Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jan 9;93(1):456–460. doi: 10.1073/pnas.93.1.456

Differential toxicity of mitomycin C and porfiromycin to aerobic and hypoxic Chinese hamster ovary cells overexpressing human NADPH:cytochrome c (P-450) reductase.

M F Belcourt 1, W F Hodnick 1, S Rockwell 1, A C Sartorelli 1
PMCID: PMC40257  PMID: 8552660

Abstract

Purified NADPH:cytochrome c (P-450) reductase (FpT; NADPH-ferrihemoprotein oxidoreductase, EC 1.6.2.4) can reductively activate mitomycin antibiotics through a one-electron reduction to species that alkylate DNA. To assess the involvement of FpT in the intracellular activation of the mitomycins, transfectants overexpressing a human FpT cDNA were established from a Chinese hamster ovary cell line deficient in dihydrofolate reductase (CHO-K1/dhfr-). The parental cell line was equisensitive to the cytotoxic action of mitomycin C under oxygenated and hypoxic conditions. In contrast, porfiromycin was considerably less cytotoxic to wild-type parental cells than was mitomycin C in air and markedly more cytotoxic under hypoxia. Two FpT-transfected clones were selected that expressed 19- and 27-fold more FpT activity than the parental line. Levels of other oxidoreductases implicated in the activation of the mitomycins were unchanged. Significant increases in sensitivity to mitomycin C and porfiromycin in the two FpT-transfected clones were seen under both oxygenated and hypoxic conditions, with the increases in toxicity being greater under hypoxia than in air. These findings demonstrate that FpT can bioreductively activate the mitomycins in living cells and implicate FpT in the differential aerobic/hypoxic toxicity of the mitomycins.

Full text

PDF
456

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachur N. R., Gordon S. L., Gee M. V., Kon H. NADPH cytochrome P-450 reductase activation of quinone anticancer agents to free radicals. Proc Natl Acad Sci U S A. 1979 Feb;76(2):954–957. doi: 10.1073/pnas.76.2.954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Begleiter A., Robotham E., Leith M. K. Role of NAD(P)H:(quinone acceptor) oxidoreductase (DT-diaphorase) in activation of mitomycin C under hypoxia. Mol Pharmacol. 1992 Apr;41(4):677–682. [PubMed] [Google Scholar]
  3. Bligh H. F., Bartoszek A., Robson C. N., Hickson I. D., Kasper C. B., Beggs J. D., Wolf C. R. Activation of mitomycin C by NADPH:cytochrome P-450 reductase. Cancer Res. 1990 Dec 15;50(24):7789–7792. [PubMed] [Google Scholar]
  4. Dorr R. T., Bowden G. T., Alberts D. S., Liddil J. D. Interactions of mitomycin C with mammalian DNA detected by alkaline elution. Cancer Res. 1985 Aug;45(8):3510–3516. [PubMed] [Google Scholar]
  5. Dusre L., Rajagopalan S., Eliot H. M., Covey J. M., Sinha B. K. DNA interstrand cross-link and free radical formation in a human multidrug-resistant cell line from mitomycin C and its analogues. Cancer Res. 1990 Feb 1;50(3):648–652. [PubMed] [Google Scholar]
  6. Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
  7. Haffty B. G., Son Y. H., Sasaki C. T., Papac R., Fischer D., Rockwell S., Sartorelli A., Fischer J. J. Mitomycin C as an adjunct to postoperative radiation therapy in squamous cell carcinoma of the head and neck: results from two randomized clinical trials. Int J Radiat Oncol Biol Phys. 1993 Sep 30;27(2):241–250. doi: 10.1016/0360-3016(93)90234-m. [DOI] [PubMed] [Google Scholar]
  8. Hoban P. R., Walton M. I., Robson C. N., Godden J., Stratford I. J., Workman P., Harris A. L., Hickson I. D. Decreased NADPH:cytochrome P-450 reductase activity and impaired drug activation in a mammalian cell line resistant to mitomycin C under aerobic but not hypoxic conditions. Cancer Res. 1990 Aug 1;50(15):4692–4697. [PubMed] [Google Scholar]
  9. Hodnick W. F., Sartorelli A. C. Reductive activation of mitomycin C by NADH:cytochrome b5 reductase. Cancer Res. 1993 Oct 15;53(20):4907–4912. [PubMed] [Google Scholar]
  10. Hughes C. S., Irvin C. G., Rockwell S. Effect of deficiencies in DNA repair on the toxicity of mitomycin C and porfiromycin to CHO cells under aerobic and hypoxic conditions. Cancer Commun. 1991 Feb;3(2):29–35. [PubMed] [Google Scholar]
  11. Iyanagi T., Yamazaki I. One-electron-transfer reactions in biochemical systems. 3. One-electron reduction of quinones by microsomal flavin enzymes. Biochim Biophys Acta. 1969 Apr 8;172(3):370–381. doi: 10.1016/0005-2728(69)90133-9. [DOI] [PubMed] [Google Scholar]
  12. Kalyanaraman B., Perez-Reyes E., Mason R. P. Spin-trapping and direct electron spin resonance investigations of the redox metabolism of quinone anticancer drugs. Biochim Biophys Acta. 1980 Jun 5;630(1):119–130. doi: 10.1016/0304-4165(80)90142-7. [DOI] [PubMed] [Google Scholar]
  13. Kennedy K. A., Mimnaugh E. G., Trush M. A., Sinha B. K. Effects of glutathione and ethylxanthate on mitomycin C activation by isolated rat hepatic or EMT6 mouse mammary tumor nuclei. Cancer Res. 1985 Sep;45(9):4071–4076. [PubMed] [Google Scholar]
  14. Kennedy K. A., Sligar S. G., Polomski L., Sartorelli A. C. Metabolic activation of mitomycin C by liver microsomes and nuclei. Biochem Pharmacol. 1982 Jun 1;31(11):2011–2016. doi: 10.1016/0006-2952(82)90414-2. [DOI] [PubMed] [Google Scholar]
  15. Kennedy K. A., Teicher B. A., Rockwell S., Sartorelli A. C. The hypoxic tumor cell: a target for selective cancer chemotherapy. Biochem Pharmacol. 1980 Jan 1;29(1):1–8. doi: 10.1016/0006-2952(80)90235-x. [DOI] [PubMed] [Google Scholar]
  16. Keyes S. R., Fracasso P. M., Heimbrook D. C., Rockwell S., Sligar S. G., Sartorelli A. C. Role of NADPH:cytochrome c reductase and DT-diaphorase in the biotransformation of mitomycin C1. Cancer Res. 1984 Dec;44(12 Pt 1):5638–5643. [PubMed] [Google Scholar]
  17. Keyes S. R., Loomis R., DiGiovanna M. P., Pritsos C. A., Rockwell S., Sartorelli A. C. Cytotoxicity and DNA crosslinks produced by mitomycin analogs in aerobic and hypoxic EMT6 cells. Cancer Commun. 1991;3(10-11):351–356. doi: 10.3727/095535491820873812. [DOI] [PubMed] [Google Scholar]
  18. Komiyama T., Kikuchi T., Sugiura Y. Generation of hydroxyl radical by anticancer quinone drugs, carbazilquinone, mitomycin C, aclacinomycin A and adriamycin, in the presence of NADPH-cytochrome P-450 reductase. Biochem Pharmacol. 1982 Nov 15;31(22):3651–3656. doi: 10.1016/0006-2952(82)90590-1. [DOI] [PubMed] [Google Scholar]
  19. Komiyama T., Oki T., Inui T., Takeuchi T., Umezawa H. Reduction of anthracycline glycoside by NADPH--cytochrome P-450 reductase. Gan. 1979 Aug;70(4):403–410. [PubMed] [Google Scholar]
  20. Marshall R. S., Rauth A. M. Oxygen and exposure kinetics as factors influencing the cytotoxicity of porfiromycin, a mitomycin C analogue, in Chinese hamster ovary cells. Cancer Res. 1988 Oct 15;48(20):5655–5659. [PubMed] [Google Scholar]
  21. Pan S. S., Andrews P. A., Glover C. J., Bachur N. R. Reductive activation of mitomycin C and mitomycin C metabolites catalyzed by NADPH-cytochrome P-450 reductase and xanthine oxidase. J Biol Chem. 1984 Jan 25;259(2):959–966. [PubMed] [Google Scholar]
  22. Pan S. S., Iracki T., Bachur N. R. DNA alkylation by enzyme-activated mitomycin C. Mol Pharmacol. 1986 Jun;29(6):622–628. [PubMed] [Google Scholar]
  23. Pritsos C. A., Sartorelli A. C. Generation of reactive oxygen radicals through bioactivation of mitomycin antibiotics. Cancer Res. 1986 Jul;46(7):3528–3532. [PubMed] [Google Scholar]
  24. Rice G. C., Hoy C., Schimke R. T. Transient hypoxia enhances the frequency of dihydrofolate reductase gene amplification in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5978–5982. doi: 10.1073/pnas.83.16.5978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rice G. C., Ling V., Schimke R. T. Frequencies of independent and simultaneous selection of Chinese hamster cells for methotrexate and doxorubicin (adriamycin) resistance. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9261–9264. doi: 10.1073/pnas.84.24.9261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rockwell S. In vivo-in vitro tumor systems: new models for studing the response of tumours to therapy. Lab Anim Sci. 1977 Oct;27(5 Pt 2):831–851. [PubMed] [Google Scholar]
  27. Rockwell S., Keyes S. R., Sartorelli A. C. Preclinical studies of porfiromycin as an adjunct to radiotherapy. Radiat Res. 1988 Oct;116(1):100–113. [PubMed] [Google Scholar]
  28. Sartorelli A. C., Hodnick W. F., Belcourt M. F., Tomasz M., Haffty B., Fischer J. J., Rockwell S. Mitomycin C: a prototype bioreductive agent. Oncol Res. 1994;6(10-11):501–508. [PubMed] [Google Scholar]
  29. Sartorelli A. C. Therapeutic attack of hypoxic cells of solid tumors: presidential address. Cancer Res. 1988 Feb 15;48(4):775–778. [PubMed] [Google Scholar]
  30. Sartorelli A. C., Tomasz M., Rockwell S. Studies on the mechanism of the cytotoxic action of the mitomycin antibiotics in hypoxic and oxygenated EMT6 cells. Adv Enzyme Regul. 1993;33:3–17. doi: 10.1016/0065-2571(93)90005-x. [DOI] [PubMed] [Google Scholar]
  31. Simpson-Herren L., Noker P. E. Diversity of penetration of anti-cancer agents into solid tumours. Cell Prolif. 1991 Jul;24(4):355–365. doi: 10.1111/j.1365-2184.1991.tb01164.x. [DOI] [PubMed] [Google Scholar]
  32. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  33. Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stirpe F., Della Corte E. The regulation of rat liver xanthine oxidase. Conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J Biol Chem. 1969 Jul 25;244(14):3855–3863. [PubMed] [Google Scholar]
  35. Tannock I. F. The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br J Cancer. 1968 Jun;22(2):258–273. doi: 10.1038/bjc.1968.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Urlaub G., Chasin L. A. Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4216–4220. doi: 10.1073/pnas.77.7.4216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vaupel P., Kallinowski F., Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989 Dec 1;49(23):6449–6465. [PubMed] [Google Scholar]
  38. Weissberg J. B., Son Y. H., Papac R. J., Sasaki C., Fischer D. B., Lawrence R., Rockwell S., Sartorelli A. C., Fischer J. J. Randomized clinical trial of mitomycin C as an adjunct to radiotherapy in head and neck cancer. Int J Radiat Oncol Biol Phys. 1989 Jul;17(1):3–9. doi: 10.1016/0360-3016(89)90362-3. [DOI] [PubMed] [Google Scholar]
  39. Xu B. H., Gupta V., Singh S. V. Characterization of a human bladder cancer cell line selected for resistance to mitomycin C. Int J Cancer. 1994 Sep 1;58(5):686–692. doi: 10.1002/ijc.2910580512. [DOI] [PubMed] [Google Scholar]
  40. Xu B. H., Gupta V., Singh S. V. Mechanism of differential sensitivity of human bladder cancer cells to mitomycin C and its analogue. Br J Cancer. 1994 Feb;69(2):242–246. doi: 10.1038/bjc.1994.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yamano S., Aoyama T., McBride O. W., Hardwick J. P., Gelboin H. V., Gonzalez F. J. Human NADPH-P450 oxidoreductase: complementary DNA cloning, sequence and vaccinia virus-mediated expression and localization of the CYPOR gene to chromosome 7. Mol Pharmacol. 1989 Jul;36(1):83–88. [PubMed] [Google Scholar]
  42. Yasukochi Y., Masters B. S. Some properties of a detergent-solubilized NADPH-cytochrome c(cytochrome P-450) reductase purified by biospecific affinity chromatography. J Biol Chem. 1976 Sep 10;251(17):5337–5344. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES