the whole dataset from the CEU-YRI admixture described
earlier and measuring the squared correlation between the true and
inferred ancestry (File S2). Figure 2A shows the results of this analysis
with the ADMIXTURE software with six subplots. Within each sub-
plot, the number of admixed individuals in the sample remains con-
stant and the number of unmixed individuals from the two ancestral
populations (CEU and YRI) is varied. Figure 2B shows the results of
an identical analysis of the same datasets with the EIGENSOFT
software.

Overall, ADMIXTURE recovered individual ancestry better than
EIGENSOFT. Previous work has shown that the accuracy of in-
dividual ancestry recovery is a function of the FST differentiation
between the ancestral populations. The results we obtain may vary
for datasets with different FST values between the ancestral popula-
tions and quantifying this effect will require more study.

Figure 1 Proportion of YRI ancestry among individuals in the simulated
population, six generations after admixture.
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Figure 2B shows that the EIGENSOFT results exhibit considerable
irregular variation within subplots. This is likely to be a result of our
sampling scheme for creating biased datasets, which allows individuals
to be present in a dataset more than once. This means that the
resulting genotype matrix can have lower rank than expected, result-
ing in lower accuracy of ancestry inference using EIGENSOFT. This,
however, does not cause any difficulties in the ADMIXTURE analysis,
as seen by the regular patterns in Figure 2A and would be expected
based on the likelihood model underlying ADMIXTURE. We will
therefore only use the results in Figure 2B to draw broad conclusions
about the behavior of EIGENSOFT and not make specific inferences
or recommendations.

In the scenarios in which we have few unmixed individuals from
both ancestral populations, Figure 2, A and B show that the accuracy
of individual ancestry recovery drops noticeably. This effect is evident
in the subplots with 200, 400, and 700 admixed individuals. In all
subplots in Figure 2A, the results show high accuracy when we have
a large number of unmixed individuals from at least one ancestral

population. Pritchard et al. (2000) and Tang et al. (2005) have pre-
viously noted that a significant number of unmixed individuals from
each ancestral population is required for accurate recovery of stratifi-
cation. An initial examination of the results suggests that may be
sufficient to have a large number (around 502100) of unmixed indi-
viduals from just one of the two ancestral populations to be able to
correctly resolve stratification.

We note that this guideline, which is relevant when the number of
admixed individuals is large, does not apply if the dataset contains few
admixed individuals and few unmixed individuals. When there are
few admixed individuals, both methods perform well (relative to their
average performance) even with as few as 10 unmixed individuals in
the dataset. Mantel tests reveal that the high correlations obtained
with few admixed individuals are statistically significant (P, 1023) in
all cases.

To examine the effect of the number of unmixed individuals on
the ancestry recovery in more detail, we looked at the subset of the
generated subsamples which had the same number of unmixed

Figure 2 Squared correlation between the
true individual ancestry and the individual
ancestry inferred using (A) ADMIXTURE with
K = 2 and (B) EIGENSOFT with the top
eigenvalue. The different levelplots are drawn
for different number of admixed individuals in
the dataset. The X and Y axes of the plots are
logarithmic in scale.
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individuals from both ancestral populations, i.e., subsets of the form
Sxyz where the number of unmixed individuals x2{10,30,50,100} and
the number of admixed individuals y2{10,30,100,200,400,700}. For
each value of x (the number of unmixed individuals from each an-
cestral population present in the dataset), we observed the effect of
varying y (the number of admixed individuals present in the dataset)
on the ancestry recovery. Figure 3A shows the results for ADMIX-
TURE, and Figure 3B shows the results for EIGENSOFT. When the
number of unmixed individuals is large, the methods recover ancestry
well, and the number of admixed individuals has no effect on accu-
racy. However, when the number of unmixed individuals in the sam-
ple is small, adding more admixed individuals to the sample reduces
the accuracy of the ancestry recovery for both ADMIXTURE and
EIGENSOFT. In Figure 3, A and B, we see a threshold effect due to
the number of unmixed individuals when the number of unmixed
individuals changes from 30 to 100.

The high accuracy of ancestry recovery when there are few
admixed and few unmixed individuals suggests that earlier hypotheses
about the requirement of a large number of unmixed individuals for
accurate ancestry recovery may be an incomplete explanation. The
results in Figure 2A and Figure 3A, along with the likelihood model
underlying ADMIXTURE suggest that the effect on accuracy may
depend on the ratio of the number of admixed individuals to unmixed
individuals from each population in the sample. For notational con-
venience, we will refer to this ratio as tsample = y/x.

To examine this hypothesis, we replot the data used for Figure 3A
by examining the correlation measure as a function of the ratio of
admixed individuals to unmixed individuals in the sample. Figure 4, A
and B show the results for this visualization for ADMIXTURE and
EIGENSOFT, respectively. From the figure, we can see that the effect
of sample selection bias can be understood using tsample. The accuracy
of ancestry recovery is high while the value of tsample is less than 5
(approximately) and drops as this ratio increases. This behavior is
independent of the exact number of unmixed individuals in the data-
set and can be observed for both ADMIXTURE and EIGENSOFT.

In our experiments, we observe that individual ancestry can be
recovered perfectly as long as tsample , 5. Decreasing the number of
admixed individuals has no adverse effect on the accuracy of ancestry
recovery. The effects of sample selection bias on the accuracy of
ancestry recovery in a two-population admixture scenario using
ADMIXTURE can thus be explained in two scenarios: (i) when
tsample , 5, sample selection bias has no effect on the accuracy of
individual ancestry recovery and (ii) when tsample . 5, the accuracy of
individual ancestry measured using the correlation measure decreases
with tsample.

Correction of sample selection bias in simulated data:We examined
three methods of correcting sample selection bias in the simulated
data. The methods and their results are described herein.

Supervision: ADMIXTURE can be run in supervised mode, where
individuals of known ancestry can be specified in advance to belong to
exactly one of K populations being inferred. This supervision is partial
since only nonadmixed individuals can be part of the supervised input
provided to the algorithm. In our experiments, we include supervision
by assigning the individuals of known YRI and CEU ancestry to the
two ancestral populations. We find that supervision produces an im-
provement that is statistically significant but practically insignificant
(, 0.0001% improvement in squared correlation, P , 2.2 · 10216 in
a one-sided paired t-test).

Including more SNPs: Our analysis of the CEU-YRI admixture
used 52,040 SNPs in a 102-Mb region. We found that including more

SNPs in the ADMIXTURE analysis reduced the effects of sample
selection bias for identical sample sizes and samples. When 116,415
SNPs are included in the ADMIXTURE analysis, we observe no effects
of sample selection bias on the accuracy of ancestry inference.
Although we do not thin SNPs in our analysis, thinning the original
set of 52,040 SNPs by an r2 threshold of 0.1 produces a set of 35,500
SNPs. Reanalyzing the data with this subset of SNPs produces a small
loss in accuracy (,0.5% in squared correlation, P , 2.2 · 10216 in
a one-sided paired t-test) when compared with the original set of
52,040 SNPs. Thus, while adding independent SNPs improves accu-
racy of ancestry inference, adding or removing linked SNPs has little
effect on accuracy.

Resampling correction: We implemented the resampling correc-
tion in the section Approximate correction by using Equations 11213.
Since we do not have an informative prior expectation of the true
numbers of admixed individuals or the unmixed individuals, we used
the uninformative initial estimate of all groups of individuals having
equal population sizes. We found that in more than 99% of the
corrected datasets, the squared correlation between true and inferred
ancestry was larger than 0.95 (mean = 0.98, standard deviation =
0.01). Thus the resampling correction is effective for correcting sample
selection bias.

Impact of effective population size on sample
selection bias
In the previous simulation, we used a correction based on an
assumption of similar population sizes for the different groups. In
general, the census (observed) population size and the effective

Figure 3 Effect of adding more admixed individuals to the dataset on
the correlation measure of accuracy when using (A) ADMIXTURE with
K = 2 and (B) EIGENSOFT with the top eigenvalue. The error bars
indicate standard error.
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population size of a population need not be equal due to demographic
events that the population may have undergone. We attempt to
demonstrate that the effect of biased sampling is dependent on the
effective population size and not only on the census population size.

We simulated two populations according to the demographic
scenario shown in Figure 5 using the coalescent simulatorms (Hudson
2002). The founding population and the populations resulting from
the split 1000 generations before present were set to have identical
sizes (N0 = 10,000). Population 2 then undergoes an instantaneous
contraction 795 generations after the split, with its population size
being reduced to aN0 The contraction factor a was varied across
datasets, taking values of 0.99 (nearly no contraction), 0.5 (moderate
contraction), or 0.1 (strong contraction). Two-hundred generations
after the contraction, population 2 instantaneously grows back in size
to N0. The simulation was continued for five generations after the
recovery, after which 50 diploid individuals were sampled from each
population. Each simulation used a mutation rate and recombination
rate of 1028 per bp per generation. In each simulation, 200 indepen-
dent sites of 100 kb were generated, producing between 47,585 and
58,024 SNPs per simulation. For each value of a (from {0.1,0.5,0.99}),
30 independent datasets were generated to evaluate the robustness of
results (File S3).

The two populations from a single simulation were pooled
together to form a 50:50 admixture in a single generation to create
50 admixed individuals. This was followed by five generations of
random mating in the resulting admixed population, using the
simulator described in the Introduction section. We then generated

a sample for study by including the 50 individuals from population 1,
50 admixed individuals, and a variable number of individuals (x) from
population 2 (x 2 {5, 10, 20, 30, 40, 50}). ADMIXTURE was used with
K = 2 to infer the ancestry proportions for each individual and the
squared correlation coefficient (as described in the section Evaluation
measure) for the dataset was used a measure of accuracy.

Figure 6 shows the results of the ancestry inference, with one curve
for each value of the contraction factor a. As expected from the pre-
vious experiments, as the number of individuals from population 2 in
the dataset increases, the accuracy of ancestry inference increases,
which is demonstrated by each curve. We also observe that the curves
for the three different contraction factors have different accuracies
before they converge to a accuracy of almost 1.

By our experimental design, the two ancestral populations have
identical census population sizes for each simulation and the census
size for population 2 is identical across simulations. However, due to
the bottleneck, the effective population size of population 2 is reduced,
with the amount of reduction dependent to the strength of the
contraction (the calculations for reduction in effective population size
for population 2 can be found in File S1). Figure 6 thus demonstrates
that effective population size, and not just census population size, has
an impact on how ancestry inference is affected by sampling bias.
From the figure, we can see that for the strongest contraction (a =
0.1, producing the maximum reduction in the effective population size
for population 2 to 0.36N0), the accuracy of ancestry inference is high
even with only 5 individuals from population 2. Since effective pop-
ulation size is a measure of the genetic diversity of a population, this
suggests that the reduced genetic diversity produced by the strong
contraction can be adequately captured even with a small number
of individuals. For the same number of individuals from population
2, across the curves, we see that the accuracy is smallest for the
weakest contraction (a = 0.99) and largest for the strongest contrac-
tion (a = 0.1). Thus, even when census population sizes are identical,
variation in effective population size affects the impact of sampling
bias accuracy of ancestry inference. This suggests that sampling bias
can be more accurately captured by defining it in terms of effective
population size rather than census population size.

Correction of bias: Using the estimate for the effective population size
of population 2 from File S1, we can implement a resampling

Figure 5 A two-population demographic scenario: Populations 1 and
2 (of size N0 = 104) are formed from a single population of the same
size 1000 generations before present time. Population 2 then under-
goes a bottleneck for 200 generations followed by a instantaneous
recovery to its original population size.

Figure 4 Effect of the ratio of number admixed individuals to unmixed
individuals in the dataset (tsample) on the correlation measure of accu-
racy using (A) ADMIXTURE with K = 2 and (B) EIGENSOFT with the top
eigenvalue. The error bars indicate standard error. The X-axis is loga-
rithmic in scale.
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correction as before. We assume that the effective population size for
the admixed population is identical to that for population 1, i.e., N0 =
104. Figure 7 shows the change in accuracy after application of the
resampling correction (relative to the accuracies in Figure 6).

From the figure, we can see that while the accuracy for the original
dataset is less than 0.95, the resampling correction produces an
improvement in the results, denoted by the portions of the curves in
bold. However, beyond those points, as the datasets acquire an excess
of the unmixed individuals relative to the admixed individuals, we see
that the uncorrected accuracy is high (larger than 0.95) and the
resampling correction decreases the accuracy of ancestry inference.
Thus a resampling correction is unnecessary when there is an excess
of unmixed individuals relative to their expected number from
effective population size calculations.

Sample selection bias in cattle genotype data
To demonstrate the effects of sample selection bias on a real genetic
dataset, we used the data from (McTavish et al., 2013a,b), who gen-
otyped 1461 individuals belonging to cattle breeds across the world at
47,506 SNPs. We focus on admixture between African and European
cattle breeds as seen in their New World descendants. For their
experiments with STRUCTURE, McTavish et al. (2013b) used a subset
of 1814 SNPs that was common to all their genotyping chips. Our data
therefore consists of genotype data at 1814 SNPs from 40 New World
individuals (Texas Longhorns), 100 European individuals (Limousin
from Southern Europe), and 100 African individuals (N’Dama and
N’DamaXBoran).

We created multiple subsets from the original data by including all
the 40 admixed New World individuals and a variable number (x) of
unmixed individuals from the European and African populations
(with the same number from each population). The number of un-
mixed individuals chosen was increased gradually from 10 to 100 (x 2
{10, 20, 30, 40, 50, 60, 80, 100}). For each value of x, we generated 30
datasets for statistical robustness. ADMIXTURE was used with K = 2
to infer ancestry proportions for all individuals. The squared correla-
tion coefficient for the ancestry proportions of the admixed individ-
uals was used as a measure of accuracy, with the ancestry proportions
inferred on the full data used as a truth set.

Figure 8 shows the results of the ancestry inference as a function of
the number of unmixed individuals (x). We see that as the number of

unmixed individuals increases, the accuracy of ancestry inference
improves. When the number of unmixed individuals is less than 40,
the squared correlation measure is less than 0.9.

Correction of bias: For the cattle data, effective population sizes for
the three populations are unknown. We assume that all three
populations have equal effective population size. The correction is
implemented using resampling as before. The blue curve in Figure 8
shows the effect of the correction on accuracy. From the figure, we can
see that when the number of admixed individuals is larger than the
number of unmixed individuals (tsample $ 1 as defined previously),
the correction improves accuracy but causes a small drop in accuracy
when there are many unmixed individuals.

DISCUSSION
Biased sampling of individuals is a result of practical constraints on
the study design of genotyping/sequencing projects. In this aspect,
sample selection bias is similar to bias due to SNP ascertainment. It
can also occur as a result of combining multiple genomic datasets
from different sources. For instance, the overlap of three genotyping
chips required McTavish et al. (2013b) to use only 1814 SNPs for their
STRUCTURE analysis.

In most stratification analyses, the recovered ancestry proportions
are used to make inferences about the ancestry of the sample and the
genetic relationships of similarity/differences between the study
populations. Ancestry proportion estimates are also used in associa-
tion studies to account for effects of stratification. Therefore, it is
essential to have accurate recovery of ancestry. Our experiments
suggest that sample selection bias can be a problem in accurate
population stratification and recovering individual ancestry. Our
simulations show that unlike observations from previous studies, the
accuracy of individual ancestry recovery is not dependent only on the
number of unmixed individuals present in the sample. We observe
a threshold effect where the accuracy of ancestry inference is affected
by sample selection bias depending on the ratio of admixed
individuals to unmixed individuals in the sample. Our simulations
suggest that the accuracy of ancestry inference is affected when this
ratio, tsample, is less than 5. For real genotype data from cattle, we

Figure 7 Change in correlation measure from Figure 6 after the
resampling correction, taking into account the impact of the contrac-
tion on effective population size. Each curve is drawn for a single value
of the contraction factor a and shows the mean and standard error of
the change in correlation measure over 30 datasets. The regions of the
curves in bold show regions where accuracy in the uncorrected results
(from Figure 6) is less than 0.95.

Figure 6 Impact of effective population size on the correlation
measure of accuracy of ancestry inference using ADMIXTURE with
K = 2. Each curve is drawn for a single value of the contraction factor a
and shows the mean and standard error of the correlation measure
over 30 datasets.

908 | S. Shringarpure and E. P. Xing



observed that a ratio of tsample larger than 1 was sufficient to affect
ancestry estimates.

Our experiments do not directly demonstrate an effect of FST on
sample selection bias. However, using the 1814 SNPs for the genotype
data, we were able to observe effects of sample selection bias on
African-European admixture in cattle (FST � 0.15) but unable to
observe any effect of sample selection bias on European-Indian ad-
mixture (FST � 0.28, results not shown here). This suggests that FST
has an effect on sample selection bias, with well-differentiated pop-
ulations being easy to separate even with biased sampling. The sim-
ulations and real data analysis had relatively large FST between the two
ancestral populations (� 0.1 for the simulations, � 0.15 for the cattle
genotype data) but vastly different number of SNPs (52,040 for the
simulation but only 1814 for the cattle genotype data). The degrada-
tion in performance of ancestry inference in the two cases was con-
siderably different, suggesting that the effect of sample selection bias
also depends on the number of loci available. This was also validated
by the observation that doubling the number of SNPs in simulation
eliminated the effects of sample selection bias completely.

We also showed through simulations that sample selection bias
depends on the effective population size rather than simply the census
population size of the populations studied. This suggests that sampling
for genotyping/sequencing projects can be improved (in terms of
diversity of sampling and cost) by taking into account independent
knowledge of the demographic history of the populations being
sampled.

Although our analyses use two specific methods (ADMIXTURE
and EIGENSOFT), the effects we observe are a feature of the
assumptions underlying both methods rather than the specific
implementations. ADMIXTURE is a representative of the likelihood-
based models that assume (a) admixture between ancestral popula-
tions and (b) that modern individual genomes are mixture of
contributions from different ancestral populations. This is the
model underlying STRUCTURE and frappe and to a large extent
the extensions mentioned earlier. Likelihood-based methods are
susceptible to effects of sample selection bias since each individual is
given equal weight in the sample a priori. This is a result of the
fundamental assumption of learning methods that the sample
observed is representative of the underlying population distribution.
Eigenanalysis, which also weighs each individual equally apriori, also
suffers from a similar problem as the likelihood-based method. The

sensitivity of eigenanalysis to sample size variation and outliers is well-
known and is also reported by McVean (2009) and Novembre and
Stephens (2008).

ADMIXTURE and EIGENSOFT are unsupervised methods for
performing ancestry inference, i.e., they do not leverage information
about individuals of known ancestry to estimate their respective model
parameters. ADMIXTURE supports a mode (which is referred to as
a supervised mode in the documentation) in which some individuals
can be “labeled”, i.e., assigned to have ancestry from only a single
cluster. However, all the individuals, labeled or otherwise, are used
to learn the allele frequency parameters of the ADMIXTURE model.
In machine learning literature, this mode of learning is commonly
called “semi-supervised” learning, wherein a combination of labeled
and unlabeled data is used to learn model parameters. In simulations,
we observed that this mode of ancestry inference is also affected by
sample selection bias.

A different class of methods can estimate local (subcontinental)
ancestry from dense genotype data (Sankararaman et al. 2008; Price
et al. 2009; Wall et al. 2011; Baran et al. 2012). A common theme of all
of these methods is the use of external sources of genotype data as
“reference panels” (referred to as “training data” in machine learning
literature), which are used to estimate ancestral allele frequencies or
ancestral haplotypes. The estimated parameters (frequencies or hap-
lotypes) are then used to infer the ancestry of the individuals in the
study sample based on their genotypes (referred to as “test data” in
machine learning literature). Therefore, these methods can be said to
be performing supervised learning. Supervised learning using external
sources of data for estimating model parameters is robust to biased
sampling in the study sample but is sensitive to the reference panels
used for training (Zadrozny et al. 2003).

We proposed a resampling correction for sample selection bias
using a mathematical framework modeling the sampling process. The
proposed correction requires knowledge of some auxiliary informa-
tion about the selection criteria that is correlated with the genotypes
(bias is present only if selection is dependent on the genotypes,
directly or indirectly). For genetic datasets, geography provides one
such criterion that is easy to acquire during data collection. Using this
information, we proposed a correction that is easy to implement. We
showed using simulation experiments that such a correction is
effective in practice and leads to more accurate results. In terms of
computational effort, ADMIXTURE has a linear dependence on the
number of individuals. The resampling correction will therefore require
time proportional to the number of individuals in the resampled set.
However, a better implementation of the resampling correction for
ADMIXTURE would be to be weigh the likelihood contribution from
each individual in the original sample by its resampling correction
factor (1/p(s = 1|u)). This would allow the correction to be implemented
without any increase in computational complexity of the ADMIXTURE
algorithm. The resampling correction implemented naively can cause
problems for EIGENSOFT due to the possibility of colinearity resulting
from duplication of individuals, as evident in Figure 2B. A weighted
eigenanalysis would avoid this problem without affecting the efficiency
of the analysis.

An alternative method for correcting sample selection bias is to
add more markers to the analysis, as observed from the simulation.
Adding more SNPs to the analysis is an appealing solution because it
does not require any further assumptions that any statistical
correction may require, with the exception of the assumption of no
linkage between SNPs. However, this may not always be possible if the
study dataset is constructed by intersecting multiple datasets contain-
ing the individuals of interest genotyped on different platforms.

Figure 8 Variation in accuracy of ancestry inference with changing
number of unmixed individuals. The red curve shows accuracy without
correction and the blue curve shows the accuracy when the correction
is applied.
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Our simulation experiments used simple two-population admix-
ture scenarios to examine the effects of sample selection bias on the
accuracy of stratification. In one set of experiments, we used two
populations (CEU and YRI) that were easily separable and examined
the admixed population resulting after a single recent admixture
event. In reality, the demographic processes underlying the evolution
of populations are much more complicated. In such scenarios, it is
reasonable to expect that the stratification problem may be harder to
resolve and would suffer from the effects of sample selection bias more
severely.

A limitation of our proposed correction is the requirement for
external knowledge of the selection criteria for samples. In our
experiments, we either knew the nature of the bias (by design in the
simulation experiments) or assumed that it was known. In general, the
accuracy of the correction method proposed will strongly depend on
the relationship between the selection criteria and the genotypes.
Corrections factors therefore may be dataset-specific. An alternative
future direction for correcting sample selection bias would be to
develop models of population structure that can also model the
auxiliary factors such as geography or language that may determine
the selection process responsible for the biased sampling. There may
be occasions where the nature of the sampling bias is partially known
without having sufficient information to allow a correction to be
developed. For instance, analyses of the POPRES dataset (Nelson et al.
2008) often select individuals who are known to have all four grand-
parents of the same ancestry (Novembre et al. 2008). In this case, the
criteria for selection can be stated explicitly but a mathematical for-
mulation of the bias is hard to obtain. In such scenarios, we recom-
mend subsampling/resampling datasets to examine the robustness of
ancestry inference results to variation in sampling.

In summary, our experiments suggest that sample selection bias
affects ancestry inference and depends on factors such as effective
population size, genetic differentiation between populations, number
of loci available, and the ratio of admixed samples to unmixed
samples. For analyses of human genotype data, hundreds of thousands
of SNPs are typically available. Therefore, we do not expect sample
selection bias to be a problem for ancestry inference in human data
except when the source populations for admixture are not well-
differentiated. Local ancestry methods which can make use of external
genotype data also provide a way of avoiding the effects of sample
selection bias. We expect that sample selection bias will be of interest
in ancestry analysis for model organisms, where availability of external
genotype data are limited and most genotyping chips have relatively
fewer loci. When the sampling process is relatively well-understood,
a mathematical correction as we have proposed will help to reduce the
effects of sample selection bias. In our experiments, a rough guideline
of using approximately identical number of admixed and unmixed
individuals reduces the effects of biased sampling. When the sampling
process cannot be modeled accurately, examining the robustness of
ancestry estimates to sampling may help avoid inaccurate ancestry
estimation.
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