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Abstract: A dendritic spine is a small membranous protrusion from a 
neuron's dendrite that typically receives input from a single synapse of an 
axon. Recent research shows that the morphological changes of dendritic 
spines have a close relationship with some specific diseases. The 
distribution of different dendritic spine phenotypes is a key indicator of 
such changes. Therefore, it is necessary to classify detected spines with 
different phenotypes online. Since the dendritic spines have complex three 
dimensional (3D) structures, current neuron morphological analysis 
approaches cannot classify the dendritic spines accurately with limited 
features. In this paper, we propose a novel semi-supervised learning 
approach in order to perform the online morphological classification of 
dendritic spines. Spines are detected by a new approach based on wavelet 
transform in the 3D space. A small training data set is chosen from the 
detected spines, which has the spines labeled by the neurobiologists. The 
remaining spines are then classified online by the semi-supervised learning 
(SSL) approach. Experimental results show that our method can quickly 
and accurately analyze neuron images with modest human intervention. 
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1. Introduction 

In neuron-biology research, the morphological structures of neurons have been proven to 
have a close correlation with the neuron functional properties. Among all the morphological 
structures of neurons, the dendrite and the dendritic spines are the most functional parts that 
draw the concentration of neuron-biology researchers. Most of the dendrites are the tree-like 
structures of neuronal cells and their spines are small protrusions on the surface of dendrites. 
Currently, the morphological analysis of dendritic spines is widely used in the neurobiology 
research such as the one on Alzheimer’s disease [1–3]. With the help of modern fluorescence 
microscopy methods, the detailed 3D shapes of dendrites and spines can be obtained by 
confocal laser scanning microscopy (CLSM) or two-photon laser scanning microscopy 
(2PLSM) [4]. Since dendritic spines have various shapes and their structures correlate highly 
with their underlying cognitive functions [5], it is crucial to detect and extract dendritic spines 
from the dendrite, and analyze the spines morphological structure efficiently. 

There are mainly two kinds of approaches when dealing with the morphological analysis 
of neuron structure. One of the most popular analysis methods is conducted on maximal 
intensity projection (MIP) images, which analyzes the neuron morphological structures based 
on features extracted from the 2D plane by projecting 3D voxels with maximum intensity that 
fall in the way of parallel rays traced from the viewpoint to the plane of projection [6–8]. In 
this approach, intensity of the pixels on the 2D plane is one of the most important features in 
distinguishing dendrite and spines. Cheng et al. [7] proposed an automated dendrite spines 
detection in 2PLSM based on MIP image. Bai et al. [8] also used the MIP image to track the 
backbone of dendrite, and segment the spines from dendrite with a breadth model, but these 
approaches in the 2D plane cannot guarantee a high accuracy because the information is lost 
when the original 3D image stacks are projected to a 2D plane. The second kind of approach 
analyzes the 3D structure of neurons. Among the existing 3D approaches, Janoos et al. [9] 
proposed a 3D reconstruction and identification of dendritic spines algorithm based on the 
skeletonization. First, the center line of the whole neuron structure was extracted. Then, the 
longest line was considered as the backbone of dendrite and the shorter lines were considered 
as the centerlines of dendritic spines. However, the skeletonization algorithm has two 
problems that make it weak. First, it is time consuming to get all the centerlines from the 3D 
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volume with complex shapes. Second, for the different shapes of dendritic spines, the 
skeletonizaiton algorithm always produced too many short branches in one spine and was too 
inflexible in getting the real centerlines from the branches. 

A 3D neuron analysis approach was proposed by Rodriguez et al. [10], which was based 
on a 3D reconstruction algorithm using the Rayburst diameter [10, 11], where Rayburst is 
defined as casting a multidirectional core of rays from an interior point to the surface of a 
solid, allowing precise quantification of anisotropic and irregularly shaped 3D structures. The 
Rayburst diameter in each layer of a spine was calculated and the head and neck of each spine 
was defined according to the distribution of the diameters. This method detect and classify the 
spines in an efficient way, but it may not be accurate in dealing with the spines having too 
complex shapes. First, the spine shape is only defined by the head to neck ratio (HNR). 
Second, a global threshold of HNR is not adaptive in analyzing different kind of images. 
Therefore, machine learning approaches are needed to classify dendritic spines with an online 
neuron morphological analysis strategy. 

To solve the dendritic spines morphological analysis problems efficiently, we propose a 
novel morphological analysis algorithm for dendritic spines based on a SSL approach. In this 
framework, dendritic spines are detected and segmented from dendrite based on wavelet 
transform. After the measurement of spines, the SSL approach is conducted on the spine 
classification. First, the dendrite backbone on a 2D xy plane is tracked and all the dendrites’ 
surface with meshes in a 3D space are reconstructed. Second, spines are segmented from the 
dendrite based on wavelet transform, where the segmenting positions are located where the 
wavelet response on a spine section quickly changes. Features of spines are also extracted 
after the spines segmentation. Third, a small portion of detected spines are selected by a 
neurobiology expert, and labeled as the training set for classification. Lastly, the labels of the 
remaining spines can be calculated after the training process and all the detected spines are 
classified by the learning framework. 

Our strategy is different from previous methods mainly in three ways. First, our approach 
is totally conducted on the 3D image stacks except for the dendrite backbone extraction. 
Second, a wavelet transform is applied to detect and segment the spines from the dendrites. 
Third, a SSL approach is applied in the spine morphological classification. The rest of this 
paper is organized as follows: In section 2 we introduce the image acquisition and 
preprocessing. In Section 3 we describe the detection and morphological classification 
strategy of dendritic spines in a 3D image data set and show the SSL algorithm in detail, 
where the SSL approach is applied for the first time to the morphological classification of 3D 
spines. In section 4 we show experimental results and we conclude our paper and discuss 
future development in section 5. 

2. Image acquisition and preprocessing 

Due to fast development in the field of neuron imaging technology, the detailed 3D shape of 
neuron parts can be obtained by some kinds of modern fluorescence microscopy methods. 
2PLSM provides unprecedented capabilities for 3D, spatially resolved photochemistry, 
particularly photolytic release of caged effector molecules [12–14]. These imaging 
technologies are powerful tools to study the structure of dendritic spines. In this section, the 
acquisition of 3D image stacks is described in detail. The preprocessing of raw 3D image 
stacks acquired from 2PLSM is also introduced. In order to research different neuron 
morphological structures, the data sets were obtained from a variety of brain regions and 
treatments of intact animals using 2PLSM. All the 3D acquired image stacks had the 
resolution of 512× 512 pixels in the x-y plane. Since the average spine length was always 1 
µm, 3D images with a high definition of 0.05× 0.05× 0.10 µm/pixel helped to get a clearer 
geometrical structure of the spines during the detection approach. The image stacks contains 
18 slices in the z field on average, and are 16-bit gray-scale images. 
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The noise and the lighting condition are the two main reasons that cause the degradation 
of images obtained by optical microscopy. Therefore, before the reconstruction of 3D image 
stacks, the raw image stacks were preprocessed by de-noising algorithms. A 3D median filter 
with a 3× 3× 3 three kernel size and a top-hat filter were applied to the images to remove the 
noise and correct uneven illumination degradation. The intensity of the dendrites and spines 
were enhanced, reducing false detection of spines, especially some detached spines from the 
dendrite. The filters also smoothed the surfaces of the neuron, making the following 
reconstruction much smoother. 

In order to extract spines, the neuron should be segmented from the background first. 
Since the intensity is not distributed evenly in each spine, there is a problem finding the spine 
components with low intensities. The neuron, including dendrite and spines, is segmented 
from the background using the adaptive threshold methods [7], which set a threshold for each 
pixel. This threshold is then used to test against the pixel intensity value to produce binary 
images. After segmentation, morphological filtering is performed to remove the noise, fill the 
holes, and smooth the boundaries. It is notable that some morphological processing, such as 
filling holes, can distort dendrite structures. To prevent these problems, local intensity 
information is considered during the processing. 

3. Methodology 

In this section, we discuss the algorithms we used in the morphological analysis of dendritic 
spines in the 3D neuron image stacks, including spine detection and classification. The 
flowchart of dendritic spines morphological analysis is shown in Fig. 1. First, the neuron is 
segmented from the background using the adaptive threshold algorithm proposed in [7]. 
Based on the preprocessing results, we extract the centerline of dendrite from 3D volume in 
section 3.1. In section 3.2, we introduce the spine detection algorithm based on wavelet 
transform in details. The detailed measurements of spines are obtained after spines being 
segmented from the dendrite. Then, we apply the SSL approach on the morphological 
classification of dendritic spines in section 3.3, and the detected spines are classified into 
three categories, mushroom, thin, and stubby according to spine morphology definitions in 
[10, 11]. 

 

Fig. 1. Flowchart of the dendritic spine morphological analysis 

3.1 Dendrite extraction 

Compared to tube-like dendrites, spines have more complex shapes and mostly don’t have 
distinct segmenting positions from the dendrite. In order to detect dendritic spines correctly, 
the centerline along the neuron should be extracted. First, the raw 3D neuron images is 
processed with the method that was proposed in paper [15]. The centerline along the neuron, 
which is also called dendrite backbone, is extracted by casting rays inside of the neuron. 
Meanwhile, the approximated radii along the backbone is also calculated based on method of 
casting rays, which is similar to the Rayburst sampling, an algorithm for automated 3D shape 
analysis which was first proposed by Rodriguez et al. [10, 11]. Figure 2 illustrates this process 
and one of the results. 
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Fig. 2. Illustration of casting rays sampling. (a) Casting rays inside the dendrite, the green line 
and the red line represent the longest and shortest diameters casting inside the neuron. (b) Blue 
circles represent the estimated dendrite with casting rays diameters in different areas while the 
red curve represents the estimated center line of the dendrite. A magnified figure can be seen 
in (c). 

As shown in Fig. 2, the backbone extraction gets a raw representation of dendrite with a 
centerline and radii in different parts. However, it cannot separate the spines from the dendrite 
accurately because most of spines do not have clear boundary between the dendrite. In order 
to get the accurate measurement of spines for the morphological analysis, dendritic spines 
should be detected and segmented from the dendrite using our novel approach. 

3.2 Dendritic spine detection 

Dendritic spines are morphological specializations protruding from the neuronal dendrites, 
typically 0.5-2 μm in length [16]. In morphologic structure, spines with strong synaptic 
contacts typically have a large spine head which connects to the dendrite via a membranous 
neck. In our approach, individual spines are detected by clustering candidate spine voxels, 
starting from the tip points, moving towards the dendrite, then ending at the segmenting 
position. According to the backbone tracking results, tip points of each spine are defined as 
voxels that have the longest distance to the centerline of the dendrite. We pick up a small part 
of dendrite and describe the detection in details. 

On an individual spine, tip points are first detected according to the protocol in [10]. As 
illustrated in Fig. 3, a perpendicular line is set from the tip point T to the centerline of 
dendrite B1B2, and cross each other at the point BS. The junction point between TBS is defined 
as J. Here we define TJ as the max distance to dendrite surface and TK, the centerline of the 
spine, is the length of the spine. Starting from the tip point, we cut the spine with planes 
vertical to the perpendicular at intervals. Meanwhile, the wavelet transform gives an 
additional way, besides intensity, to determine the center points on each section. The center 
points and the final segmenting position are defined according to the procedures mentioned 
below. 
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Fig. 3. Determination of the segmenting position. 

1) The sections are selected at intervals of two pixels (0.1-0.2 µm) along the 
perpendicular. Since the length of a spine can be very short in the image, small 
interval make the detection more accurate. 

2) On each section plane, wavelet transform is employed to get the voxels which have the 
largest response. In practice, a 2D Gabor kernel wavelet is employed on the section plane 
because Gabor wavelet has transform better localization characters in the time and frequency 
fields compared with the Fourier transform. On the other hand, Gabor wavelet transform has 
low computational expense, which is suitable for the online real time use. The core function 
of Gabor wavelet on the section plane is defined as:  
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Where i is the plural item, v , u , k donate the wave length of the Gabor filter, the 
direction of the kernel function, and the number of all directions (set as 6 in our algorithm), 
respectively. The parameter kσ determines the size of Gaussian window, and here 2=σ π . 

The variable kernel frequency of wavelet vk is set as ( 2)/22 v− + π  and the variable direction 
u

ϕ  is 

set as / kuπ . 
For the input intensity map of number i section

i
IS , the evolution of Gabor wavelet is set 

as: 

 ( , ) ( , ) ( , )ε η ε η ε η= − −r x y I g x y d d  (2) 

where ( , )I ε η is the intensity of the corresponding pixel ( , )ε η . Complex number are gotten 

after the Gabor wavelet transform, ( , )r x y , is set as a result of the wavelet transform. Wavelet 

in six directions are generated from the kernel, where / 6, 2 / 6,3 / 6, 4 / 6,5 / 6,u =ϕ π π π π π π . 

For each pixel position and considered scale value, the response with maximum modulus 
over all possible directions is considered. The centerline of a spine always has the highest 
intensity, where the wavelet response is centered. In each section of the spine, the point that 
has the highest value of ( , )r x y is considered as the center point of this section. By linking all 
the center points along the section planes, a more accurate centerline of the spine is detected. 

The segmentation position is defined by the sudden change of the wavelet response. In the 
reconstructed map of wavelet transform, adaptive threshold is set to define the segmentation 
position of the spine and dendrite. In adaptive threshold methods, a threshold is set for each 
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pixel. This threshold is then used to test against the pixel intensity value to produce a binary 
image. The basic formulation of adaptive threshold for pixel p is given by 

 ( ( ), ( ))=
p

T T W p I p  (3) 

where ( )I p is the intensity of pixel p and ( )W p is the response of pixel p after the wavelet 
transform. 

As illustrated in Fig. 4, the wavelet response of one spine has clear boundary with other 
spines or parts of the dendrite from the sections close to the tip point. With the section 
approaching to the dendrite, the segmenting position is defined as the location where the 
boundary of wavelet response quickly increases. 

 

Fig. 4. Spine detection results after wavelet transform. (a) The original intensity map of each 
section, (b) The wavelet response map of each section. The sections are along a spine, and 
have 2 microns at intervals. 

Compared with Bai’s algorithm [8], our approach can output a more accurate centerline 
and segmenting position because we additionally consider the wavelet response along with 
the intensity. In order to move on to the morphological classification of the spines, many 
kinds of features are calculated from the detected dendritic spines. Unlike skeletonization, our 
spine detection approach determines the centerline inside the spine. 
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3.3 Semi-supervised dendritic spines classification 

Dendritic spines play an important role for the structure of neurons and are of functional 
importance. The main aim of spine morphological classification is to link the phenotypes of 
different spine classes to different biological functions. In morphological analysis, dendritic 
spines can be generally classified into three categories: mushroom, thin, and stubby [17]. 
Examples of the predefined phenotypes for dendritic spines are shown in Fig. 5. 

 

Fig. 5. Examples of the predefined phenotypes, mushroom, thin, and stubby. 

In a previous study [10], a classification method based on Rayburst diameters inside the 
dendritic spines was proposed. The Rayburst diameter in each layer of a spine was calculated 
and the HNR was introduced to define the spine shape analysis. HNR is easy and effective in 
defining the spine shapes in 2D images. However, since 3D spines always have too complex 
shapes, classification based on HNR is not accurate. 

To solve these problems, we propose a novel morphological classification algorithm for 
dendritic spines based on a SSL approach. SSL is halfway between supervised and 
unsupervised learning. The algorithm is provided with some supervision information, which 
are always the labels associated with some of the samples. This makes it be suitable to 
classify complicated spine group with a small training data set selected online. In the 
framework of dendritic spines classification based on SSL, we first extract morphological 
features in 3D based on our spine detection method. Second, a neurobiology expert manually 
selects a small portion of detected spines in each class as the training set. Finally, the labels of 
the remaining spines can be calculated after the training process and all the detected spines 
are classified by the learning framework. 

SSL is a class of machine learning technique that makes use of both labeled and unlabeled 
data for training, typically a small amount of labeled data with a large amount of unlabeled 
data. SSL falls between unsupervised learning (without any labeled training data) and 
supervised learning (with completely labeled training data). As an efficient algorithm with 
some prior knowledge, SSL approach is mostly used in the classification [18]. The approach 
to SSL seeks to design a classifying function which is sufficiently smooth with respect to the 
intrinsic structure collectively revealed by known labeled and unlabeled points [19]. Consider 
the whole data set represented as

1 1
{ , , , , , }

l l n
x x x xχ

+
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , and a label set as {1, , }c= ⋅ ⋅ ⋅ . Inside 

the data set, the first  points have labels 1{ , , }ly y⋅ ⋅ ⋅ ∈  and the remaining points are unlabeled. 

The goal is to predict the labels 1{ , , }l ny y+ ⋅ ⋅ ⋅ of the unlabeled data 1{ , , }l nx x+ ⋅ ⋅ ⋅ . 

In the algorithm, affinity matrix W plays an important role in the learning, where{ }ijW  

means the similarity between points ix and jx . For different features in χ , different features in 

each column have different effects on the similarity calculation. Effective features are 
selected before the construction of the data set χ . A coefficient kc is introduced to represent 
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the weight of k -th feature. kc should be normalized and
1

1
d

k
k

c
=

= . The number of N spines 

with d features can be looked at as the data set χ with N rows and d columns. Then, some 

samples belonging to different classes are randomly selected as the training data 
set 1{ , , }lx x⋅ ⋅ ⋅ and the label matrix Y is pre-labeled with training samples, where 1icY = , if 

data i is pre-labeled in class c ; and 0icY =  in otherwise cases. 

Before calculation, the input data set is normalized in each column and the similarity 
between same features of different data can be calculated by considering the detected spines 
as a graph, the SSL algorithm can be described as follows: 

1) Calculate the affinity matrixW , which is defined as: 

 

2 2

2 2
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σ σ
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where ,i j means different spines data, k means the k -th feature of one data, andσ is 

a constant. 

2) Construct the matrix 1 / 2 1 / 2

S D WD
− −= , in which D is a diagonal matrix with its ( , )i i -element 

equal to the sum of the i -th row ofW . 

3) Iterate the similarity matrix F until convergence, where 

 ( 1) ( ) (1 )α α+ = + −F t SF t Y  (5) 

andα is a pre-defined constant equals to 0.9 in our approach. 

4) Let F ∗ denote the limit of the sequence{ ( )}F t . Label each point ix as a label, where 

 arg max
i j c ij

y F
∗

≤
=  (6) 

5) By the iteration Eq. (5), we get 
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since 0 1α< < , and the eigenvalues of S is in [ 1,1]− , 
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then the classification matrix is obtained as 

 1( )F I S Yα∗ −= −  (9) 

So F ∗ can be calculated without iteration [19]. After these procedures, the labels of 
the rest data set 1{ , , }l nx x+ ⋅ ⋅ ⋅ can be obtained. 

For the application of spine image transduction, many kinds of 3D features are obtained 
from the spine detection, such as the head and neck diameter, spine length, volume, etc. In 
order to get the most reliable features in classification, a feature selection approach is 
proposed before semi-supervised training. 

To get higher performance, two main improvements are applied in this semi-supervised 
framework. First, in the application of the morphological classification of spines, different 3D 
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features are obtained from the spine detection, such as the head and neck diameter, spine 
length, volume, etc. To improve the results, features selection should be performed before the 
learning process. For each of the features, the best set of kc can be calculated. The most 

effective features can also be selected according to the experimental results. Second, the 
affinity matrixW plays an important role in the learning algorithm, where{ }ijw reflects the 

similarity between the points ix and jx . Because even after normalization most of features 

have different orders of magnitude, the distance between ikx and jkx is not appropriate to 

reflect the similarity. Therefore, the value of ( )ik jkx x is introduced to replace the 

distance ( )ik jkx x− . The training performance is highly improved by this new definition. 

4. Results and discussions 

To validate our proposed algorithm, we use the data set that includes 20 3D image stacks 
acquired from a variety of mice brain regions and treatments obtained. Our method was 
implemented in MATLAB and deployed on a PC with an Intel Duo 3.0 GHz processor and a 
4GB RAM. With the training by SSL framework, the unlabeled dendritic spines were 
assigned to different classes. Since there is no iteration in this frame work, the time 
consuming part of the semi-supervised framework depends only on the number of features 
being used. In our practice, the learning process has a relative high speed of 30-40 seconds in 
classification of one image with about 80-100 spines. 

4.1 Results analysis of dendritic spines detection 

In order to validate our proposed algorithm, the semi-supervised segmentation results are 
validated with the manual result images. Dendritic spines are firstly detected, and a 
neurobiologist manually marked the detected spines on the neuron in all 20 image stacks after 
3D reconstruction. Then, the SSL spine detection approach was conducted on the data set. We 
also used the NeuronStudio software, which analyzes neurons based on the algorithms in [10, 
11], to detect and classify the dendritic spines from 3D neuron image stacks. In the validation, 
we mainly compared the spine detection accuracy between two approaches. Compared with 
the manually detection results by a neurobiology expert, the number of detected spines, the 
number of wrong detection, and the number of missing spines are also compared. The 
detailed spine detection results are shown in Table 1. 

Table 1. Comparison of spine detection results on the whole data set 

Strategy Number of 
detected 
spines

False positive (wrong 
detection) 

False negative 
(missing) 

Manual 939   

Our algorithm 927 45 12 

NeuronStudio 896 52 43 

From Table 1, we can see that there are some spines missing in the detection of both our 
algorithm and NeuronStudio. For the our algorithm, most of the missing spines have a small 
Distance to Centerline (DTC), which means these spines are not obviously protruding from 
the dendrite. Since our spine detection method calculates the wavelet transform response 
along the spine, the responses variation is not big and there are fewer sections on the line 
from tip point to centerline. This is the main reason that spines are missed in our detection 
approach. 

Table 1 also shows that the NeuronStudio missed more dendritic spines during the spine 
detection than our algorithm. This is because NeuronStudio cannot extract the whole dendrite 
from the neuron since the dendrites extracted by NeuronStudio are separated lines. The 
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Rayburst diameter algorithm is very sensitive to the intensity of the dendrite. For the image 
stacks with low intensity, the dendrite will break in the low intensity area so there is no spine 
that can be detected in the broken area. This is the main reason that the NeuronStudio has a 
much higher missing rate in dendritic spine detection. To further evaluate the statistical 
results of two algorithms, we compare the differences of spine detection between our 
algorithm and NeuronStudio by using Chi Square Test [20]. Assuming the null hypothesis is 
true, a Chi Square Test is a test in which the sampling distribution can be made to 
approximate a Chi Square distribution (with k degrees of freedom is the distribution of a sum 
of the squares of k independent standard normal random variables) as closely as desired by 
making the sample size large enough. According the Chi Square Test results, the sensitivity of 
our algorithm and NeuronStudio were 98.7% and 95.2% respectively, showing there was 
significant difference between them(X2 = 19.1, P<0.001), and the specificity of our algorithm 
and NeuronStudio were 95.1% and 94.1% respectively, where no significant difference 
between them(X2 = 0.82, P = 0.37). Finally, the Youden index of our algorithm and 
NeuronStudio were 93.8% and 89.4% respectively, there was significant difference between 
them(X2 = 11.83, P<0.001). 

4.2 Results analysis of spines morphological classification 

Prior to the classification of the dendritic spines, typical phenotypes of each class are 
predefined by a neurobiologist for biology. Some of the features are shown in Table 1 for the 
different spine phenotypes studied in our experiments. Since those features are essential for 
the differentiation between the three phenotypes, lager weights of kc are applied in the 

calculation of affinity matrix. A total of 927 spines in 20 image stacks are detected and used 
for the classification experiments. 

In the experiments, in order to get the best accuracy of classification, the feature weight 

kc in the affinity matrix can be adjusted automatically. After comparison of the results from a 

set of training, the best set of kc for each feature can be calculated. According to the 

experiment results, features such as head to neck ratio and head to length ratio are proved to 
be the most effective to the classification results. 

Table 2. Average and std. deviation of features in morphological classification of 
dendritic spines. The unit of length is micron (µm), and the unit of angle is degree 

Feature Mushroom Thin Stubby 

Head to Neck 
Ratio 

7.26 ± 2.74 2.08 ± 1.01 0.771 ± 0.438 

Head to Length 
Ratio 

0.212 ± 0.059 0.118 ± 0.072 0.141 ± 0.103 

Head Diameter 0.726 ± 0.027 0.241 ± 0.055 0.360 ± 0.092 

Neck Diameter 0.101 ± 0.040 0.110 ± 0.053 0.467 ± 0.210 

Max Distance to 
dendrite surface 

1.76 ± 0.985 1.67 ± 1.13 1.49 ± 0.665 

Angle to XY 
Plane −7.23 ± 26.41 −10.02 ± −35.02 17.65 ± 15.68 

Length 3.43 ± 1.38 2.05 ± 0.761 2.56 ± 0.533 

The feature values vary a lot as shown in Table 2, especially 'Angle to XY Plane', which 
has larger std. deviations than mean values, which means it couldn't be taken as an efficient 

#206475 - $15.00 USD Received 18 Feb 2014; revised 10 Apr 2014; accepted 10 Apr 2014; published 17 Apr 2014
(C) 2014 OSA 1 May 2014 | Vol. 5,  No. 5 | DOI:10.1364/BOE.5.001541 | BIOMEDICAL OPTICS EXPRESS  1551



feature in the classification. Meanwhile, in spine detection, protrusions of the dendrite may be 
detected as spines and may be classified as the stubby. In fact, these protrusions are parts of 
the dendrite and are not functional as spines. Therefore, it is necessary to consider the stubby 
with other two phenotypes separately. Accordingly, we classify the detected spines with two 
different strategies. The first is to classify all the detected spines into three classes: 
mushroom, thin, and stubby. The second looks stubby as protrusion and considers the 
mushroom and thin classes as one group of normal spines. According to literature [21], in a 
set of more sophisticated morphological classification strategy of dendritic spines, 
‘mushroom’ and ‘thin’ both have perforated postsynaptic density (PSDs) located in the 
cytoplasmic surface of the synaptic membrane, rather than ‘stubby’ with macular PSDs. 
Therefore, in evaluating the classification performance, we assume that ‘mushroom’ and 
‘thin’ could be looked as one class. Afterwards, we validate the classification performance by 
comparing the results obtained from our automated approach to those of the manual analysis. 

 

Fig. 6. Error rates for morphological classification of dendritic spines. X coordinate denotes 
the portion of training samples in each class and Y coordinate shows the error rate for 
classification. The line marked with triangles denotes results classified into 3 categories and 
the line with circles denotes results obtained by the second classification of the phenotypes into 
2 categories 

As shown in Fig. 6, an increase of the training data set gradually leads to a higher 
classification accuracy of the algorithm. However, the error rate decreases slowly. For each 
class, if at least eight samples are retained in training data set, the classification accuracy is 
stable. At the same time, the total number of the training data set only accounts to a very 
small portion of the whole data set. Other semi-supervised algorithms such as Supporting 
Vector Machine (SVM) [22] need a larger portion of training data set. Compared to these 
algorithms, our approach can also produce good performance with a training data set 
consisting only of a few samples for each class. 

In order to further compare the results with those of the algorithm introduced in [10], 
another experiment was conducted on the sample data sets of NeuronStudio using our 
algorithm. The data set consisted of two image stacks with the resolution 512× 512 pixels in 
each slice and a definition of 0.05× 0.05× 0.10 µm/pixel. In this experiment, a total of 896 
dendritic spines were detected by NeuronStudio and 10% samples for each class were 
selected for the morphological classification. We also used the features generated from 
NeuronStudio. The performance of both algorithms is shown below. 

Table 3. Classification performance for the sample data sets of [10]. The size for the 
training data set is set to 10% samples in each class 

Error Rate NeuronStudio SSL Approch 
Error Rate in 2 Classes 9.0% 7.8% 

Error Rate in 3 Classes 18.6% 20.1% 

#206475 - $15.00 USD Received 18 Feb 2014; revised 10 Apr 2014; accepted 10 Apr 2014; published 17 Apr 2014
(C) 2014 OSA 1 May 2014 | Vol. 5,  No. 5 | DOI:10.1364/BOE.5.001541 | BIOMEDICAL OPTICS EXPRESS  1552



Table 3 shows that our learning algorithm has similar accuracy for the classification of the 
spines into three categories with NeuronStudio and has a higher accuracy in distinguishing 
protrusions from spines. The results also show that the distance between features in 
protrusions and normal spines is much larger than that between mushroom and thin classes. 
This gives some help in the spine detection. Moreover, our approach for the classification of 
different spine phenotypes can give some useful information for the spine functional analysis. 

In order to further evaluate the classification result of our SSL approach, we compare the 
algorithm with the common classification method, the Supporting Vector Machine (SVM). 
Since the training data set for SVM should contain a big portion of the original data set, we 
used the 50-fold cross validation to validate the classification performance of SVM. The 
sigmoid function was selected as the kernel. Results show that the best accuracy that SVM 
can get is 74%. Generally, since the training data set is more than half of the whole data set, 
the classification performance of SVM is not satisfying because there are few features in the 
data set. 

The experimental results shown above give us a clear impression that our proposed 
algorithm has good performance of combining the dendritic spine detection and classification. 
First, our approach detects more spines based on the wavelet transform. Second, with a small 
training data set, the SSL algorithm gives convincing labeled outputs for segmentation and 
classification. Third, the semi-supervised approach gives an efficient way to classify the 
spines online, which needs neurobiologist to select the most reliable samples for the training. 
The improvement of classification accuracy is also benefited by the online learning method. 

5. Conclusions 

In this paper, we propose a novel morphological analysis algorithm for dendritic spines based 
on a SSL approach. After preprocessing in 3D space, the dendrite is extracted from the 
neuron based on the casting rays method. Spines are detected with clustering candidate voxels 
from the tip points and then segmented according to the response to the wavelet transform. 
Feature vectors of dendritic spines are further classified by the SSL approach. Finally, we get 
the morphological analysis results of dendritic spines along the neuron. 

Since the training data set is selected by a neurobiologist in our SSL framework, it avoids 
the error occurring in training data set selection with manual intervention. An increase of the 
training data set gradually leads to a higher classification accuracy of the algorithm. However, 
the error rate decreases slowly. In the classification stage, if at least 15% for each class are 
retained in training data set, the classification accuracy is about 95%, which shows that the 
SSL framework is more accurate and robust compared to the traditional algorithms. 

With the morphological analysis of dendritic spines, the relationship between spine str re 
and some of the neuron degeneration diseases can be researched deeply. Spine morphology is 
very diverse and spine size is correlated with the strength of the synaptic transmission. In 
addition, the spine neck biochemically isolates individual synapses. Therefore, spine 
morphology directly reflects its function [21]. As shown in the experimental results, the joint 
framework of spine detection and classification can efficiently analyze the dendritic spines 
morphology directly in 3D space, which provides a set of useful features for the 
neurobiologist to delineate the mechanism and pathways of neurological conditions. 

The performance of SSL algorithm is highly determined by the features included in 
training vectors. Therefore, selecting the most representative features will further improve the 
classification accuracy of SSL. On the other hand, in order to get better detection results, we 
will apply some mesh structures and extract more efficient features for segmentation in the 
future. The classification accuracy can also be improved by further research on features 
extracted from the spine morphological structure. Future research will be conducted on the 
relationship between the shape variation of dendritic spines and the Alzheimer Disease. It will 
be an efficient way to analyze 3D dendritic spines in the research of neurological conditions. 
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