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Abbreviations
ChIP	� Chromatin ImmunoPrecipitation
DDR	� DNA Damage Response
DSB	� Double-Strand Break
ESC	�E mbryonic Stem Cell
HFD	� Histone Fold Domain
IF	� ImmunoFluorescence
OIS	� Oncogene-Induced Senescence
PTM	� Post-Translational Modification
TF	� Transcription Factor
TSS	� Transcription Start Site

Introduction

DNA-templated processes, such as DNA replication and 
repair, gene expression, and chromosome segregation, 
must contend with the chromatin template. Chromatin, the 
physiological form of the eukaryotic genome, is a polymer 
of DNA and protein, consisting mostly of histone proteins. 
The nucleosome is the basic repeating unit of chromatin, 
a macromolecule of 146  bp of DNA wrapped around an 
octamer of histones: two of each canonical histones H2A, 
H2B, H3, and H4 or variants thereof [1, 2]. Chromatin 
structure is highly dynamic and can be modulated through 
a number of different mechanisms, including nucleo-
some remodeling, histone Post-Translational Modification 
(PTMs), and, relevant to this review, the incorporation and 
exchange of canonical histones with histone variants.

Histone variants are most prominent from the H2A and 
H3 families, and linker histone H1 family, and, in general, 
represent a small portion of the total cellular histone pool 
[3, 4]. As histone variants contain sequence and structural 
variations of the canonical histones, they may be regarded 
as “mutant” histone proteins that replace their conventional 
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counterparts within the nucleosome [3, 4]. Due to these dif-
ferences, histone variants may also be subject to distinct 
PTMs that, in turn, recruit specific chromatin-related fac-
tors to further modify the chromatin template [3]. Histone 
variants can have temporal and tissue-specific expression, 
and their incorporation into the nucleosome requires the 
assistance of additional factors, known as histone chap-
erones. Chaperones can function in coordination with, or 
are sometimes themselves, chromatin remodeling factors 
[5–7].

It has become clear in recent years that histone variants 
confer unique functions within the chromatin template, 
and, in turn, increase chromatin complexity. In particular, 
histone variants contain a unique ability to regulate key cel-
lular and developmental processes, and, when deregulated, 
may contribute to cancer initiation and progression. Indeed, 
a growing body of evidence links histone variants to can-
cer biology. For example, the expression level of particular 
variants correlates with tumor malignancy in a number of 
different tumor types, and, thus, histone variants may be 
utilized as prognostic indicators in cancer (described below 
in detail) [8–10]. Recent insights have shed light on the 
mechanistic role of histone variants in cancer progression 
[11–14] and, remarkably, the first histone variant mutations 
have just been uncovered in cancer [15, 16]. Furthermore, 
mutations and altered expression of chromatin remodelers, 
some of which are directly responsible for histone variant 
deposition, have also been reported [17–20]. Collectively, 
these observations point towards a critical, yet unappreci-
ated, role for histone variants and their chaperones in can-
cer biology.

In this review, we first aim to provide the reader with an 
overview of histone variants, with a focus on the mamma-
lian H2A and H3 families and their chaperones. Next, we 
highlight the roles of histone variants and their chaperones 
in tumor biology and discuss the diverse tumor types they 
influence. Throughout the review, we will use the recently 
established phylogeny-based nomenclature proposed for 
histone variants [21].

H2A variants

The H2A family is the largest family of variants among 
the core histones (i.e. 19 in humans). Most of these vari-
ants encode canonical H2A, but the others are considered 
“atypical” variants, namely H2A.X, H2A.Z, macroH2A 
(mH2A), H2A.B (Barr body-deficient), and H2A.J, as well 
as isoforms and splice variants thereof [22]. Compared 
to other histone variant families, which generally differ 
slightly from their canonical counterparts in amino acid 
sequence, the H2A atypical variants are notably divergent 
from canonical H2A. Thus, the H2A variant family may 

be the most structurally diverse family, and these structural 
differences result in a multitude of biological functions (see 
Table 1). The H2A family has been the focus of extensive 
research in recent years, and here we will focus on H2A.Z, 
H2A.X, and mH2A, which to date have been identified to 
exert a role in human cancer.

H2A.Z

H2A.Z structure and function

First described in the 1980s [23–25], H2A.Z is highly con-
served throughout eukaryotic evolution, with a sequence 
conservation of ∼90  %. Together with its low sequence 
identity to the canonical H2A (∼60 %), a unique and nec-
essary function for H2A.Z is likely [26]. While deletion 
of H2A.Z in simple eukaryotes such as fission and bud-
ding yeast is not lethal [27, 28], this variant is essential for 
viability in other model organisms, such as Tetrahymena 
thermophila [29], Drosophila melanogaster [30], Xenopus 
laevis [31], and Mus musculus [32].

Here, we point out that what is commonly referred to as 
H2A.Z is one of two isoforms, namely H2A.Z.1. Recently, 
a second isoform, H2A.Z.2, has been identified [33–35]. 
Encoding a second H2A.Z gene appears to be vertebrate-
specific, and the two isoforms arose from a common ori-
gin in early chordate evolution [36]. They are the products 
of two non-allelic genes, namely H2AFZ (H2A.Z.1) and 
H2AFV (H2A.Z.2), and are expressed across a wide variety 
of human tissues [34]. While differing by only three amino 
acids at the protein level, H2A.Z.1 and H2A.Z.2 are encoded 
by unique nucleotide sequences [34, 35]. Knockout studies 
suggest that the genes are not redundant, and point toward a 
possible functional diversification of H2A.Z.1 and H2A.Z.2 
[32, 36]. Supporting this view, the bromodomain-containing 
protein Brd2 was recently identified as an H2A.Z.1-enriched 
binding factor, suggesting the potential for isoform-specifc 
effects on gene expression [37]. However, our understand-
ing of isoform-specific functions remains unclear and tech-
nically limited due to the lack of isoform-specific antibod-
ies. Further increasing the complexity of H2A.Z biology, a 
third isoform, H2A.Z.2.2 (a splice variant of H2A.Z.2), was 
recently uncovered [38, 39]. Due to its shorter and distinct 
C-terminus, H2A.Z.2.2 is loosely associated with chroma-
tin and forms the least stable nucleosome described thus far 
[38, 39]. In this review, we will mostly focus on H2A.Z.1, 
as it is well studied to date. However, we note that the stud-
ies described in the following paragraphs cannot necessarily 
distinguish between the isoforms, particularly those using 
antibody-based approaches.

The structure of H2A.Z.1-containing nucleosomes was 
resolved more than 10 years ago, and, despite the sequence 
divergence, it is surprisingly similar to nucleosomes 
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containing canonical H2A [40]. However, a structural 
comparison of H2A.Z.1 and H2A revealed regions where 
the two diverge, including the L1 loop and the C-terminal 
docking domain. The L1 loop was originally thought to 
impair the formation of H2A.Z.1-H2A dimers [40]; how-
ever, it was later shown that heterotypic nucleosomes can 
form, both in vitro and in vivo [41, 42]. While questioned 
whether such heterotypic nucleosomes were stable or just 
an intermediate in a stepwise pathway to exchange H2A- 
with H2A.Z-containing nucleosomes, recent data suggest 
these heterotypic nucleosomes may be regulated in a cell 
cycle-dependent manner [43]. The docking domain com-
prises the interaction surface between the (H2A–H2B) 
dimer and the (H3–H4)2 tetramer, and is likely to influence 
the stability of H2A.Z.1-containing nucleosomes, although 
this is subject to debate [40, 44] and reviewed in [22].

Similar to canonical histones, H2A.Zs are subject to 
PTMs (Fig. 1). Multiple lysine residues in the N-terminal 
tail are acetylated in organisms from yeast to human [45–
48]. Generally, the hyperacetylated form of H2A.Z local-
izes at the transcriptional start site (TSS) of active genes, 
consistent with a less stable nucleosome and an open chro-
matin conformation which is suitable for gene expression. 
In addition, Immunofluorescence (IF) analyses detected 
the C-terminus of H2A.Z to be monoubiquitinated at the 
inactive X chromosome of female mammals [49] (Fig. 1). 
Therefore, PTMs of H2A.Z may help to reconcile the 
apparently conflicting associations of H2A.Z with both 
active and repressed transcription (see below). Of note, 
both H2A.Z.1 and H2A.Z.2 are acetylated on the same 
N-terminal lysines, while ubiquitylation on H2A.Z.2 has 
not been reported thus far [34] (Fig. 1).

H2A.Z is constitutively expressed throughout the cell 
cycle and is incorporated into chromatin in a replication-
independent manner [50, 51]. Once incorporated into 
chromatin, H2A.Z exerts pleiotropic effects. For example, 
H2A.Z influences a plethora of different cellular processes 
and events, such as transcriptional regulation, epigenetic 
memory [52], heterochromatin boundaries [53], genome 
stability and chromosome segregation [54–57], and integrity 
of telomeres [58], further reviewed elsewhere [4, 59–61].

Although recently described as a player in reorganiz-
ing chromatin architecture at sites of DNA double-strand 
breaks (DSBs) [62], the best characterized role of H2A.Z 
is in transcription, which was initially suggested by Allis 
and colleagues [24], who showed that H2A.Z resides 
exclusively in the transcriptionally active macronucleus in 
T. thermophila. With the advent of high-throughput tech-
niques, such as ChIP-chip and ChIP-seq, evidence has 
accumulated for a role of H2A.Z in transcription. H2A.Z is 
enriched at gene promoters in yeast [63–66] and in higher 
eukaryotes [67, 68], as well as on other regulatory regions, 
such as insulators and enhancers [61, 67, 68]. While H2A.Z 

generally has a positive effect on gene expression, it also 
negatively regulates transcription at specific gene targets 
[69] (see below). As mentioned before, such controversy 
can potentially be reconciled at least in part by different 
PTMs of H2A.Z [45, 46, 48, 49].

The non-random distribution of H2A.Z along chromo-
somes is mediated by the concerted action of both posi-
tive and negative regulators of H2A.Z deposition. H2A.Z 
is incorporated into chromatin by ATP-dependent chroma-
tin remodeling complexes, including the Swr1 complex in 
yeast [70–72], or by its orthologs p400 [73] and SRCAP 
(Snf2-Related CBP (CREB-binding Protein) activator pro-
tein [74, 75]) in mammals. A number of “canonical” his-
tone chaperones such as NAP-1 (Nucleosome Assembly 
Protein-1) and FACT (FAcilitates Chromatin Transcrip-
tion) have also been identified to interact with H2A.Z in 
vivo [72, 76, 77]; however, since they are not required for 
in vitro histone exchange, their effective impact on H2A.Z 
deposition remains ambiguous. Evidence points towards 
a context-dependent action of p400 and/or SRCAP (i.e. 
gene-, cell type-, and developmentally-specific), and the 
possibility of functional redundancy cannot be ruled out. 
The intriguing possibility that p400 and SRCAP show a 
differential specificity for the two H2A.Z isoforms has 
been addressed but appears not to be the case [35]. Inter-
estingly, recent studies have shed light on the process of 
H2A.Z eviction from nucleosomes. In particular, Peter-
son and colleagues found that the INO80 complex evicts 
H2A.Z in yeast [78], but whether this process also takes 
place in higher eukaryotes remains to be determined.

Overall, it is reasonable to consider that what dictates 
the final readout of gene expression is not merely the pres-
ence/absence of H2A.Z itself (or its post-translationally 
modified forms). It may also involve a combinatorial effect 
of H2A.Z, its targeting factors, transcription factors that 
it may work cooperatively with, PTMs on other histones, 
and the combination with other histone variants (e.g., 
H3.3) within H2A.Z-containing nucleosomes (see below) 
[79–81].

H2A.Z: an oncogenic histone variant

The first hints of H2A.Z involvement in tumor malig-
nancy come from a number of microarray studies aimed 
at identifying the gene expression signatures of human 
cancer. These studies detected increased levels of H2A.Z 
in colorectal, breast, lung, and bladder cancers [8, 82–84] 
(Table 2). In addition, several members of the SRCAP and 
p400 complexes have been implicated in cancer through 
similar microarray-based studies in cell lines or in patient 
biopsies [84–89] (Table  3). Accordingly, we reported that 
global levels of H2A.Z are increased in metastatic mela-
noma cell lines as compared to primary lines [12].
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A direct role for H2A.Z in cancer was found in hormone-
dependent breast [8, 14, 17] and prostate cancer [20, 48, 90, 
91], where an effect on cellular proliferation has been dem-
onstrated (discussed below; see Tables 2, 3). Zucchi et al. 
[84] first reported an upregulation of H2AFZ and SRCAP 

in invasive and metastatic breast cancer compared to nor-
mal mammary epithelium. Furthermore, immunostaining 
and tissue microarray screening revealed that H2A.Z.1 is 
overexpressed in primary breast tumor samples from over 
700 patients. This elevated level of H2A.Z.1 expression is 

Fig. 1   Schematic representation of the mammalian H2A and H3 
families of histone variants with a role in human cancer, and relative 
PTMs. a H2A variants (blue) and b H3 variants (red) are drawn rela-
tive to their peptide length. Protein sequences that are highly diver-
gent between the canonical histones and their variants are depicted in 
different color shades. Specific amino acids are depicted where key 

differences are functionally relevant (e.g., H3 variants’ chaperone 
binding specificity), or when they are found to be post-translationally 
modified (PTMs are indicated by symbols as shown in the legend). 
Cylinders depict alpha-helical structures; other features discussed in 
the text noted by black arrows (see text for details)
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significantly associated with metastasis to lymph nodes and 
with shorter overall patient survival [8, 14].

A recent genome-wide ChIP-chip approach of Estrogen 
Receptor α (ERα) and Myc binding sites, combined with 

estrogen-stimulated gene expression arrays, has identified 
the mechanism of H2A.Z.1 induction in breast cancer cells: 
in response to estrogen, ERα activates the proto-oncogene 
c-myc, which is recruited to the H2AFZ promoter and 

Table 2   H2A and H3 families of histone variants implicated in human cancer

Variant Cancer type Dysfunction Proposed mechanism in promoting cancer References

H2A.Z 
(H2A.Z.1)

Colorectal cancer Overexpression N.D. [82]

Undifferentiated cancers Overexpression N.D. [83]

Metastatic breast carcinoma Overexpression N.D. [84]

Primary breast cancer Overexpression ER alpha- and Myc-dependent  
upregulation

[8]

Breast cancer (MCF7 cell line) Overexpression Increased proliferation [14]

Breast cancer Overexpression H2A.Z recruited at promoters of ERalpha 
target genes

[17]

Melanoma Overexpression N.D. [12]

Prostate cancer (LNCaP cell line) Overexpression Myc-mediated H2AFZ upregulation [91]

Prostate cancer (LNCap xenograft) N.D. H2A.Zub evicted from PSA promoter/
enhancer upon activation

[90]

Prostate cancer (LNCaP cell line) N.D. H2A.Zac associated with oncogene 
activation,unmodified H2A.Z with  
tumor-suppressor silencing

[48]

H2A.X B-CLL and T-PLL Translocations and deletions  
chr 11q23

Increased genome instability [130–132]

Head and neck squamous cell  
carcinoma

Gene deletion Increased genome instability [133]

Non-Hodgkin lymphoma Gene mutation Increased genome instability [135]

Gastrointestinal stromal tumor Upregulation Promote apoptosis upon the treatment  
with a kinase inhibitor

[138]

Breast cancer Gene deletion Increased genome instability [134]

mH2A.1 Lung cancer Reduced protein levels/ 
splicing defects

Suppression of cell proliferation via 
reduced PARP-1

[10, 13]

Breast cancer Reduced protein levels/ 
splicing defects

N.D. [10, 13]

Melanoma Transcriptional downregulation Upregulation of CDK8 [12]

Testicular, bladder, ovarian,  
cervical, endometrial cancers

Splicing defects N.D. [13]

Colon cancer Reduced protein levels and  
splicing defects

N.D. [9, 13]

mH2A.2 Lung Reduced protein levels N.D. [10]

Breast Reduced protein levels N.D. [10]

Melanoma Transcriptional downregulation Upregulation of CDK8 [12]

CENP-A Colorectal cancer Overexpression Aneuploidy [222]

Invasive testicular germ  
cell tumors

Overexpression N.D. [224]

HCC Overexpression Deregulation of cell cycle and  
apoptotic genes

[226]

Breast cancer Overexpression N.D. [225]

Lung adenocarcinoma Overexpression N.D. [223]

H3.3 Carcinoma of the esophagus Overexpression N.D. [262]

GBM Mutation (K27M, G34V/R) N.D. [15]

Pediatric DIPG Mutation (K27M, G34V/R) Inhibition of EZH2 activity, reduced 
H3K27me3

[16, 263]
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stimulates H2AFZ transcription [8]. In turn, H2A.Z posi-
tively regulate Myc expression, creating a positive feedback 
loop important for regulating ERα signaling both in normal 
and in pathological conditions [14]. Collectively, these data 
support a link between H2A.Z.1 and ERα-dependent breast 
tumor proliferation. Evidence that H2A.Z.1 may be a 
causal factor of breast cancer came from elegant functional 
studies by Gaudreau’s laboratory [14, 17]. By selectively 
depleting cellular levels of H2A.Z.1 or p400, H2A.Z.1 
was shown to be essential for ER signaling, as were mem-
bers of the p400 complex. Indeed, loss of H2A.Z or p400 
led to a severe defect in estrogen signaling, and, in turn, 
estrogen-driven cell proliferation [17]. Conversely, ectopic 
expression of H2A.Z increased proliferation in the hor-
mone-dependent MCF-7 cell line, particularly when estro-
gen levels were low [14]. In addition, by ChIP-chip analy-
sis, H2A.Z.1 was reported to be specifically and cyclically 
recruited to promoters of ERα target genes upon estrogen 
stimulation, while its presence at their distal enhancers was 
independent of gene induction [17].

The role exerted by H2A.Z in regulating Androgen 
Receptor (AR)-mediated transcription of Prostate-Spe-
cific Antigen (PSA) and prostate cancer development 
was also reported recently. These studies accounted for 
H2A.Z PTMs, its chromatin deposition complexes and, 
importantly, the two H2A.Z isoforms [20, 48, 90, 91]. In a 
genome-wide study aimed at characterizing the epigenetic 
landscape of normal prostate epithelial cells and prostate 

cancer, H2A.Z was reported to be associated with both 
active and inactive promoters, while its acetylated form 
was present at promoters of actively transcribed genes, 
mutually exclusive of repressive marks such as DNA meth-
ylation and H3K27me3. Acetylated H2A.Z is associated 
with oncogene activation, and with the deacetylated form 
with silencing of tumor-suppressor-genes in prostate can-
cer cells [48]. Of note, H2A.Z.1 but not H2A.Z.2 expres-
sion is specifically upregulated in response to androgen 
treatment, and this occurs at least in part through increased 
binding of Myc to the H2AFZ promoter, as observed for 
estrogen-stimulated H2AFZ expression in breast cancer 
cells [8, 91].

Seemingly paradoxical observations have been accumu-
lating on how H2A.Z regulates the expression of PSA [20, 
90, 91]. Unlike what has been observed at ER targets [17], 
the levels of H2A.Z, and of its acetylated and ubiquitylated 
forms, decrease at PSA promoter/enhancer upon androgen 
treatment and concomitant with PSA induction. This sug-
gests that H2A.Z poises the PSA gene for activation, but is 
evicted once the hormone is present [91]. Since a decreased 
expression of PSA is observed upon knockdown of SRCAP 
[20], this chaperone may also be required for the prim-
ing function of H2A.Z at the PSA gene. Collectively, 
these findings have been conducted in prostate cancer cell 
lines, and whether H2A.Z effectively correlates with pros-
tate cancer progression and drives prostate cancer growth 
requires further investigation.

Table 3   Chaperones of H2A and H3 histone variants and their proposed mechanisms in human cancer

Chaperone Cancer type Dysfunction Proposed mechanism in promoting cancer References Variant

SRCAP Ovarian cancer Overexpression N.D. [89] H2A.Z

Metastatic breast carcinoma Overexpression N.D. [84]

Thyroid carcinoma Overexpression N.D. [85]

Prostate cancer Overexpression N.D. [86]

Prostate cancer N.D. Deregulation of cell proliferation [20]

Tip60 Colon carcinomas Downregulation N.D. [88]

Lung carcinomas Downregulation N.D. [88]

Breast carcinoma Downregulation N.D. [87]

p400 Breast cancer Overexpression Activation of ERα target genes [17]

HJURP Lung cancer Overexpression Aneuploidy [227] CENP-A

Breast cancer Overexpression Aneuploidy [228]

HIRA Endothelial cells Upregulation Promotion of tumor neovascularization [264] H3.3

Daxx GBM Mutation N.D. [15]

PanNET Mutation Loss of function [18, 19]

ATRX ATMDS Mutation Deregulation of α-globin expression [266] H3.3 (mH2A?)

GBM Mutation Loss of nuclear localization [15]

Pediatric DIPG Mutation Loss of function [16]

Other cancers of the CNS Mutation Loss of nuclear localization [279]

Neuroblastoma Mutation/deletion Loss of function [274]

PanNET Mutation/deletion Loss of function [18, 19]
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H2A.Z has also been implicated in cellular senes-
cence—an irreversible loss of proliferative capacity. Senes-
cence is triggered by progressive telomere shortening, acti-
vated oncogenes (Oncogene-Induced Senescence; OIS), 
and other forms of cellular stress. Importantly, senescence 
bypass appears to be an important step in the development 
of cancer (for a recent review, see [92]). First, Chan et al. 
[93] showed that p400 negatively affects the induction of 
senescence by decreasing p21 expression, and later Gevry 
et  al. [69] demonstrated that this effect is mediated by 
deposition of H2A.Z by p400 at the p21 promoter. Indeed, 
depletion of both H2A.Z and p400 induced premature 
senescence in human fibroblasts. Thus, H2A.Z is a negative 
regulator of p21 expression and suppresses the senescence 
response [69]. Although intriguing, the role of H2A.Z in 
driving cancer through senescence bypass remains to be 
tested. In addition, our understanding of H2A.Z’s role in 
transcriptional repression remains limited.

Collectively, these findings strongly suggest that H2A.Z is 
an oncogene. We envision that what drives cancer initiation 
and/or progression is an increased incorporation of H2A.Z 
into chromatin, which can result from either an upregula-
tion of H2A.Z transcription per se, and/or via changes in 
expression or activity of its chromatin deposition complexes. 
Given the association of H2A.Z in transcriptional activ-
ity, we speculate that H2A.Z fine tunes gene expression or 
modulates additional regulatory or non-coding regions of the 
genome that are relevant to disease progression. However, as 
mentioned previously, H2A.Z also participates in orchestrat-
ing DSBs repair [62], maintaining the integrity of telomeres 
[58], genome stability, and chromosome segregation [54, 56, 
57], which are all candidate mechanisms underlying tumori-
genesis. Thus, we anticipate a mechanistically complex role 
for H2A.Z in driving tumor progression.

H2A.X

H2 A.X structure and function

Like H2A.Z, H2A.X was first identified in human cells in 
the 1980s [25]. H2A.X is highly conserved and present in 
all eukaryotes, although at variable levels. For instance, 
while H2A.X represents roughly the total H2A pool in bud-
ding yeast, in mammals it only constitutes 2–25 % of the 
H2A pool, depending on the cell line or tissue [94]. Unlike 
H2A.Z, which diverged from H2A only once, it seems that 
H2A.X had multiple evolutionary origins [26]. H2A.X is 
typically expressed throughout the cell cycle, and it is ubiq-
uitously incorporated throughout the genome during DNA 
replication in physiological conditions. H2A.X is prob-
ably best known for its well-studied phosphorylation site, 
S139ph, with critical roles in the DNA Damage Response 
(DDR), such that H2A.X has been coined as the “histone 
guardian” of the genome [94, 95] (see below). Consistent 
with this, H2A.X-deficient mice are viable, but radiation-
sensitive, growth-retarded, and immune-deficient [96–98], 
exhibiting repair defects and chromosomal instability.

H2A.X is highly similar to the canonical H2A in the 
Histone Fold Domain (HFD); however, its unique feature 
is a longer C-terminal extension containing a serine–glu-
tamine (SQ) motif followed by an acidic and hydrophobic 
residue [SQ(E/D)φ]. Of note, this motif is conserved in all 
species with regard to its sequence and position relative to 
the C-terminus (Fig. 1). H2A.X is subject to a number of 
different PTMs, among which the S139 phosphorylation 
(S139ph) in the conserved SQ(E/D)φ motif is extensively 
characterized. S139 is rapidly phosphorylated upon DNA 
damage and is localized to DNA DSBs (Figs. 1, 2e). This 
form is referred to as γ-H2A.X, since it was originally 

Fig. 2   Localization of H2A variants by immunofluorescence. a 
mH2A.1 localizes to the Xi, note also staining throughout the nucleus. 
b mH2A.1 localizes to SAHFs in cells induced to senesce by onco-
genic RAS signaling, note also the presence of Xi. c Phosphorylated 
mH2A.1 on S137 (S137ph) is excluded from the Xi and has a dis-
tinct nuclear localization pattern compared to mH2A.1. d mH2A.2, 

like mH2A.1, localizes to the Xi and throughout the nucleus. e 
y-H2A.X (S139ph) localizes to IRIF upon DNA damage induced by 
γ-irradiation. All imaging performed in IMR-90 female primary lung 
fibroblasts at a 40X magnification. Histones or histone modifica-
tion antibodies were labeled with Alexa Fluor 488 (green) and DAPI 
(blue) was used to visualize the nucleus
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identified in mammalian cells when treated with gamma 
irradiation [94, 99]. Of note, the canonical H2A in mam-
mals does not contain S139, and therefore only H2A.X 
can be phosphorylated at this site. The phosphorylation 
appears within minutes of DNA damage, and in mammals 
it spreads over a 2-Mb domain surrounding the DSB [99]. 
H2A.X S139ph is carried out by members of the Phospho-
Inositide 3-Kinase-related protein Kinase (PIKK) family 
(ATM, ATR, and DNA-PK) [100, 101], and, accordingly, it 
has been reported that mice deficient for ATM are severely 
deficient for γ-H2A.X foci formation [102]. 

Upon DNA damage, repair proteins, histone modifying 
enzymes, and chromatin remodeling complexes accumulate 
in subnuclear foci called IRradiation-Induced Foci (IRIF) 
[103] (Fig. 2e). The impairment in IRIF formation is observed 
upon H2A.X deletion or S139 mutation [104], suggesting 
that S139ph might itself be recognized by one or more DDR 
proteins, serving as a signal for recruitment and assembly at 
sites of DNA damage. However, γ-H2A.X is not required for 
the initial formation of IRIF in vivo, but is rather essential for 
their retention [97]. Recent elegant live-cell imaging studies 
have been instrumental in devising a model for the kinetics of 
recruitment and accumulation of DDR players at DSB sites 
[105]. A detailed description of the DDR response is beyond 
the aim of this review, and we refer the reader to a number of 
comprehensive recent reviews [106, 107].

Aside from its role in DDR, γ-H2A.X is required for 
orchestrating chromatin remodeling in meiotic silencing 
of unpaired chromosomes in male mice [108], and, in par-
ticular, of sex chromosomes during meiosis [109]. Here, 
γ-H2A.X was shown to precede the deposition of another 
histone variant, H3.3 [110].

Besides S139, other residues such as serine 16, threo-
nine 136, and tyrosine 142 are phosphorylated on H2A.X 
[111–113] (Fig.  1), conferring variable effects on nucleo-
some structure and ultimately on cellular biology. Interest-
ingly, Y142 was shown to be constitutively phosphoryl-
ated in physiological conditions, and is dephosphorylated 
by specific phosphatases upon DNA damage [112, 114, 
115]. In addition to phosphorylation, H2A.X is modified 
by ubiquitylation [116–121] and acetylation [122] (Fig. 1). 
Mutagenesis experiments of the residues subject to PTMs 
highlighted the importance of the crosstalk between H2A.X 
PTMs in the regulation of DDR. The emerging scenario 
is that the extent of a single PTM, as well as a balance 
between the different PTMs, is critical to fine-tune the out-
come of the cellular response to DNA damage. For further 
reading on the role of H2A.X PTMs in orchestrating the 
DDR, we refer the reader to the original works cited above 
or to other excellent reviews [123, 124].

Regarding its incorporation into nucleosomes, the 
Tip60 HAT (Histone Acetyl Transferase) complex was 
first reported as a major exchange activity in Drosophila 

[125]. Later, an approach aimed at identifying factors 
that can regulate H2A.X exchange in human cells uncov-
ered the histone chaperone FACT (for a recent review, see 
[126]). Furthermore, FACT-mediated H2A.X deposition is 
facilitated by S139ph, suggesting that it acts in response to 
DNA damage [127]. However, the machinery required for 
H2A.X turnover still remains unclear, as additional chap-
erones including nucleolin have also been reported [128].

H2 A.X: a genomic caretaker

DSBs are lesions with the potential to induce genomic insta-
bility and gene mutation. Thus, given the critical function 
of γ-H2A.X in orchestrating the cellular response to DSBs, 
it is not surprising that H2A.X has become a key player in 
tumor biology (Table 2). Even though the H2A.X null mice 
are not cancer prone, deficiency of histone H2A.X (and 
H2A.X haplo-insufficiency) results in increased genomic 
instability and cancer incidence in the context of p53 defi-
ciency [104, 129]. H2A.X−/−p53−/− and H2A.X−/+p53−/− 
mice develop T and B lymphomas and solid tumors exhibit-
ing dramatic genomic instability [104, 129].

Deletion of band 11q23—where H2AFX maps—has 
been detected at a particularly high frequency in several 
human cancers, including hematological malignancies such 
as B cell chronic leukemia (B-CLL) and T cell prolympho-
cytic leukemia (T-PLL). In B-CLL, it is associated with 
rapid disease progression and poor survival [130–132]. 
Notably, alteration in H2AFX copy number has also been 
described in solid tumors such as head and neck squamous 
cell carcinoma and breast cancer [133, 134]. In all cases, 
chromosomal instability was observed. Interestingly, not 
only deletions but also Single Nucleotide Polymorphisms 
(SNPs) of H2AFX have recently been reported to play a 
role in lymphoma susceptibility and development [135]. 
Overall, these findings strongly suggest that H2A.X might 
contribute to cancer initiation and progression, and support 
the idea that it could be a genome caretaker and a tumor 
suppressor in certain genetic contexts.

In addition to its role in tumorigenesis, γ-H2A.X has 
been used both as a diagnostic tool and as an indicator of 
efficiency of treatments based on DNA damaging agents 
used in both chemotherapy and radiotherapy [136–138]. 
Finally, γ-H2A.X may be used as a biomarker to quantify 
the genotoxic potential of novel anticancer compounds in 
both cultured cells and in animal models.

mH2A

mH2A structure and function

Among the histone variants, mH2A may be the most struc-
turally distinct, due to a large and evolutionarily ancient 
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macro domain of ~30 kDa at its C-terminal end [26, 139] 
(Fig.  1). This domain results in a histone approximately 
three times the size of canonical H2A. The N-terminal 
histone domain shares only ~65 % sequence identity with 
canonical H2A, and is connected to the macro domain by 
a basic linker sequence, which resembles a histone tail 
[140–142].

To date, three isoforms of mH2A have been reported 
in mammals. Two different genes, namely H2AFY and 
H2AFY2, encode, respectively, for mH2A.1 and mH2A.2 
[141, 143]. mH2A.1.1 and mH2A.1.2 are splicing variants 
encoded by H2AFY, which differ only in a single exon (~30 
amino acids) in the macro domain [143]. Although subtle, 
this differential exon allows mH2A.1.1, but not mH2A.1.2, 
to bind NAD+ metabolites. However, the functional conse-
quences of this have yet to be fully explored in vivo [144, 
145].

Pehrson and Fried [142] identified mH2A.1 in 1992, 
and soon after its initial identification, it gained acceptance 
as a repressive histone. Both mH2A.1 and mH2A.2 were 
reported to coat the transcriptionally inactive X (Xi) chro-
mosome in female mammalian cells by IF [146] (Fig. 2a, 
d), and more recently by ChIP-seq [147] (recently reviewed 
in [148]). However, the contribution of mH2A to silencing 
of the X chromosome is perhaps best described as a com-
plementary, but not an essential, silencing mechanism [149, 
150], as mH2A.1 knockout female mice are viable and 
undergo normal X inactivation [147, 151, 152].

Additional observations have strengthened the notion of 
mH2A as a transcriptional repressor. It is associated with 
regions of condensed chromatin such as Senescence-Asso-
ciated Heterochromatic Foci (SAHFs) [153] (Fig. 2b), inac-
tive alleles of imprinted genes, and silenced endogenous 
retroviruses [154, 155]. Furthermore, analyses of mH2A.1 
and mH2A.2 genomic occupancy have recently yielded 
interesting insights into this variant, showing that it is also 
present at autosomal genes, and hence likely involved in 
genome-wide transcriptional regulation [147, 156–159]. 
In particular, mH2A localizes to subtelomeric genes [159], 
cell–cell signaling genes [157], and pluripotency-related 
and developmental-specific genes [156, 157, 159], gener-
ally—but not always—preventing their expression [157]. 
Although this might argue for a functional role of mH2A 
in development and differentiation, this hypothesis remains 
questionable based on the lack of strong phenotypes 
reported from mH2A knockout mice [147, 151, 152]. Of 
the two knockout studies performed, only one reported a 
mild, gender-specific phenotype—female mH2A.1 null 
mice had higher incidence of liver steatosis [151].

Crystal studies of mH2A.1 by Luger and colleagues sug-
gested that subtle alterations of mH2A.1’s L1 loop, com-
pared to that of canonical H2A, result in a nucleosome with 
less flexibility, and potentially contribute to the repressive 

nature of mH2A [160] (Fig.  3). While these studies were 
performed using only the histone domain of mH2A, [160], 
it has been speculated that the macro domain protrudes 
from the nucleosome core, thereby inhibiting the associa-
tion of certain factors by steric hindrance, and/or by pro-
moting a specific and context-dependent association with 
unique factors [140, 160]. To date, several proteins have 
indeed been identified to interact with the macro domain, 
sometimes in an isoform-specific manner, and at least a few 
of such interactions create a repressive chromatin environ-
ment (reviewed in [140]). Supporting the steric hindrance 
model, studies have provided evidence that (1) Transcrip-
tion Factors (TF) bind less effectively to mH2A.1 contain-
ing nucleosomes, and (2) SWI/SNF remodeling activity 
and/or binding to mH2A nucleosomes is less optimal than 
that of canonical nucleosomes. As a consequence, tran-
scriptional initiation is hindered [161–164]. Furthermore, 
while the HFD of mH2A is able to pack DNA very simi-
larly to canonical H2A [165], the linker region stabilizes 
the wrapping of DNA around the histone core by interact-
ing with DNA around the nucleosomal entry/exit site, and 
this potentially contributes to the more condensed nature 
of mH2A-containing chromatin [166]. Taken together, the 
in vitro biochemical data provide mechanistic evidence for 
the role of mH2A as a transcriptional repressor. 

Until recently, the mechanisms and factors involved in 
mH2A chromatin incorporation were unknown. Our group 
identified the SWI/SNF helicase ATRX (Alpha Thalas-
semia/MR, X-linked) to interact with all three isoforms 
of mH2A in their chromatin-free state [159]. In contrast 
to its role in H3.3 deposition [167–169] (see below), our 
observations suggest that ATRX is a negative regulator of 
mH2A chromatin association. Loss of ATRX results in the 
increased deposition of mH2A at the α-globin gene clus-
ter, concomitant with the loss of α-globin gene expression 
that is often observed in ATRX syndrome patients [159]. 
Together with the reported role of INO80 in the regulation 
of H2A.Z [78], this is another example of negative regu-
lation of chromatin deposition, which may include nucleo-
some eviction or inhibition of deposition. Therefore, a 
dynamic balance between histone deposition and eviction/
inhibition is likely required to maintain proper chromatin 
states and, in turn, a specific biological readout. However, 
despite these findings, the mechanisms by which mH2A is 
actively incorporated at distinct genomic loci still remain 
unclear.

To date, a handful of mH2A PTMs have been identi-
fied (primarily through mass spectrometry analyses), and 
their functional roles are largely unknown. These include 
ubiquitylation of mH2A.1.2 at lysines 115 and 116 (K115, 
K116) [170, 171], methylation of mH2A1.2 at lysines 
17, 122 and 238 (K17, K122, K238) [170], phosphoryla-
tion of mH2A.1.2 at threonine 128 (T128) [170, 172], and 
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phosphorylation of both mH2A.1.1 and 1.2 at serine 137 
(S137) [172] (Figs. 1, 2c). Some of these PTMs orchestrate 
the association of mH2A with the inactive X. Indeed, the 
ubiquitylation of mH2A.1, mediated by CULLIN3/SPOP 
ubiquitin ligase complex [173, 174], is important for asso-
ciation with the Xi. In contrast, the S137 phosphorylated 
form of mH2A.1 is excluded from the Xi and co-localizes 
with RNA polymerase II, suggestive of a role in gene acti-
vation [172] (Fig. 2c). Furthermore, while S137ph is pre-
sent throughout the cell cycle, it is enriched during mitosis 
and is Cyclin-Dependent Kinases (CDK)-dependent. While 
it remains to be tested, this finding implicates mH2A in cell 
cycle regulation.

The role of mH2A at the Xi has been extensively dis-
sected, and while not involved in the initial stages of silenc-
ing, mH2A may be a key player in reinforcing silent chro-
matin states [173, 175]. This is consistent with the finding 
that mH2A levels in chromatin increase during mouse 
Embryonic Stem Cell (mESC) differentiation and in mouse 
development [158, 176, 177]. Recent studies have investi-
gated the role of mH2A isoforms in the context of mESC 
differentiation via RNA interference approaches. Con-
sistent with the mouse knockout studies, Tanasijevic and 
Rasmussen [177] found that knockdown of mH2A does 
not perturb X inactivation and cells effectively differenti-
ate towards multiple lineages. On the other hand, Busch-
beck and colleagues [178] found that knockdown of mH2A 
inhibits proper differentiation via incomplete inactivation 
of pluripotency genes and reduced activation of lineage-
specific genes. Therefore, the role of mH2A in differentia-
tion remains unclear, and we anticipate that studies in the 
context of genetically deficient mice will shed light on this 
interesting biology.

Finally, while mH2A isoforms have not been shown to 
play a significant role in development, these histone vari-
ants can act as barriers in the reprogramming of differenti-
ated cells into their pluripotent counterparts. Via Somatic 

Cell Nuclear Transfer (SCNT) and TF-based repro-
gramming (induced Pluripotent Stem  Cells; iPSCs), the 
enhanced induction of pluripotency was observed in the 
absence of mH2A isoforms [158, 179, 180]. As mH2A.1 
and mH2A.2 are enriched at pluripotency genes in differ-
entiated cells, mH2A isoforms act as an ‘epigenetic barrier’ 
that needs to be overcome (potentially via their active evic-
tion from chromatin) in order to induce such genes during 
reprogramming [158, 180]. This suggests that mH2A inhib-
its cellular reprogramming and plasticity, and may there-
fore also present a barrier to tumor formation (see below).

mH2A: a pleiotropic tumor suppressor

In recent years, the number of studies addressing the role 
of mH2A in cancer initiation and progression has increased 
considerably (Table  2). As a whole, these data suggest a 
role for particular mH2A isoforms as tumor suppressors, 
whose expression is reduced (compared to normal tissues 
and/or early cancer stages) in several tumor types, includ-
ing melanoma, lung, testicular, bladder, colon, ovarian, 
breast, cervical, and endometrial cancers [9, 10, 12, 13, 
181]. However, mH2A isoforms vary in their functional 
contribution to different tumors, as do the mechanisms of 
mH2A downregulation, suggesting cancer- and cell type-
specific roles for mH2A.

Initial studies suggested that mH2A isoforms act as a 
biomarker for disease. In patient samples of non-small cell 
lung cancer, decreased levels of mH2A.1.1 and mH2A.2 
(and to a lesser extent mH2A.1.2) were shown to inversely 
correlate with cell proliferation and with disease-free sur-
vival [10]. The same inverse correlation between mH2A.1.1 
expression and proliferation has recently been reported in 
colon cancer [9]. Interestingly, mH2A.1.1 levels are sig-
nificantly reduced in a wider panel of cancer types, and the 
mechanism has been attributed to splicing of the mH2A.1 
transcript [13]. In particular, QKI (QuaKIng), a factor that 

Fig. 3   The L1 loops of 
mH2A.1 and canonical H2A are 
structurally distinct. a, c Crystal 
structure of nucleosomes con-
taining canonical H2A (a, red) 
or mH2A.1 (c, blue) by in silico 
homology models. H2B, H3 and 
H4 are in light blue and DNA 
is in beige. b Superimposition 
of H2A and mH2A.1 LI loops 
illustrates a closer organization 
of the two mH2A.1 molecules 
compared to those of canonical 
H2A [160]
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regulates the alternative splicing of mH2A.1 pre-mRNA, 
is transcriptionally downregulated in certain cancer types. 
This results in increased splicing and expression of the 
mH2A.1.2 transcript, with a concomitant downregulation 
of mH2A.1.1. This switch from mH2A.1.1 to mH2A.1.2 
affects cell proliferation in various cancer cell lines [13]. 
Recently, the RNA helicases Ddx17 and Ddx5 were also 
identified in the regulation of mH2A1 alternative splicing 
in breast cancer [11].

Our group reported that downregulation of mH2A iso-
forms is regulated by transcriptional loss of both mH2A.1 
and mH2A.2 in malignant melanoma [12]. In the case of 
mH2A.2, silencing was through promoter DNA hypermeth-
ylation. The loss of mH2A isoforms significantly corre-
lates with melanoma malignancy, as mH2A.1 and mH2A.2 
are downregulated in metastatic cell lines and lesions from 
metastatic patients as compared to primary tumors and 
benign nevi (Fig.  4). Furthermore, with loss- and gain-of-
function studies in vitro and in vivo, we showed that mH2A 
loss drives melanoma progression, at least in part, through 
deregulation of CDK8 (Cyclin-Dependent-Kinase 8), which 
has been implicated as an oncogene in colorectal carcinoma 
[12, 182]. Collectively, these studies implicate mH2A as a 
driver in cancer largely due to its effect on cell proliferation 
[9, 10, 12, 13] and on tumor invasiveness [11, 12]. 

mH2A has also been described as a marker of senescence 
[153], and, as previously discussed in this review, OIS is 
considered a barrier to malignant transformation [92]. Inter-
estingly, all three mH2A isoforms are enriched in SAHFs 
[153]. Furthermore, using an oncogenic K-RasV12 OIS 
mouse model [183], Sporn and colleagues [10] found that 
mH2A1.1 levels were higher in pre-malignant lung adeno-
mas compared to malignant lung adenocarcinomas. Given 
that pre-malignant adenomas were also found to express 
high levels of senescence markers such as β-galactosidase 
and p16 compared to malignant adenocarcinomas [184], 

these findings reinforce the notion that mH2A loss may 
contribute to tumor progression through bypass of cellu-
lar senescence. In addition, human nevi display some fea-
tures of OIS, most likely triggered by the activating BRAF 
V600E mutation [185]. Nevi remain growth-arrested for 
decades, but can eventually develop into melanomas. It 
remains unknown if/how benign nevus cells escape OIS; 
however, we speculate that loss of mH2A may contribute to 
senescence bypass and, thus, melanoma progression.

Finally, as mentioned earlier, we recently reported ATRX 
to be a negative regulator of mH2A deposition [159]. Numer-
ous recent reports have described loss-of-function mutations 
and deletions in this chromatin remodeler in a variety of 
tumor types (see “H3.3” below, and Table 3). Thus, while the 
link between ATRX and mH2A in cancer remains unclear, 
the possibility of mH2A deregulation through ATRX muta-
tion is very enticing and awaits further investigation.

H3 variants

The H3 variants have been of increasing interest in recent 
years, with numerous studies aimed at deciphering their 
function(s), chromatin deposition machinery, and genome-
wide occupancy patterns, as well as the discovery of novel 
family members. To date, eight histone H3 variants (H3.1, 
H3.2, H3.3, H3t (H3.4), H3.5, H3.X, H3.Y, and CENP-A) 
have been reported in humans [186]. H3.1 and H3.2 are 
generally the most abundant H3 proteins in the cell and are 
often referred to as “canonical” H3. While some H3s are 
ubiquitously expressed, others are expressed in a tissue- or 
organism-specific fashion. For example, H3.1t and H3.5 
appear to be testis-specific [187, 188], while H3.X and 
H3.Y are primate-specific [189]. Like the H2A variants, the 
H3 variant members differ in their primary sequence, chro-
matin localization, deposition timing and machinery, and 
importantly their functions within the chromatin template 
(Table  1). The H3 histones are extensively decorated by 
PTMs, many of which have been well studied. These can 
occur in the context of various cellular processes such as 
transcription, mitosis, meiosis and heterochromatin forma-
tion. The reader is referred to other reviews for an in-depth 
summary of H3 PTMs [190, 191]. For the purpose of this 
review, we will discuss the centromeric histone H3 variant 
CENP-A (CENtromere Protein-A) and H3.3, both of which 
have been reported to play a role in cancer.

CENP‑A

CENP‑A structure and function

The centromere is known as the chromosomal locus that 
ensures fidelity in genome transmission at cell division. The 

Fig. 4   mH2A.2 loss correlates with melanoma malignancy. Immu-
nostaining of mH2A.2 in benign nevi and metastatic melanoma speci-
mens (representative samples shown at 20X magnification). mH2A.2 
is visualized using DAB (brown) and nuclei by haematoxylin (blue). 
Note loss of staining in metastatic melanoma cells
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H3 variant CENP-A is a highly specialized histone variant 
which localizes to the centromere in all eukaryotes (Figs. 1, 
5). As the centromere-specific variant (Fig.  5), CENP-A 
has two major functions. First, it is necessary and sufficient 
for centromere formation and maintenance [192, 193], and 
second, it forms the platform onto which the kinetochore 
assembles, mediating chromosome segregation [194–196]. 

While CENP-A is present at a very low stoichiometry in 
the cell compared to canonical H3, CENPA is an essential 
gene demonstrated by CENPA null mice, which fail to sur-
vive beyond 6.5 dpc due to severe mitotic defects [197]. It 
has been proposed that CENP-A is an epigenetic mark that 
is propagated in each cell division to maintain centromere 
identity [198]. This is supported by the observation that all 
active centromeres contain CENP-A independent of the 
underlying DNA  sequence, while inactivated centromeres 
do not [196]. 

CENP-A is a highly divergent H3 family member, with 
only ~60 % similarity to histone H3 within the HFD, and a 
distinct N-terminal tail [199]. While the global structures 
of H3- and CENP-A-containing nucleosomes are quite 
similar [200], two regions of CENP-A differ from canoni-
cal H3. These include the αN helix and the L1 loop, as 
highlighted in Fig. 6. The αN helix of CENP-A is at least 
one helical turn shorter than H3 with a structurally disor-
dered region N-terminal to this helix, while the L1 loop 
has two additional residues [186] (Fig. 6). Both these dif-
ferences are likely to contribute to the unique centromeric 
chromatin architecture [186, 192, 198] and to the specific 
binding of other centromeric proteins [195, 201, 202]. 
DNA is wrapped around CENP-A nucleosomes in a con-
ventional left-handed manner, but, unlike H3, only the cen-
tral 121 bp of DNA are visible in the crystal structure of 

Fig. 5   Localization of CENP-A by immunofluorescence. a CENP-
A staining (red) in interphase nucleus, foci represent centromeres. b 
CENP-A staining (red) of metaphase spreads. CENP-A localizes to 
the kinetochore of each sister chromatid. All imaging performed in 
nuclei isolated from a lymphoblast cell line at 100X magnification. 
DNA is stained with DAPI (blue)

Fig. 6   CENP-A- and H3-containing nucleosomes are structurally 
distinct. a Crystal structure of nucleosomes containing canonical H3 
(green) or CENP-A (orange) by in silico homology models are super-
imposed. Boxes highlight differences in their L1 loop structures (b) 
and in the organization of the N-terminal helix with regard to nucleo-
somal DNA (c). H2A, H2B, and H4 are in blue and DNA is in beige. 

b The L1 loop of CENP-A contains two additional amino acids and 
protrudes further from the nucleosome than that of canonical H3. c 
The N-terminal helix of CENP-A is shorter than the corresponding 
region in H3, and the DNA at this region (dashed line) may be more 
flexible in CENP-A nucleosomes
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in vitro-reconstituted CENP-A nucleosomes. This might 
indicate a more flexible DNA conformation at the entry and 
exit regions, resulting in more closely compacted nucle-
osomes and, thus, condensed chromatin arrays relative to 
the canonical H3 [186, 198, 201, 203]. 

In vitro studies of recombinant nucleosomes have estab-
lished that CENP-A forms an octameric nucleosome con-
taining two copies of CENP-A [186, 198, 203]. However, 
studies from various eukaryotic species have put forth com-
peting models for the structure of the CENP-A-containing 
particles in vivo [192]. One of the most intriguing is the 
hemisome model, containing only one copy of each his-
tone CENP-A, H4, H2A, and H2B [204, 205]. A recent 
study from our group showed that the predominant form of 
CENP-A particles at functional centromeres in asynchro-
nous human cells is an octamer with loose super helical 
termini [280]. Studies using synchronized cells have sug-
gested that CENP-A-containing particles are cell cycle-
regulated, existing as octamers in S phase and hemisomes 
during the other stages of the cell cycle [206, 207]. This 
would potentially have ramifications for centromere func-
tion throughout the cell cycle, in particular for the inherit-
ance of centromeric domains after replication.

The mechanisms of how newly synthesized CENP-A is 
targeted, deposited, and maintained at the centromere have 
long been a mystery. However, recent studies have begun to 
unravel these mechanisms. CENP-A expression begins late 
in S phase and reaches maximum levels in late G2, sugges-
tive that it may be driven by a cell cycle-regulated promoter 
element [208]. Using a SNAP tag approach, which can 
distinguish between old and newly synthesized histones, 
[209], Jansen et al. [210] demonstrated that the loading of 
newly synthesized CENP-A, at least in metazoans, occurs 
independently of DNA replication, during a short window 
in late mitosis/early G1. In order to identify the CENP-A 
deposition machinery, a large-scale purification of CENP-
A-interacting proteins in a chromatin-free context was per-
formed. As a result, HJURP (Holliday Junction Recogni-
tion Protein) was identified as a CENP-A chaperone [211, 
212]. Functional studies demonstrated that loss of HJURP 
led to a dramatic reduction in CENP-A at centromeres and 
impaired deposition of newly synthesized CENP-A, result-
ing in mitotic defects [211].

Recognition and targeting of CENP-A to the centromere 
occurs via the CENP-A Targeting Domain (CATD) [212]. 
An H3 chimera containing the CATD was shown to be 
delivered to the centromere [213], and to co-purify with 
HJURP from mammalian cells [212]. Moreover, the CATD 
is also important for the assembly of chromatin at cen-
tromeres and for the rigid intranucleosomal dynamics spe-
cifically required to generate the unique centromeric chro-
matin architecture [214]. Taken together, these data suggest 

that HJURP is not only a histone chaperone but may also be 
important for stabilizing the CENP–A/H4 complex [201].

In addition, the Mis18 complex was shown to play a 
critical role in centromere targeting of CENP-A [215]. 
Although the mechanism remains obscure, Mis18 defi-
ciency results in mislocalization of CENP-A, which, in 
turn, leads to early embryonic lethality in mice [216]. It has 
recently been proposed that the CENP-A assembly machin-
ery is responsible for the cell cycle-regulated incorpora-
tion of CENP-A. Indeed, while components of the Mis18 
complex are present throughout most of the cell cycle, 
their activity seems to be tightly controlled by CDK1 and 
CDK2, thus coordinating the timing of DNA replication, 
cell division, and subsequent centromere maturation [217].

In mammalian cells, CENP-A is phosphorylated on ser-
ine 7 (S7) by Aurora B kinase during prophase, and then 
dephosphorylated during anaphase [218] (Fig.  1). An S7 
CENP-A mutant is still targeted to the centromere; how-
ever, it shows defects in kinetochore function and chro-
mosome alignments at both prometaphase and cytoken-
esis [219, 220]. In addition, lysine 124, which is located 
at the interface between the HFD and DNA, was recently 
reported to be acetylated at the G1/S transition, potentially 
causing structural alterations in the CENP-A-containing 
nucleosome [206].

While CENP-A is recognized as both an epigenetic 
mark maintaining centromere identity and a platform onto 
which the kinetochore is formed, controversy still exists in 
regards to the in vivo composition of CENP-A-containing 
particles. We look forward to future studies that elucidate 
the unique characteristics of the centromeric chromatin 
environment, which will also be critical for understanding 
its role in cancer (see below).

CENP‑A: genome stability and cancer

Chromosomal aneuploidy is a common hallmark of human 
solid tumors, resulting mainly from chromosome mis-seg-
regation during mitosis. Given the critical role of CENP-A 
in shaping the centromere/kinetochore structures, it is not 
surprising that its deregulation might lead to chromosomal 
instability and ultimately to cancer (Table  2). Defects in 
CENP-A functions can be caused by alterations in expres-
sion levels, which in turn alters the stoichiometry between 
CENP-A and HJURP [221] leading to CENP-A mis-target-
ing [222]. Accumulating evidence indicates that CENP-A 
is upregulated in a number of cancers, such as colorectal 
cancer [222], lung adenocarcinoma [223], invasive testicu-
lar germ cell tumors [224], breast cancer [225], and Hepa-
toCellular Carcinoma (HCC) [226] (Table  2). HJURP is 
also overexpressed in certain cancers, including lung [227] 
and breast cancers [228] (Table  3). In breast cancer, e.g., 
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increased HJURP and CENP-A mRNA levels are signifi-
cantly associated with decreased survival rate [228].

Besides the deregulation of centromeres, additional 
mechanisms might be involved in CENP-A-mediated 
tumor formation. Indeed, by manipulating its expression in 
a human HCC cell line, CENP-A was shown to promote 
cell proliferation and to inhibit apoptosis through modulat-
ing the expression of many cell cycle and apoptotic genes 
[229]. Thus, we speculate that overexpression of CENP-A 
might lead to its mis-localization along chromosome arms, 
which in turn alters cellular gene expression and/or other 
chromosomal dynamics. However, the mechanisms under-
lying increased levels of CENP-A in cancer cells remain 
to be determined, as do the functional readouts of such 
upregulation.

H3.3

H3.3 structure and function

H3.3 is highly conserved in evolution, from yeast (where 
it is the only non-centromeric H3 variant) to human [26]. 
H3.3 is encoded by two genes; H3F3A on chromosome 1 
and H3F3B on chromosome 17. The H3.3 genes code for 
an identical H3.3 protein, but harbor different untranslated 
regions, and thus their expression levels vary with cell 
type, tissue, and stage of development [230–232]. Deletion 
of the H3F3A gene results in phenotypes that range from 
lethality in the mouse to sterility in organisms such as D. 
melanogaster and T. thermophila [233–235]. Mice harbor-
ing a hypomorphic H3F3A allele exhibited partial neonatal 
lethality and significant defects in adult fertility [236]. The 
latter phenotype is likely due to H3.3’s role in chromosome 
segregation during spermatogenesis [110, 237, 238].

H3.3 differs from canonical H3.1 and H3.2 by five and 
four amino acids, respectively (Fig. 1). Four of these res-
idues cluster in the interface between H3.3 and H4. This 
region is accessible to regulatory factors and mediates the 
specific interaction with distinct histone chaperones (dis-
cussed further below) [186, 239–241]. The other unique 
residue is the N-terminal serine 31, which is phosphoryl-
ated during mitosis. This phosphorylation confers a unique 
PTM to H3.3, potentially differentiating it from canonical 
H3 in regard to cell division dynamics [242, 243]. Besides 
phosphorylation, H3.3 may be subject to a distinct PTM 
pattern as compared to canonical to H3.1 and H3.2; how-
ever, an extensive characterizations of the PTMs of histone 
H3s is beyond the scope of this review [243, 244].

While the crystal structure analyses of nucleosomes con-
taining H3.3 revealed a very similar structure as canonical 
H3-containing nucleosomes, those with H3.3 are less sta-
ble [186]. In particular, they dissociate from H2A–H2B 
dimers at lower salt concentrations [79], and intriguingly 

H3.3/H2A.Z-containing nucleosomes are more unstable 
than H3.3/H2A. Indeed, H3.3/H2A.Z nucleosomes are pre-
sent at promoters and enhancers of highly expressed genes, 
potentially creating a “variant” chromatin environment 
accessible to TFs [80]. This suggests that the combination 
of different histone variants in the same nucleosome allows 
for increased complexity or fine-tuning of transcriptional 
regulation [79, 80].

Consistent with destabilized nucleosomes, H3.3 has 
been described as a replacement histone associated with 
transcriptionally active chromatin [245, 246]. Deposition 
of H3.3 occurs mainly at promoters and gene bodies of 
actively transcribed genes, and at regulatory sites of both 
active and inactive genes [80, 168, 247, 248]. ChIP–chip 
and ChIP-seq approaches in mammalian and chicken cells 
revealed that H3.3 is incorporated throughout genes and 
upstream regulatory regions upon induction of transcription 
and is therefore also associated with transcriptional elonga-
tion [80, 248, 249].

Interestingly, recent studies suggest that, besides asso-
ciating with transcriptionally competent chromatin, H3.3 
is also incorporated into heterochromatic regions of the 
genome, including telomeres and pericentric regions (dis-
cussed below) [167–169, 250]. Furthermore, H3.3 has 
been implicated as a ‘placeholder H3′ for CENP-A at 
centromeres, which occurs upon CENP-A dilution dur-
ing DNA replication [251]. H3.3 was also proposed to be 
involved in the epigenetic maintenance of chromatin states 
(‘epigenetic memory’) in Xenopus nuclear transplantation 
studies [252]. Indeed, H3.3/H4 and not H3.1/H4 tetramers 
have been observed to split during DNA replication, indi-
cating a potential mode for transmitting epigenetic marks 
[253, 254]. Taken together, these results suggest that H3.3 
has numerous and context-dependent functions.

Unlike canonical H3.1 and H3.2, which are expressed 
during S phase and incorporated into chromatin in a repli-
cation-dependent fashion, H3.3 is constitutively expressed 
and deposited into chromatin independently of DNA rep-
lication. Interestingly, swapping any of the four unique 
residues of the HFD in H3.1 to their counterparts in H3.3 
(Fig. 1) in Drosophila allows H3.1 incorporation into chro-
matin outside of S phase [255]. This strongly suggests that 
specific chaperone interactions are dedicated to the deposi-
tion of each H3 variant [239, 240].

Multiple chaperones have been implicated in the repli-
cation-independent chromatin deposition of H3.3. These 
include HIRA (HIstone cell cycle Regulation-defective 
homolog A), DEK, ATRX, and Daxx (death domain-asso-
ciated protein) [167–169, 256, 257]. HIRA was described 
to deposit H3.3 throughout the cell cycle across the 
genome [241, 257]. Consistent with this finding, deposi-
tion of H3.3 at promoters and in the body of active genes is 
greatly impaired upon HIRA loss in ESC [168], and HIRA 
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knockout mice display embryonic lethality [258]. However, 
it has recently been reported that ATRX, and its co-factor 
Daxx [259, 260], regulate H3.3 deposition at non-coding 
genomic loci, including telomeres and pericentric hetero-
chromatin [167–169]. This finding clearly suggests that the 
deposition of H3.3 is mediated by distinct factors at spe-
cific genomic regions. While the functional significance 
of H3.3 deposition at heterochromatic regions remains to 
be explored, loss of H3.3 or ATRX results in decreased 
transcription of pericentric repeats, suggesting its involve-
ment in active transcription at this region [167]. Of note, 
two groups recently resolved the crystal structure of H3.3-
containing nucleosomes in complex with Daxx [239, 240]. 
By elegant residue swapping experiments, these reports 
demonstrated that unique residues of H3.3 are critical in 
mediating the Daxx interaction, thereby substantiating the 
importance of these residues in the differential regulation 
of H3 variants [239, 240] (Fig. 1).

Our group showed that ATRX also acts to negatively 
regulate mH2A association with chromatin, however, 
in a Daxx-independent fashion [159]. Thus, while dis-
tinct factors are required for site-specific deposition of 
H3.3, they may also regulate the incorporation of other 
histone variants to create a unique chromatin environ-
ment. Furthermore, because Daxx interacts with both 
ATRX and DEK [256, 259, 260], we can envision that 
Daxx gives ATRX specificity towards H3.3 over mH2A, 
and in turn ATRX or DEK differentially regulate H3.3 
deposition at distinct genomic regions. We also note 
that these chaperones have post-translationally modified 
forms, which may also regulate their activity and speci-
ficity [256, 261]. In summary, the H3.3 histone deposi-
tion machinery is highly complex, and we look forward 
to future studies that facilitate a deeper understanding 
of these chaperones and H3.3 genome-wide chromatin 
deposition.

H3.3: a histone variant mutated in cancer

H3.3 and its chaperones have clearly been implicated in 
cancer. While H3.3 has been reported to be overexpressed 
in human tumors [262], the advent of high throughput 
sequencing has uncovered mutations in the H3F3A gene in 
an unbiased manner. Two recent exome sequencing studies 
surprisingly uncovered H3.3 mutations in pediatric Glio-
Blastoma Multiforme (GBM) [15, 16] and Diffuse Intrinsic 
Pontine Gliomas (DIPGs) [16]. Of note, this is the first evi-
dence of a histone variant-encoding gene mutated in human 
cancer. Missense mutations in the H3F3A gene were 
observed in 31 % of GBMs leading to amino acid substitu-
tions of two critical residues within the histone tail (K27M 
and G34V/R), which are either subject to PTMs themselves 
(H3.3K27) or lie in very close proximity to other modified 

residues (H3.3K36) [15]. Both these residues play a key 
role in gene expression programs.

In a further study aimed at identifying somatic mutations 
in DIPG and non-brainstem pediatric glioblastomas (non-
BS-PGs), 78  % of DIPGs and 22  % of non-BS-PGs har-
bored a K27M substitution in H3F3A or in the HISTH3.1 
gene encoding H3.1. An additional 14  % of the non-BS-
PGs were found to have a G34R substitution in the H3F3A 
gene [16]. Notably, these heterozygous mutations occur 
only in the H3F3A gene, although both H3F3A and H3F3B 
encode the same H3.3 protein. Because the mutations 
always encode the same amino acid substitutions, it sug-
gests a gain-of-function phenotype [15]. In fact, the K27M 
mutation has recently been reported to directly interfere 
with EZH2 activity, resulting in reduced global levels of 
H3K27me3 [263].

Intriguingly, the H3.3 chaperones have also emerged as 
critical players in human cancer. For example, in response 
to angiogenic signals, HIRA is induced in endothelial cells 
leading to incorporation of acetylated H3.3K56 (a marker 
of active transcription) in the pro-angiogenic VEGFR1 
(Vascular Endothelial Growth Factor Receptor 1) gene, and 
thus promotes neovascularization of the tumor [264]. Akin 
to the unbiased high throughput sequencing studies men-
tioned above, ATRX and/or Daxx mutations (and deletions) 
have been revealed in a variety of tumor types including 
pancreatic NeuroEndocrine Tumors (panNETs) [19], neu-
roblastoma [265], and GBM [15, 18], as well as the rare 
Alpha-Thalassemia MyeloDysplasia Syndrome (ATMDS) 
[266]. Intriguingly, most of these tumor types arise from 
neural crest-derived cells, suggesting a common mecha-
nism underlying formation of these tumor types [267].

The PanNET exome study revealed that 43  % of the 
tumors harbored inactivating mutations in either the ATRX 
or Daxx genes, and appear to be independent of each other. 
Interestingly, the ATRX and Daxx mutations were all in-
frame deletions or nonsense mutations, suggesting a tumor 
suppressor role [19]. PanNET tumors harboring ATRX or 
Daxx mutations displayed Alternative Lengthening of Tel-
omeres (ALT) and had lost the nuclear expression of either 
Daxx or ATRX, suggestive of a role exerted by ATRX in 
telomeric maintenance [18]. A high correlation between 
ATRX mutations and ALT was also found in Central Nerv-
ous System (CNS) tumors, and in known ALT-positive cell 
lines [15, 18, 265, 267]. We can envision a scenario where 
ATRX and Daxx mutations impair the chromatin state at 
telomeres potentially through deregulation of H3.3 and 
mH2A, leading to telomere destabilization and facilitating 
ALT. Yet, at the same time, not all ATRX mutant tumors 
exhibit ALT [16], and thus the ATRX/ALT connection at 
this point is merely correlative and not causal [268, 269].

The study by Schwartzentruber et  al. showed that 
somatic loss-of-function mutations of ATRX and Daxx 
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in GBM were frequently coupled with H3.3 mutations in 
the same tumors; 100 % of H3.3 G34 V/R mutations also 
carry an ATRX mutation. Some H3.3/ATRX-mutated GBM 
samples (exclusively pediatric and young adults GBMs) 
exhibited ALT and changes in expression profiling of brain-
specific developmental genes, consistent with a dual role of 
H3.3 in shaping telomeric chromatin and in regulating gene 
expression [15, 270]. Similarly, the H3.3 K27 M mutation 
found in DIPG is associated with ATRX mutations, mainly 
in older children [16].

Whole-genome sequencing on primary neuroblasto-
mas identified structural variants and large deletions in 
ATRX that led to loss of mRNA expression [265]. Interest-
ingly, none of these patients had Daxx or H3.3 mutations, 
indicating that ATRX alone could be potential driver of 
neuroblastoma.

Collectively, it is now evident that H3.3 regulation is 
perturbed in cancer. Whether it is through H3.3 mutations 
directly or mutations in its chaperones, the challenge is 
now to understand the consequences for tumor cells. We 
anticipate that deciphering the alterations at the chromatin 
level by genome-wide analyses of histone variant deposi-
tion in the context of these tumors will help to elucidate 
the underlying biology. Given the implication of ATRX 
both in telomere homeostasis and in regulation of H3.3 and 
mH2A association with chromatin, it is now of interest to 
determine how loss of functional ATRX might contribute 
to tumorigenesis via telomere dysfunction, or other as yet 
unidentified cellular functions [269].

Conclusions and perspectives

Research in recent years has focused heavily on the H2A 
and H3 histone variant families, leading to identification of 
the machinery responsible for their chromatin deposition, 
consequences of their incorporation, biochemical proper-
ties of variant-incorporated nucleosomes, and biological 
functions, as well as their genome-wide localization pat-
terns in both physiological and disease states. However, 
some fundamental questions in regard to histone biol-
ogy still remain unanswered, as discussed throughout the 
review. As new technologies arise, coupled to creative and 
novel experimental approaches, some of these long-stand-
ing questions will be resolved.

Both H2A and H3 histone variants have been broadly 
shown to be key, and often essential, players in orches-
trating cell differentiation and organism development [32, 
176, 177, 197, 236, 271]. Due to our better understanding 
of cancer biology, the similarities to developmental biology 
are becoming evident. It is therefore not completely unex-
pected that the role histone variants play in cancer progres-
sion may be cell type- and context-dependent.

The last few years have witnessed an explosion of 
studies focused on the role of histone variants in cancer. 
Moreover, exome sequencing has recently been utilized to 
uncover somatic mutations in patient samples, and these 
studies have unraveled alterations in histone chaperones, 
chromatin remodeling complexes, and histones themselves 
[15, 16, 18, 19, 265, 266]. However, as a field, we have just 
scratched the surface in understanding the role of histone 
variants in cancer initiation and/or progression. Further-
more, we point out that, while some histone variants were 
discovered decades ago [23, 25, 142], novel variants and 
isoforms thereof have only recently been characterized [38, 
81, 189]. However, while little is known about their biol-
ogy, studies detecting their expression in human tumors are 
strongly suggestive of a critical, yet unknown, role in can-
cer development and progression; for example, newly iden-
tified H3 variants H3.X and H3.Y [189]. Thus, we believe 
there is a vast and intriguing biology of histone variants in 
cancer still awaiting discovery.

Interestingly, histone variants and histone chaperones 
implicated in cancer can now be ascribed to several clas-
sical types of genes associated with cancer. For example, 
by promoting cell proliferation, H2A.Z and SRCAP are 
suggested to behave like oncogenes [14, 20]. On the other 
hand, mH2A might be assigned to the class of tumor sup-
pressor genes [9–13], having an inhibitory effect on growth 
and metastasis, while H2A.X and CENP-A display fea-
tures of caretakers, which act to prevent genomic instability 
[133–135, 222].

We note here that epigenetic mechanisms other than his-
tone variant incorporation/exchange have also been impli-
cated in human cancer, i.e. DNA methylation and histone 
PTMs [272, 273]. In order to gain a broader picture of the 
contribution of epigenetics to cancer in general, studying 
the crosstalk between histone variants and other epigenetic 
mechanisms is essential. For example, a handful of stud-
ies have addressed the anti-correlation of H2A.Z deposition 
and DNA methylation, while others implicate a positive 
correlation between certain histone variants with histone 
PTMs [15, 16, 48, 274].

Given their fundamental role in shaping chromatin struc-
ture, histone variants (and their chaperones) likely consti-
tute important biomarkers for diagnosis or prognosis and 
may even represent therapeutic targets in cancer in patients. 
To date, studies have demonstrated the potential prognos-
tic utility of histone variants for multiple cancers includ-
ing those of lung, breast, and colon [8–10]. Cellular levels 
of histone variants may also predict responses to certain 
chemotherapeutic agents [136, 137], serving as predictive 
biomarkers that could inform clinical decisions regarding 
courses of therapy. The main challenge now is to mecha-
nistically understand how histone variant deregulation can 
contribute to cancer development and progression, and 
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ultimately to developing novel therapeutics. Owing to the 
fact that histone incorporation into chromatin can poten-
tially be reversed with small molecules that would block 
the relevant histone-to-histone chaperone interaction, or 
those that inhibit the activity of chaperones themselves, 
histone variant biology holds incredible translational poten-
tial. Based on the recent success of ‘epigenetic drugs’ 
[275–278], we anticipate and are hopeful that additional 
compounds, including those that regulate histone variants, 
will be developed and find their way to the clinic.
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